689 lines
26 KiB
Python
Executable File
689 lines
26 KiB
Python
Executable File
#Image: https://imagej.nih.gov/ij/docs/guide/146-28.html#toc-Section-28
|
|
#Process: https://imagej.nih.gov/ij/docs/guide/146-29.html#toc-Section-29
|
|
#Analyze: https://imagej.nih.gov/ij/docs/guide/146-30.html#toc-Section-30
|
|
|
|
import ch.psi.pshell.imaging.Utils as Utils
|
|
import java.awt.image.BufferedImage as BufferedImage
|
|
|
|
"""
|
|
import net.imglib2.FinalInterval as FinalInterval
|
|
import net.imglib2.Interval as Interval
|
|
import net.imglib2.algorithm.neighborhood.DiamondShape as DiamondShape
|
|
import net.imglib2.algorithm.neighborhood.Shape as Shape
|
|
import net.imglib2.img.Img as Img
|
|
import net.imglib2.img.array.ArrayImg as ArrayImg
|
|
import net.imglib2.img.array.ArrayImgs as ArrayImgs
|
|
import net.imglib2.img.array.ArrayRandomAccess as ArrayRandomAccess
|
|
import net.imglib2.img.basictypeaccess.array.ByteArray as ByteArray
|
|
import net.imglib2.img.basictypeaccess.array.FloatArray as FloatArray
|
|
import net.imglib2.img.basictypeaccess.array.LongArray as LongArray
|
|
import net.imglib2.type.logic.BitType as BitType
|
|
import net.imglib2.type.numeric.integer.UnsignedByteType as UnsignedByteType
|
|
import net.imglib2.type.numeric.real.FloatType as FloatType
|
|
import net.imglib2.view.IntervalView as IntervalView
|
|
import net.imglib2.view.Views as Views
|
|
|
|
import net.imglib2.algorithm.morphology.Erosion as Erosion
|
|
import net.imglib2.algorithm.morphology.Dilation as Dilation
|
|
import net.imglib2.algorithm.morphology.StructuringElements as StructuringElements
|
|
import net.imglib2.algorithm.morphology.MorphologyUtils as MorphologyUtils
|
|
import net.imglib2.img.display.imagej.ImageJFunctions as ImageJFunctions
|
|
|
|
import net.imglib2.script.bufferedimage.BufferedImageImg as BufferedImageImg
|
|
#import net.imglib2.script.algorithm.FFT as FFT
|
|
"""
|
|
|
|
import ij.IJ as IJ
|
|
import ij.ImageJ as ImageJ
|
|
import ij.io.FileSaver as FileSaver
|
|
#import ij.gui.GenericDialog as GenericDialog
|
|
#import ij.macro.Interpreter as Interpreter
|
|
|
|
import ij.WindowManager as WindowManager
|
|
import ij.ImagePlus as ImagePlus
|
|
import ij.Prefs as Prefs
|
|
import ij.process.ImageProcessor as ImageProcessor
|
|
import ij.process.ByteProcessor as ByteProcessor
|
|
import ij.process.ShortProcessor as ShortProcessor
|
|
import ij.process.ColorProcessor as ColorProcessor
|
|
import ij.process.FloatProcessor as FloatProcessor
|
|
import ij.process.ImageConverter as ImageConverter
|
|
import ij.process.AutoThresholder as AutoThresholder
|
|
import ij.process.LUT as LUT
|
|
import ij.measure.Measurements as Measurements
|
|
import ij.measure.ResultsTable as ResultsTable
|
|
import ij.plugin.filter.Analyzer as Analyzer
|
|
import ij.plugin.filter.GaussianBlur as GaussianBlur
|
|
import ij.plugin.filter.Filters as Filters
|
|
import ij.plugin.filter.Binary as Binary
|
|
import ij.plugin.filter.FFTFilter as FFTFilter
|
|
import ij.plugin.filter.BackgroundSubtracter as BackgroundSubtracter
|
|
import ij.plugin.filter.EDM as EDM
|
|
import ij.plugin.filter.Shadows as Shadows
|
|
import ij.plugin.filter.UnsharpMask as UnsharpMask
|
|
import ij.plugin.filter.MaximumFinder as MaximumFinder
|
|
import ij.plugin.filter.EDM as EDM
|
|
import ij.plugin.filter.Shadows as Shadows
|
|
import ij.plugin.filter.UnsharpMask as UnsharpMask
|
|
import ij.plugin.filter.RankFilters as RankFilters
|
|
import ij.plugin.filter.Convolver as Convolver
|
|
