Files
x03da/script/XPSSpectrum.py
gac-x03da b2d76968fd Closedown
2023-08-22 15:38:19 +02:00

215 lines
7.3 KiB
Python

#Parameters (global variables):
# ranges: list of RangeSelection havinf args = (step_size, step_time, iterations)
# pass_energy
# save_scienta_image
#
# skip_iteration: if set to 1 then skips after end of current iteration
from ch.psi.pshell.data.LayoutDefault import ATTR_WRITABLE_DIMENSION as ATTR_WRITABLE_DIMENSION
import org.jfree.chart.axis.NumberAxis as NumberAxis
import math
cur_range = 0
cur_iteration = 0
if Scienta.acquisitionMode != Scienta.AcquisitionMode.Swept:
Scienta.acquisitionMode = Scienta.AcquisitionMode.Swept
ret=[]
SENSORS = ["Scienta.spectrum", "Scienta.dataMatrix"]
adjusted_ranges = []
for cur_range in range(len(ranges)):
r = ranges[cur_range]
print r
print r.vars
ar = [round(r.min / r.vars[1]) * r.vars[1], round(r.max / r.vars[1]) * r.vars[1]]
adjusted_ranges.append(ar)
set_exec_pars(compression=True)
set_exec_pars(open = True)
create_metadata_datasets()
#Global arguments
Scienta.passEnergy = pass_energy
names=[]
names.append("Online Spectrum")
for i in range(len(ranges)):
names.append(str(ranges[i]))
plots = plot(None, names)
for p in plots[1:]:
p.getAxis(p.AxisId.X).label = "kinetic energy"
p.getAxis(p.AxisId.X2).setLabel("binding energy")
p.getAxis(p.AxisId.X2).inverted = True
p = plots[0]
be_axis = plots[0].getAxis(p.AxisId.X2)
be_axis.inverted=True
be_axis.setLabel("binding energy")
spectrum_series = p.getSeries(0)
def get_binding_energy(e):
ephot = Eph.take(100)
workfunc = 4.5
if type(ephot) != float or ephot < 0.:
ephot = Scienta.highEnergy.take(100)
return ephot - e - workfunc
def get_binding_range(p=None):
if p is None:
return get_binding_energy(Scienta.highEnergy.take(100)), get_binding_energy(Scienta.lowEnergy.take(100))
else:
ke_range=p.getAxis(p.AxisId.X).getDisplayRange()
return get_binding_energy(ke_range.max), get_binding_energy(ke_range.min)
eb2, eb1 = get_binding_range(p)
be_axis.setRange(eb2, eb1)
def plot_cur_spectrum():
try:
while get_context().state.running:
try:
y = Scienta.spectrum.take(100)
if y is not None:
x = Scienta.spectrumX
#x = Scienta.spectrumScale.take(100)
if len(y)>len(x):
y=y[:len(x)]
spectrum_series.setData(x, y)
eb2, eb1 = get_binding_range(plots[0])
if (be_axis.min != eb2) or (be_axis.max != eb1):
plots[0].resetZoom()
be_axis.setRange(eb2, eb1)
except:
log("Error plotting online spectrum: ", sys.exc_info()[1])
time.sleep(1.0)
finally:
print "Stopping spectrum plotting"
task = None
# measurements
try:
for cur_range in range(len(ranges)):
print "range", cur_range
cur_iteration = 0
skip_iteration = False
vars = ranges[cur_range].vars
region_name = None
#Check if photon energy is defined
if len(vars) > 2:
eph = vars[3]
if eph and (not math.isnan(eph)):
Eph.move(eph)
time.sleep(5.0)
if len(vars)>4:
region_name = vars[4]
if len(vars)>5:
Scienta.setPassEnergy(int (vars[5]))
Scienta.lowEnergy.write(adjusted_ranges[cur_range][0])
Scienta.highEnergy.write(adjusted_ranges[cur_range][1])
Scienta.update()
Scienta.stepTime.write(vars[0])
Scienta.stepSize.write(vars[1])
Scienta.setIterations(1)
set_adc_averaging()
#iterations done in script
xdata = None
ydata = None
image_data = None
task = fork(plot_cur_spectrum)
path="scan" + str(cur_range+1) + "/"
for cur_iteration in range(vars[2]):
print "iteration", cur_iteration
try:
p = plots[cur_range+1]
p.setTitle(str(ranges[cur_range]) + " - iteration " + str(cur_iteration+1))
except IndexError:
pass
while True:
wait_beam()
trig_scienta()
spectrum_array = Scienta.spectrum.read()
if beam_ok:
if image_data is None:
time.sleep(2.0)
size = Scienta.getImageSize()
(_width, _height,) = (size[0], size[1])
break
if ydata is None:
ydata = spectrum_array
else:
for k in range (len(spectrum_array)):
ydata[k] = ydata[k] + spectrum_array[k]
if xdata is None:
xdata = Scienta.spectrumX
p.getSeries(0).setData(xdata, ydata)
eb2, eb1 = get_binding_range()
p.getAxis(p.AxisId.X2).setRange(eb2, eb1)
if save_scienta_image:
image_array = Scienta.dataMatrix.read()
if _width != len(image_array[0]) or _height != len(image_array):
err = "Scienta image size changed during the acquisition: " + str((len(image_array[0]), len(image_array))) + " - original: " + str((_width, _height))
print err
log(err)
raise Exception(err)
if image_data is None:
image_data = image_array
else:
for k in range (len(image_data)):
for j in range (len(image_data[0])):
image_data[k][j] = image_data[k][j] + image_array[k][j]
if skip_iteration:
break
save_dataset(path + "ScientaSpectrum", ydata)
set_attribute(path, "Iterations",cur_iteration+1)
if save_scienta_image:
save_dataset(path + "ScientaImage", image_data, features = {"compression":True})
if cur_iteration==0:
save_dataset(path + "ScientaChannels", xdata)
set_attribute(path + "ScientaChannels", ATTR_WRITABLE_DIMENSION, 1)
set_attribute(path, "Range Low", adjusted_ranges[cur_range][0])
set_attribute(path, "Range High", adjusted_ranges[cur_range][1])
set_attribute(path, "Step Time", vars[0])
set_attribute(path, "Step Size", vars[1])
set_attribute(path, "Pass Energy",pass_energy)
set_attribute(path, "Readables", ["ScientaSpectrum","ScientaImage"] if save_scienta_image else ["ScientaSpectrum",])
set_attribute(path, "Writables", ["ScientaChannels",])
if region_name:
set_attribute(path, "Region Name", region_name)
create_diag_datasets(path)
append_diag_datasets(path)
plots[cur_range+1].setTitle(str(ranges[cur_range]))
ret.append((xdata, ydata))
finally:
cur_range = -1
if not Scienta.isReady():
Scienta.stop()
Scienta.update()
if task:
task[0].cancel(True)
if ENDSCAN:
after_scan()
set_return(to_array(ret,'o'))