from mathutils import fit_polynomial from mathutils import PolynomialFunction import math from plotutils import plot_function print "Starting" #Creating averaging devices av_adc_xh1 = create_averager(adc_xh1, count = 10, interval = -1, name = "av_adc_xh1") av_adc_xh2 = create_averager(adc_yh2, count = 10, interval = -1, name = "av_adc_xh2") av_adc_xh2.monitored = True #The actuals scan r=lscan(pbpg_mx, [av_adc_xh1, av_adc_xh2], 0.0, 0.5, 10, latency = 0.0) #Fitting values = to_array(r.getReadable(0), 'd') positions = r.getPositions(0) pars_polynomial = (a0, a1, a2) = fit_polynomial(values, positions, 2) #Writing metadata to data file path = get_exec_pars().scanPath set_attribute(path, "a0", a0) set_attribute(path, "a1", a1) set_attribute(path, "a2", a2) #Plotting fit and writing fitting parameters outp = "a0="+ ("%0.4f" % a0) + "a1="+ ("%0.4f" % a1) + "a2="+ ("%0.4f" % a2) print outp p = get_plots()[0] p.addText((min(positions) + max(positions))/2, max(values), outp, Color.BLACK) plot_function(p, PolynomialFunction(pars_polynomial), "Fit",positions, show_points = False, show_lines = True, color = Color.BLUE)