import ij.plugin.filter.ParticleAnalyzer as ParticleAnalyzer
|
|
|
|
import ij.plugin.ContrastEnhancer as ContrastEnhancer
|
|
import ij.plugin.Thresholder as Thresholder
|
|
import ij.plugin.ImageCalculator as ImageCalculator
|
|
import ij.plugin.FFT as FFT
|
|
import ij.plugin.Concatenator as Concatenator
|
|
|
|
#ImageJ customizations
|
|
import ij.plugin.FFTOper as FFTOper
|
|
import ij.plugin.filter.BandpassFilter as BandpassFilter
|
|
import ij.plugin.filter.BinaryFilterConfig as BinaryFilterConfig
|
|
import ij.plugin.StackSlicer as StackSlicer
|
|
|
|
|
|
|
|
#This eliminates the error messages due to the bug on ij.gui.ImageWindow row 555 (ij is null)
|
|
if not "image_j" in globals().keys():
|
|
image = ImageJ(None, ImageJ.NO_SHOW)
|
|
|
|
|
|
"""
|
|
def to_imagelib2(bi):
|
|
if bi.getType() not in [BufferedImage.TYPE_INT_RGB, BufferedImage.TYPE_INT_ARGB,
|
|
BufferedImage.TYPE_BYTE_GRAY, BufferedImage.TYPE_BYTE_INDEXED,
|
|
BufferedImage.TYPE_USHORT_GRAY]:
|
|
bi = Utils.copy(bi, BufferedImage.TYPE_INT_RGB, None)
|
|
return BufferedImageImg(bi)
|
|
"""
|
|
|
|
|
|
#Image creation & copying
|
|
def load_image(image, title = "img"):
|
|
"""
|
|
image: file name or BufferedImage
|
|
"""
|
|
if isinstance(image, str):
|
|
try:
|
|
from startup import context
|
|
image = context.setup.expandPath(image)
|
|
except:
|
|
pass
|
|
image = Utils.newImage(image)
|
|
return ImagePlus(title, image)
|
|
|
|
def new_image(width, height, image_type="byte", title = "img", fill_color = None):
|
|
"""
|
|
type = "byte", "short", "color" or "float"
|
|
"""
|
|
if image_type == "byte": p=ByteProcessor(width, height)
|
|
elif image_type == "short": p=ShortProcessor(width, height)
|
|
elif image_type == "color": p=ColorProcessor(width, height)
|
|
elif image_type == "float": p=FloatProcessor(width, height)
|
|
else: raise Exception("Invalid image type " + str(image_type))
|
|
ret = ImagePlus(title, p)
|
|
if fill_color is not None:
|
|
p.setColor(fill_color)
|
|
p.resetRoi()
|
|
p.fill()
|
|
return ret
|
|
|
|
def sub_image(ip, x, y, width, height):
|
|
"""
|
|
Returns new ImagePlus
|
|
"""
|
|
orig.setRoi(x, y, width, height)
|
|
p=orig.getProcessor().crop()
|
|
return ImagePlus(ip.getTitle() + " subimage", p)
|
|
|
|
def copy_image(ip):
|
|
return ip.duplicate()
|
|
|
|
def copy_image_to(ip_source, ip_dest, x, y):
|
|
ip_source.deleteRoi()
|
|
ip_source.copy()
|
|
ip_dest.setRoi(x, y, ip_source.getWidth(), ip_source.getHeight())
|
|
ip_dest.paste()
|
|
ip_dest.changes = False
|
|
ip_dest.deleteRoi()
|
|
|
|
def pad_image(ip, left=0, right=0, top=0, bottom=0, fill_color = None):
|
|
p=ip.getProcessor()
|
|
width = p.getWidth() + left + right
|
|
height = p.getHeight() + top + bottom
|
|
image_type = get_image_type(ip)
|
|
ret = new_image(width, height, image_type, ip.getTitle() + " padded", fill_color)
|
|
ip.deleteRoi()
|
|
ip.copy()
|
|
ret.setRoi(left, top, p.getWidth(), p.getHeight())
|
|
ret.paste()
|
|
ret.changes = False
|
|
ret.deleteRoi()
|
|
return ret
|
|
|
|
def get_image_type(ip):
|
|
"""
|
|
Returns: "byte", "short", "color" or "float"
|
|
"""
|
|
p=ip.getProcessor()
|
|
if type(p) == ShortProcessor: return "short"
|
|
elif type(p) == ColorProcessor: return "color"
|
|
elif type(p) == FloatProcessor: return "float"
|
|
return "byte"
|
|
|
|
#Type conversion
|
|
def grayscale(ip, in_place=True):
|
|
ip = ip if in_place else ip.duplicate()
|
|
ic = ImageConverter(ip)
|
|
ic.convertToGray8()
|
|
return ip
|
|
|
|
def get_channel(ip, channel):
|
|
"""
|
|
Return a channel from a color image as a new ImagePlus.
