Files
x03da/script/XPSSpectrum.py
gac-x03da c54463a4dd Closedown
2019-05-04 01:55:22 +02:00

198 lines
6.9 KiB
Python

#Parameters (global variables):
# ranges: list of RangeSelection havinf args = (step_size, step_time, iterations)
# pass_energy
# save_scienta_image
#
# skip_iteration: if set to 1 then skips after end of current iteration
from ch.psi.pshell.data.LayoutDefault import ATTR_WRITABLE_DIMENSION as ATTR_WRITABLE_DIMENSION
import org.jfree.chart.axis.NumberAxis as NumberAxis
cur_range = 0
cur_iteration = 0
if Scienta.acquisitionMode != Scienta.AcquisitionMode.Swept:
Scienta.acquisitionMode = Scienta.AcquisitionMode.Swept
ret=[]
adjusted_ranges = []
for cur_range in range(len(ranges)):
r = ranges[cur_range]
ar = [round(r.min / r.vars[1]) * r.vars[1], round(r.max / r.vars[1]) * r.vars[1]]
adjusted_ranges.append(ar)
set_exec_pars(open = True)
#Global arguments
Scienta.passEnergy = pass_energy
names=[]
names.append("Online Spectrum")
for i in range(len(ranges)):
names.append(str(ranges[i]))
plots = plot(None, names)
for p in plots[1:]:
p.getAxis(p.AxisId.X).label = "kinetic energy"
eb_axis = NumberAxis("binding energy")
eb_axis.inverted = True
jf = p.chart.plot
jf.setDomainAxis(1, eb_axis)
jf.getDomainAxis(1).labelPaint = jf.getDomainAxis(0).labelPaint
jf.getDomainAxis(1).labelFont = jf.getDomainAxis(0).labelFont
jf.getDomainAxis(1).tickLabelPaint = jf.getDomainAxis(0).tickLabelPaint
jf.getDomainAxis(1).tickLabelFont = jf.getDomainAxis(0).tickLabelFont
# online spectrum
p = plots[0]
spectrum_series = p.getSeries(0)
spectrum_eb_axis = p.chart.plot.getDomainAxis(1)
def plot_cur_spectrum_eb():
"""
plot online spectrum function for forked task.
with binding energy scale.
issue: this should not set the axis while the plot is zoomed!
"""
global spectrum_series
global spectrum_eb_axis
try:
while get_context().state.running:
y = Scienta.spectrum.take(100)
x = Scienta.spectrumX
spectrum_series.setData(x, y)
# adjust the binding energy scale
# if Eph returns an invalid number, we take energy_high as photon energy
ephot = Eph.take(100)
elo = Scienta.lowEnergy.take(100)
ehi = Scienta.highEnergy.take(100)
workfunc = 4.5
if ephot is not float or ephot < 0.:
ephot = ehi
eb1 = ephot - elo - workfunc
eb2 = ephot - ehi - workfunc
spectrum_eb_axis.setRange(eb2, eb1)
time.sleep(1.0)
finally:
print "Stopping spectrum plotting"
def plot_cur_spectrum():
try:
while get_context().state.running:
y = Scienta.spectrum.take(100)
x = Scienta.spectrumX
spectrum_series.setData(x, y)
time.sleep(1.0)
finally:
print "Stopping spectrum plotting"
task = None
# measurements
try:
for cur_range in range(len(ranges)):
cur_iteration = 0
skip_iteration = False
Scienta.lowEnergy.write(adjusted_ranges[cur_range][0])
Scienta.highEnergy.write(adjusted_ranges[cur_range][1])
Scienta.update()
vars = ranges[cur_range].vars
Scienta.stepTime.write(vars[0])
Scienta.stepSize.write(vars[1])
Scienta.setIterations(1)
set_adc_averaging()
#iterations done in script
xdata = None
ydata = None
image_data = None
task = fork(plot_cur_spectrum_eb)
path="scan" + str(cur_range+1) + "/"
for cur_iteration in range(vars[2]):
p = plots[cur_range+1]
p.setTitle(str(ranges[cur_range]) + " - iteration " + str(cur_iteration+1))
while True:
wait_beam()
trig_scienta()
spectrum_array = Scienta.spectrum.read()
if beam_ok:
if image_data is None:
(_width, _height) = Scienta.getImageSize()
break
if ydata is None:
ydata = spectrum_array
else:
for k in range (len(spectrum_array)):
ydata[k] = ydata[k] + spectrum_array[k]
if xdata is None:
xdata = Scienta.spectrumX
p.getSeries(0).setData(xdata, ydata)
# adjust the binding energy scale
# if Eph returns an invalid number, we take energy_high as photon energy
eb_axis = p.chart.plot.getDomainAxis(1)
ephot = Eph.take(100)
elo = Scienta.lowEnergy.take(100)
ehi = Scienta.highEnergy.take(100)
workfunc = 4.5
if ephot is not float or ephot < 0.:
ephot = ehi
eb1 = ephot - elo - workfunc
eb2 = ephot - ehi - workfunc
eb_axis.setRange(eb2, eb1)
if save_scienta_image:
image_array = Scienta.dataMatrix.read()
if _width != len(image_array[0]) or _height != len(image_array):
err = "Scienta image size changed during the acquisition: " + str((len(image_array[0]), len(image_array))) + " - original: " + str((_width, _height))
print err
log(err)
raise Exception(err)
if image_data is None:
image_data = image_array
else:
for k in range (len(image_data)):
for j in range (len(image_data[0])):
image_data[k][j] = image_data[k][j] + image_array[k][j]
if skip_iteration:
break
save_dataset(path + "ScientaSpectrum", ydata)
set_attribute(path, "Iterations",cur_iteration+1)
if save_scienta_image:
save_dataset(path + "ScientaImage", image_data, features = {"compression":True})
if cur_iteration==0:
save_dataset(path + "ScientaChannels", xdata)
set_attribute(path + "ScientaChannels", ATTR_WRITABLE_DIMENSION, 1)
set_attribute(path, "Range Low", adjusted_ranges[cur_range][0])
set_attribute(path, "Range High", adjusted_ranges[cur_range][1])
set_attribute(path, "Step Time", vars[0])
set_attribute(path, "Step Size", vars[1])
set_attribute(path, "Pass Energy",pass_energy)
set_attribute(path, "Readables", ["ScientaSpectrum","ScientaImage"] if save_scienta_image else ["ScientaSpectrum",])
set_attribute(path, "Writables", ["ScientaChannels",])
create_diag_datasets(path)
append_diag_datasets(path)
plots[cur_range+1].setTitle(str(ranges[cur_range]))
ret.append((xdata, ydata))
finally:
cur_range = -1
if not Scienta.isReady():
Scienta.stop()
Scienta.update()
task[0].cancel(True)
if ENDSCAN:
after_scan()
set_return(to_array(ret,'o'))