Files
dap/dap/algos/radprof.py

62 lines
1.8 KiB
Python

import numpy as np
from .thresh import calc_apply_threshold
from .utils import npmemo
def calc_radial_integration(results, data, pixel_mask):
do_radial_integration = results.get("do_radial_integration", False)
if not do_radial_integration:
return
center_x = results["beam_center_x"]
center_y = results["beam_center_y"]
rad, norm = prepare_radial_profile(data.shape, center_x, center_y, pixel_mask)
r_min = min(rad)
r_max = max(rad) + 1
data = calc_apply_threshold(results, data, value=np.nan, copy=True)
rp = radial_profile(data, rad, norm, pixel_mask)
silent_min = results.get("radial_integration_silent_min", None)
silent_max = results.get("radial_integration_silent_max", None)
if silent_min is not None and silent_max is not None:
# if start > stop, numpy returns an empty array -- better to ensure start < stop by switching them if needed
silent_min, silent_max = sorted((silent_min, silent_max))
if silent_min > r_min and silent_max < r_max:
silent_region = rp[silent_min:silent_max]
integral_silent_region = np.sum(silent_region)
rp = rp / integral_silent_region
results["radint_normalised"] = [silent_min, silent_max]
results["radint_I"] = rp[r_min:] #TODO: why not stop at r_max?
results["radint_q"] = [r_min, r_max]
@npmemo
def prepare_radial_profile(shape, x0, y0, keep_pixels):
y, x = np.indices(shape)
rad = np.sqrt((x - x0)**2 + (y - y0)**2)
if keep_pixels is not None:
rad = rad[keep_pixels]
rad = rad.astype(int).ravel()
norm = np.bincount(rad)
return rad, norm
def radial_profile(data, rad, norm, keep_pixels):
if keep_pixels is not None:
data = data[keep_pixels]
data = data.ravel()
tbin = np.bincount(rad, data)
rp = tbin / norm
return rp