|
|
channel: "red", "green","blue", "alpha", "brightness",
|
|
"""
|
|
proc = ip.getProcessor()
|
|
if channel == "red": ret = proc.getChannel(1, None)
|
|
elif channel == "green": ret = proc.getChannel(2, None)
|
|
elif channel == "blue": ret = proc.getChannel(3, None)
|
|
elif channel == "alpha": ret = proc.getChannel(4, None)
|
|
elif channel == "brightness": ret = proc.getBrightness()
|
|
else: raise Exception("Invalid channel " + str(channel))
|
|
return ImagePlus(ip.getTitle() + " channel: " + channel, ret)
|
|
|
|
#Thresholder
|
|
def threshold(ip, min_threshold, max_threshold, in_place=True):
|
|
ip = ip if in_place else ip.duplicate()
|
|
ip.getProcessor().setThreshold(min_threshold, max_threshold, ImageProcessor.NO_LUT_UPDATE)
|
|
WindowManager.setTempCurrentImage(ip)
|
|
Thresholder().run("mask")
|
|
return ip
|
|
|
|
def auto_threshold(ip, dark_background = False, method = AutoThresholder.getMethods()[0], in_place=True):
|
|
ip = ip if in_place else ip.duplicate()
|
|
ip.getProcessor().setAutoThreshold(method, dark_background , ImageProcessor.NO_LUT_UPDATE)
|
|
WindowManager.setTempCurrentImage(ip)
|
|
thresholder=Thresholder().run("mask")
|
|
return ip
|
|
|
|
#Binary functions
|
|
|
|
def binary_op(ip, op, dark_background=False, iterations=1, count=1, in_place=True):
|
|
"""
|
|
op = "erode","dilate", "open","close", "erode", "outline", "fill holes", "skeletonize"
|
|
"""
|
|
ip = ip if in_place else ip.duplicate()
|
|
binary = Binary()
|
|
BinaryFilterConfig.setCount(count)
|
|
BinaryFilterConfig.setIterations(iterations)
|
|
Prefs.blackBackground=dark_background
|
|
binary.setup(op, ip)
|
|
binary.run(ip.getProcessor())
|
|
return ip
|
|
|
|
def binary_erode(ip, dark_background=False, iterations=1, count=1, in_place=True):
|
|
return binary_op(ip, "erode", dark_background, iterations, count, in_place)
|
|
|
|
def binary_dilate(ip, dark_background=False, iterations=1, count=1, in_place=True):
|
|
return binary_op(ip, "dilate", dark_background, iterations, count, in_place)
|
|
|
|
def binary_open(ip, dark_background=False, iterations=1, count=1, in_place=True):
|
|
return binary_op(ip, "open", dark_background, iterations, count, in_place)
|
|
|
|
def binary_close(ip, dark_background=False, iterations=1, count=1, in_place=True):
|
|
return binary_op(ip, "close", dark_background, iterations, count)
|
|
|
|
def binary_erode(ip, dark_background=False, iterations=1, count=1, in_place=True):
|
|
return binary_op(ip, "erode", dark_background, iterations, count, in_place)
|
|
|
|
def binary_outline(ip, dark_background=False, in_place=True):
|
|
return binary_op(ip, "outline", dark_background, in_place=in_place)
|
|
|
|
def binary_fill_holes(ip, dark_background=False, in_place=True):
|
|
return binary_op(ip, "fill holes", dark_background, in_place=in_place)
|
|
|
|
def binary_skeletonize(ip, dark_background=False, in_place=True):
|
|
return binary_op(ip, "skeletonize", dark_background, in_place=in_place)
|
|
|
|
def analyse_particles(ip, min_size, max_size, fill_holes = True, exclude_edges = True, extra_measurements = 0, \
|
|
print_table = False, output_image = "outlines", minCirc = 0.0, maxCirc = 1.0):
|
|
"""
|
|
Returns: tuple (ResultsTable results_table, ImagePlus output_image)
|
|
output_image = "outlines", "overlay_outlines", "masks", "overlay_masks", "roi_masks" or None
|
|
extra_measurements = mask with Measurements.CENTROID, PERIMETER, RECT, MIN_MAX, ELLIPSE, CIRCULARITY, AREA_FRACTION, INTEGRATED_DENSITY, INVERT_Y, FERET, KURTOSIS, MEDIAN, MODE, SKEWNESS, STD_DEV
|
|
Measurements is a mask of flags: https://imagej.nih.gov/ij/developer/api/ij/measure/Measurements.html.
