56 lines
2.0 KiB
Python
56 lines
2.0 KiB
Python
from mathutils import estimate_peak_indexes, fit_gaussians, create_fit_point_list, Gaussian
|
|
import java.awt.Color as Color
|
|
|
|
import mathutils
|
|
mathutils.MAX_ITERATIONS = 100000
|
|
|
|
def fit(ydata, xdata = None, draw_plot = True):
|
|
if xdata is None:
|
|
xdata = frange(0, len(ydata), 1)
|
|
max_y= max(ydata)
|
|
index_max = ydata.index(max_y)
|
|
max_x= xdata[index_max]
|
|
print "Max index:" + str(index_max),
|
|
print " x:" + str(max_x),
|
|
print " y:" + str(max_y)
|
|
|
|
if draw_plot:
|
|
plots = plot([ydata],["data"],[xdata], title="Fit" )
|
|
p = None if plots is None else plots[0]
|
|
|
|
gaussians = fit_gaussians(ydata, xdata, [index_max,])
|
|
if gaussians[0] is None:
|
|
if draw_plot and (p is not None):
|
|
p.addMarker(max_x, None, "Max="+str(round(max_x,4)), Color.GRAY)
|
|
print "Fitting error"
|
|
return (None, None, None)
|
|
|
|
(norm, mean, sigma) = gaussians[0]
|
|
if draw_plot:
|
|
fitted_gaussian_function = Gaussian(norm, mean, sigma)
|
|
scale_x = [float(min(xdata)), float(max(xdata)) ]
|
|
points = max((len(xdata)+1), 100)
|
|
resolution = (scale_x[1]-scale_x[0]) / points
|
|
fit_y = []
|
|
fit_x = frange(scale_x[0],scale_x[1],resolution, True)
|
|
for x in fit_x:
|
|
fit_y.append(fitted_gaussian_function.value(x))
|
|
#Server
|
|
if p is None:
|
|
plot([ydata,fit_y],["data","fit"],[xdata,fit_x], title="Fit")
|
|
draw_plot = False
|
|
else:
|
|
p.addSeries(LinePlotSeries("fit"))
|
|
p.getSeries(1).setData(fit_x, fit_y)
|
|
|
|
if abs(mean - xdata[index_max]) < abs((scale_x[0] + scale_x[1])/2):
|
|
if draw_plot:
|
|
p.addMarker(mean, None, "Mean="+str(round(mean,4)), Color.MAGENTA.darker())
|
|
print "Mean -> " + str(mean)
|
|
return (norm, mean, sigma)
|
|
else:
|
|
if draw_plot:
|
|
p.addMarker(max_x, None, "Max="+str(round(max_x,4)), Color.GRAY)
|
|
print "Invalid gaussian fit: " + str(mean)
|
|
return (None, None, None)
|