|
|
Returned ResultsTable hold public fields: https://imagej.nih.gov/ij/developer/api/ij/measure/ResultsTable.html
|
|
|
|
"""
|
|
rt = ResultsTable()
|
|
show_summary = False
|
|
options = ParticleAnalyzer.SHOW_RESULTS | ParticleAnalyzer.CLEAR_WORKSHEET
|
|
"""
|
|
ParticleAnalyzer.SHOW_ROI_MASKS | \
|
|
#ParticleAnalyzer.RECORD_STARTS | \
|
|
#ParticleAnalyzer.ADD_TO_MANAGER | \
|
|
#ParticleAnalyzer.FOUR_CONNECTED | \
|
|
#ParticleAnalyzer.IN_SITU_SHOW | \
|
|
#ParticleAnalyzer.SHOW_NONE | \
|
|
"""
|
|
if show_summary: options = options | ParticleAnalyzer.DISPLAY_SUMMARY
|
|
if output_image == "outlines": options = options | ParticleAnalyzer.SHOW_OUTLINES
|
|
elif output_image == "overlay_outlines": options = options | ParticleAnalyzer.SHOW_OVERLAY_OUTLINES
|
|
elif output_image == "masks": options = options | ParticleAnalyzer.SHOW_MASKS
|
|
elif output_image == "overlay_masks": options = options | ParticleAnalyzer.SHOW_OVERLAY_MASKS
|
|
elif output_image == "roi_masks": options = options | ParticleAnalyzer.SHOW_ROI_MASKS
|
|
#ParticleAnalyzer.SHOW_ROI_MASKS
|
|
if exclude_edges: options = options | ParticleAnalyzer.EXCLUDE_EDGE_PARTICLES
|
|
if fill_holes: options = options | ParticleAnalyzer.INCLUDE_HOLES
|
|
measurements = Measurements.AREA | Measurements.MEAN | Measurements.CENTER_OF_MASS | Measurements.RECT
|
|
pa = ParticleAnalyzer(options, measurements, rt, min_size, max_size, minCirc, maxCirc)
|
|
pa.setHideOutputImage(True)
|
|
pa.setResultsTable(rt)
|
|
if pa.analyze(ip):
|
|
if print_table:
|
|
print rt.getColumnHeadings()
|
|
for row in range (rt.counter):
|
|
print rt.getRowAsString(row)
|
|
return (rt, pa.getOutputImage())
|
|
|
|
#Image operators
|
|
def op_image(ip1, ip2, op, float_result=False, in_place=True):
|
|
"""
|
|
op = "add","subtract", "multiply","divide", "and", "or", "xor", "min", "max", "average", "difference" or "copy"
|
|
"""
|
|
ip1 = ip1 if in_place else ip1.duplicate()
|
|
ic = ImageCalculator()
|
|
pars = op
|
|
if float_result:
|
|
op = op + " float"
|
|
ic.run(pars, ip1, ip2)
|
|
return ip1
|
|
|
|
def op_const(ip, op, val, in_place=True):
|
|
"""
|
|
op = "add","subtract", "multiply","divide", "and", "or", "xor", "min", "max", "gamma", "set" or "log", "exp", "sqr", "sqrt","abs"
|
|
"""
|
|
ip = ip if in_place else ip.duplicate()
|
|
pr = ip.getProcessor()
|
|
if op == 'add': pr.add(val)
|
|
elif op == 'sub': pr.subtract(val)
|
|
elif op == 'multiply': pr.multiply(val)
|
|
elif op == 'divide' and val!=0: pr.multiply(1.0/val)
|
|
elif op == 'and': pr.and(val)
|
|
elif op == 'or': pr.or(val)
|
|
elif op == 'xor': pr.xor(val)
|
|
elif op == 'min': pr.min(val);pr.resetMinAndMax()
|
|
elif op == 'max': pr.max(val);pr.resetMinAndMax()
|
|
elif op == 'gamma' and 0.05 < val < 5.0: pr.gamma(val)
|
|
elif op == 'set': pr.set(val)
|
|
elif op == 'log': pr.log()
|
|
elif op == 'exp': pr.exp()
|
|
elif op == 'sqr': pr.sqr()
|
|
elif op == 'sqrt': pr.sqrt()
|
|
elif op == 'abs': pr.abs();pr.resetMinAndMax()
|
|
else: raise Exception("Invalid operation " + str(op))
|
|
return ip
|
|
|
|
def op_fft(ip1, ip2, op, do_inverse = True) :
|
|
"""
|
|
Images must have same sizes, and multipe of 2 height and width.
|
|
op = "correlate", "convolve", "deconvolve"
|
|
"""
|
|
if op == "correlate": op_index = 0
|
|
elif op == "convolve": op_index = 1
|
|
elif op == "deconvolve": op_index = 2
|
|
else: raise Exception("Invalid operation " + str(op))
|
|
return FFTOper().doMath(ip1, ip2, op_index, do_inverse)
|
|
|
|
#RankFilters
|
|
def op_rank(ip, op, kernel_radius =1 , dark_outliers = False ,threshold = 50, in_place=True):
|
|
"""
|
|
op = "mean", "min", "max", "variance", "median", "close_maxima", "open_maxima", "remove_outliers", "remove_nan", "despeckle"
|
|
"""
|
|
if op == "mean": filter_type = RankFilters.MEAN
|
|
elif op == "min": filter_type = RankFilters.MIN
|
|
elif op == "max": filter_type = RankFilters.MAX
|
|
elif op == "variance": filter_type = RankFilters.VARIANCE
|
|
elif op == "median": filter_type = RankFilters.MEDIAN
|
|
elif op == "close_maxima": filter_type = RankFilters.CLOSE
|
|
elif op == "open_maxima": filter_type = RankFilters.OPEN
|
|
elif op == "remove_outliers": filter_type = RankFilters.OUTLIERS
|
|
elif op == "remove_nan": filter_type = RankFilters.REMOVE_NAN
|
|
elif op == "despeckle": filter_type, kernel_radius = RankFilters.MEDIAN, 1
|
|
else: raise Exception("Invalid operation " + str(op))
|
|
ip = ip if in_place else ip.duplicate()
|
|
RankFilters().rank(ip.getProcessor(), kernel_radius, filter_type, RankFilters.DARK_OUTLIERS if dark_outliers else RankFilters.BRIGHT_OUTLIERS ,threshold)
|
|
return ip
|
|
|
|
def op_edm(ip, op="edm", dark_background=False, in_place=True):
|
|
"""
|
|
Euclidian distance map & derived operations
|
|
op ="edm", "watershed","points", "voronoi"
|
|
"""
|
|
ip = ip if in_place else ip.duplicate()
|
|
pr = ip.getProcessor()
|
|
edm=EDM()
|
|
Prefs.blackBackground=dark_background
|
|
if op=="edm":
|
|
#pr.setPixels(0, edm.makeFloatEDM(pr, 0, False));
|
|
#pr.resetMinAndMax();
|
|
if dark_background:
|
|
pr.invert()
|
|
edm.toEDM(pr)
|
|
else:
|
|
edm.setup(op, ip)
|
|
edm.run(pr)
|
|
return ip
|
|
|
|
def watershed(ip, dark_background=False, in_place=True):
|
|
return op_edm(ip, "watershed", dark_background, in_place)
|
|
|
|
def ultimate_points(ip, dark_background=False, in_place=True):
|
|
return op_edm(ip, "points", dark_background, in_place)
|
|
|
|
def veronoi(ip, dark_background=False, in_place=True):
|
|
return op_edm(ip, "voronoi", dark_background, in_place)
|
|
|
|
def edm(ip, dark_background=False, in_place=True):
|
|
return op_edm(ip, "edm", dark_background, in_place)
|
|
|
|
|
|
def op_filter(ip, op, in_place=True):
|
|
"""
|
|
This is redundant as just calls processor methods.
|
|
op ="invert", "smooth", "sharpen", "edge", "add"
|
|
"""
|
|
ip = ip if in_place else ip.duplicate()
|
|
f = Filters()
|
|
f.setup(op, ip )
|
|
f.run(ip.getProcessor())
|
|
return ip
|
|
|
|
#Other operations
|
|
def gaussian_blur(ip, sigma_x=3.0, sigma_y=3.0, accuracy = 0.01, in_place=True):
|
|
ip = ip if in_place else ip.duplicate()
|
|
GaussianBlur().blurGaussian(ip.getProcessor(), sigma_x, sigma_y, accuracy)
|
|
return ip
|
|
|
|
def find_maxima(ip, tolerance=25, threshold = ImageProcessor.NO_THRESHOLD, output_type=MaximumFinder.IN_TOLERANCE, exclude_on_edges = False, is_edm = False):
|
|
"""
|
|
Returns new ImagePlus
|
|
tolerance: maxima are accepted only if protruding more than this value from the ridge to a higher maximum
|
|
threshhold: minimum height of a maximum (uncalibrated);
|
|
output_type = SINGLE_POINTS, IN_TOLERANCE or SEGMENTED. No output image is created for output types POINT_SELECTION, LIST and COUNT.
|
|
"""
|
|
byte_processor = MaximumFinder().findMaxima(ip.getProcessor(), tolerance, threshold, output_type, exclude_on_edges, is_edm)
|
|
return ImagePlus(ip.getTitle() + " maxima", byte_processor)
|
|
|
|
|
|
def get_maxima_points(ip, tolerance=25, exclude_on_edges = False):
|
|
polygon = MaximumFinder().getMaxima(ip.getProcessor(), tolerance, exclude_on_edges)
|
|
return (polygon.xpoints, polygon.ypoints)
|
|
|
|
def enhance_contrast(ip, equalize_histo = True, saturated_pixels = 0.5, normalize = False, stack_histo = False, in_place=True):
|
|
ip = ip if in_place else ip.duplicate()
|
|
ce = ContrastEnhancer()
|
|
if equalize_histo:
|
|
ce.equalize(ip.getProcessor());
|
|
else:
|
|
ce.stretchHistogram(ip.getProcessor(), saturated_pixels)
|
|
if normalize:
|
|
ip.getProcessor().setMinAndMax(0,1.0 if (ip.getProcessor().getBitDepth()==32) else ip.getProcessor().maxValue())
|
|
return ip
|
|
|
|
def shadows(ip, op, in_place=True):
|
|
"""
|
|
op ="north","northeast", "east", "southeast","south", "southwest", "west","northwest"
|
|
"""
|
|
ip = ip if in_place else ip.duplicate()
|
|
shadows= Shadows()
|
|
shadows.setup(op, ip)
|
|
shadows.run(ip.getProcessor())
|
|
return ip
|
|
|
|
def unsharp_mask(ip, sigma, weight, in_place=True):
|
|
"""
|
|
Float processor
|
|
"""
|
|
ip = ip if in_place else ip.duplicate()
|
|
ip.getProcessor().snapshot()
|
|
unsharp=UnsharpMask()
|
|
USmask.setup(" ", ip)
|
|
USmask.sharpenFloat( ip.getProcessor(),sigma, weight)
|
|
return ip
|
|
|
|
def subtract_background(ip, radius = 50, create_background=False, dark_background=False, use_paraboloid =True, do_presmooth = True, correctCorners = True, rgb_brightness=False, in_place=True):
|
|
ip = ip if in_place else ip.duplicate()
|
|
if rgb_brightness:
|
|
BackgroundSubtracter().rollingBallBrightnessBackground(ip.getProcessor(), radius, create_background,not dark_background, use_paraboloid, do_presmooth, correctCorners)
|
|
else:
|
|
BackgroundSubtracter().rollingBallBackground(ip.getProcessor(), radius, create_background, not dark_background, use_paraboloid, do_presmooth, correctCorners)
|
|
return ip
|
|
|
|
#FFT
|
|
def image_fft(ip, show = True):
|
|
WindowManager.setTempCurrentImage(ip)
|
|
fft = FFT()
|
|
fft.run("fft")
|
|
#TODO: how to avoid it to be created?
|
|
#ret = ImagePlus("FHT of " + ip.getTitle(), WindowManager.getCurrentImage().getProcessor())
|
|
ret = WindowManager.getCurrentImage()
|
|
if not show:
|
|
WindowManager.getCurrentImage().hide()
|
|
return ret
|
|
|
|
|
|
def image_ffti(ip, show = True):
|
|
WindowManager.setTempCurrentImage(ip)
|
|
fft = FFT()
|
|
fft.run("inverse")
|
|
#WindowManager.getCurrentImage().hide()
|
|
#TODO: how to avoid it to be created?
|
|
#ret = WindowManager.getCurrentImage()
|
|
#WindowManager.getCurrentImage().hide()
|
|
#ret = ImagePlus(ip.getTitle() + " ffti", WindowManager.getCurrentImage().getProcessor())
|
|
ret = WindowManager.getCurrentImage()
|
|
if not show:
|
|
WindowManager.getCurrentImage().hide()
|
|
|
|
return ret
|
|
|
|
def bandpass_filter(ip, small_dia_px, large_dia_px, suppress_stripes = 0, stripes_tolerance_direction = 5.0, autoscale_after_filtering = False, saturate_if_autoscale = False, display_filter = False, in_place=True):
|
|
"""
|
|
suppress_stripes = 0 for none, 1 for horizontal, 2 for vertical
|
|
"""
|
|
ip = ip if in_place else ip.duplicate()
|
|
filter= BandpassFilter();
|
|
BandpassFilter.filterLargeDia = large_dia_px
|
|
BandpassFilter.filterSmallDia = small_dia_px
|
|
BandpassFilter.choiceIndex = suppress_stripes
|
|
BandpassFilter.toleranceDia = stripes_tolerance_direction
|
|
BandpassFilter.doScalingDia = autoscale_after_filtering
|
|
BandpassFilter.saturateDia = saturate_if_autoscale
|
|
BandpassFilter.displayFilter =display_filter
|
|
filter.setup(None, ip);
|
|
filter.run(ip.getProcessor())
|
|
return ip
|
|
|
|
KERNEL_BLUR = [[0.1111, 0.1111, 0.1111], [0.1111, 0.1111, 0.1111], [0.1111, 0.1111, 0.1111]]
|
|
KERNEL_SHARPEN = [[0.0, -0.75, 0.0], [-0.75, 4.0, -0.75], [0.0, -0.75, 0.0]]
|
|
KERNEL_SHARPEN_2 = [[-1.0, -1.0, -1.0], [-1.0, 9.0, -1.0], [-1.0, -1.0, -1.0]]
|
|
KERNEL_LIGHT = [[0.1, 0.1, 0.1], [0.1, 1.0, 0.1],[0.1, 0.1, 0.1]]
|
|
KERNEL_DARK = [[0.01, 0.01, 0.01],[0.01, 0.5, 0.01],[0.01, 0.01, 0.01]]
|
|
KERNEL_EDGE_DETECT = [[0.0, -0.75, 0.0], [-0.75, 3.0, -0.75], [0.0, -0.75, 0.0]]
|
|
KERNEL_EDGE_DETECT_2 = [[-0.5, -0.5, -0.5], [-0.5, 4.0, -0.5], [-0.5, -0.5, -0.5]]
|
|
KERNEL_DIFFERENTIAL_EDGE_DETECT = [[-1.0, 0.0, 1.0], [0.0, 0.0, 0.0], [1.0, 0.0, -1.0]]
|
|
KERNEL_PREWITT = [[-2.0, -1.0, 0.0], [-1.0, 0.0, 1.0 ], [0.0, 1.0, 2.0]]
|
|
KERNEL_SOBEL = [[2.0, 2.0, 0.0], [2.0, 0.0, -2.0 ], [0.0, -2.0, -2.0]]
|
|
|
|
|
|
def convolve(ip, kernel, in_place=True):
|
|
"""
|
|
kernel: list of lists
|
|
"""
|
|
ip = ip if in_place else ip.duplicate()
|
|
kernel_width = len(kernel)
|
|
kernel_height= len(kernel[0])
|
|
kernel = [item for row in kernel for item in row]
|
|
#Convolver().convolve(ip.getProcessor(), kernel, kernel_width, kernel_height)
|
|
ip.getProcessor().convolve(kernel, kernel_width, kernel_height)
|
|
return ip
|
|
|
|
|
|
#Processor methods
|
|
def invert(ip, in_place=True):
|
|
ip = ip if in_place else ip.duplicate()
|
|
ip.getProcessor().invert()
|
|
return ip
|
|
|
|
def smooth(ip, in_place=True):
|
|
ip = ip if in_place else ip.duplicate()
|
|
ip.getProcessor().smooth()
|
|
return ip
|
|
|
|
def sharpen(ip, in_place=True):
|
|
ip = ip if in_place else ip.duplicate()
|
|
ip.getProcessor().sharpen()
|
|
return ip
|
|
|
|
def edges(ip, in_place=True): #Sobel
|
|
ip = ip if in_place else ip.duplicate()
|
|
ip.getProcessor().findEdges()
|
|
return ip
|
|
|
|
def noise(ip, sigma = 25.0, in_place=True):
|
|
ip = ip if in_place else ip.duplicate()
|
|
ip.getProcessor().noise(sigma)
|
|
return ip
|
|
|
|
def remap(ip, min=None, max=None, in_place=True):
|
|
ip = ip if in_place else ip.duplicate()
|
|
if min is None or max is None:
|
|
stats = get_statistics(ip, Measurements.MIN_MAX)
|
|
if min is None: min = stats.min
|
|
if max is None: max = stats.max
|
|
ip.getProcessor().setMinAndMax(min, max)
|
|
return ip
|
|
|
|
def set_lut(ip, r, g, b):
|
|
"""
|
|
r,g and b are lists of 256 integers
|
|
"""
|
|
r = [x if x<128 else x-256 for x in r]
|
|
g = [x if x<128 else x-256 for x in g]
|
|
b = [x if x<128 else x-256 for x in b]
|
|
ip.setLut(LUT(to_array(r,'b'),to_array(g,'b'),to_array(b,'b')))
|
|
|
|
def resize(ip, width, height):
|
|
"""
|
|
Returns new ImagePlus
|
|
"""
|
|
p = ip.getProcessor().resize(width, height)
|
|
return ImagePlus(ip.getTitle() + " resized", p)
|
|
|
|
def binning(ip, factor):
|
|
p=ip.getProcessor().bin(factor)
|
|
return ImagePlus(ip.getTitle() + " resized", p)
|
|
|
|
def get_histogram(ip, hist_min = 0, hist_max = 0, hist_bins = 256, roi=None):
|
|
"""
|
|
hist_min, hist_max, hist_bins onlyu used onlu for float images (otherwise fixed to 0,255,256)
|
|
roi is list [x,y,w,h]
|
|
"""
|
|
if roi == None: ip.deleteRoi()
|
|
else: ip.setRoi(roi[0],roi[1],roi[2],roi[3])
|
|
print (hist_min, hist_max)
|
|
image_statistics = ip.getStatistics(0, hist_bins, hist_min, hist_max)
|
|
return image_statistics.getHistogram()
|
|
|
|
|
|
def get_array(ip):
|
|
return ip.getProcessor().getIntArray()
|
|
|
|
def get_line(ip, x1, y1, x2, y2):
|
|
return ip.getProcessor().getLine(x1, y1, x2, y2)
|
|
|
|
def get_pixel_range(ip):
|
|
return (ip.getProcessor().getMin(), ip.getProcessor().getMax())
|
|
|
|
def get_num_channels(ip):
|
|
return ip.getProcessor().getNChannels()
|
|
|
|
def is_binary(ip):
|
|
return ip.getProcessor().isBinary()
|
|
|
|
def get_pixel(ip, x, y):
|
|
return ip.getProcessor().getPixel(x,y)
|
|
|
|
def get_pixel_array(ip, x, y):
|
|
a = [0]*get_num_channels(ip)
|
|
return ip.getProcessor().getPixel(x,y,a)
|
|
|
|
def get_pixels(ip):
|
|
return ip.getProcessor().getPixels()
|
|
|
|
def get_width(ip):
|
|
return ip.getProcessor().getWidth()
|
|
|
|
def get_height(ip):
|
|
return ip.getProcessor().getHeight()
|
|
|
|
def get_row(ip, y):
|
|
a = [0]*get_width(ip)
|
|
array = to_array(a,'i')
|
|
ip.getProcessor().getRow(0, y, array, get_width(ip))
|
|
return array
|
|
|
|
def get_col(ip, x):
|
|
a = [0]*get_height(ip)
|
|
array = to_array(a,'i')
|
|
ip.getProcessor().getColumn(x, 0, array, get_height(ip))
|
|
return array
|
|
|
|
def get_statistics(ip, measurements = None):
|
|
"""
|
|
Measurements is a mask of flags: https://imagej.nih.gov/ij/developer/api/ij/measure/Measurements.html.
|
|
Statistics object hold public fields: https://imagej.nih.gov/ij/developer/api/ij/process/ImageStatistics.html
|
|
"""
|
|
if measurements is None:
|
|
return ip.getStatistics()
|
|
else:
|
|
return ip.getStatistics(measurements)
|
|
|
|
#Stack functions
|
|
def create_stack(ip_list, keep=True):
|
|
return Concatenator().concatenate(ip_list, keep)
|
|
|
|
def reslice(stack, start_at = "Top", vertically = True, flip = True, output_pixel_spacing=1.0, avoid_interpolation = True):
|
|
ss = StackSlicer()
|
|
ss.rotate = vertically
|
|
ss.startAt = start_at
|
|
ss.flip = flip
|
|
ss.nointerpolate = avoid_interpolation
|
|
ss.outputZSpacing = output_pixel_spacing
|
|
return ss.reslice(stack)
|
|
|
|
|
|
def save_image(ip, path=None, format = None):
|
|
"""
|
|
Saves image or stack
|
|
If parameters ommited, resaves image in same location, with same format.
|
|
"""
|
|
fs = FileSaver(ip)
|
|
if path == None: fs.save()
|
|
elif format == "bmp": fs.saveAsBmp(path)
|
|
elif format == "fits": fs.saveAsFits(path)
|
|
elif format == "gif": fs.saveAsGif(path)
|
|
elif format == "jpeg": fs.saveAsJpeg(path)
|
|
elif format == "lut": fs.saveAsLut(path)
|
|
elif format == "pgm": fs.saveAsPgm(path)
|
|
elif format == "png": fs.saveAsPng(path)
|
|
elif format == "raw" and ip.getImageStackSize()>1: fs.saveAsRawStack(path)
|
|
elif format == "raw": fs.saveAsRaw(path)
|
|
elif format == "txt": fs.saveAsText(path)
|
|
elif format == "tiff" and ip.getImageStackSize()>1: fs.saveAsTiffStack(path)
|
|
elif format == "tiff": fs.saveAsTiff(path)
|
|
elif format == "zip": fs.saveAsZip(path)
|
|
|