Files
dev/script/pip.py
2021-04-28 09:29:19 +02:00

689 lines
26 KiB
Python
Executable File

#Image: https://imagej.nih.gov/ij/docs/guide/146-28.html#toc-Section-28
#Process: https://imagej.nih.gov/ij/docs/guide/146-29.html#toc-Section-29
#Analyze: https://imagej.nih.gov/ij/docs/guide/146-30.html#toc-Section-30
import ch.psi.pshell.imaging.Utils as Utils
import java.awt.image.BufferedImage as BufferedImage
"""
import net.imglib2.FinalInterval as FinalInterval
import net.imglib2.Interval as Interval
import net.imglib2.algorithm.neighborhood.DiamondShape as DiamondShape
import net.imglib2.algorithm.neighborhood.Shape as Shape
import net.imglib2.img.Img as Img
import net.imglib2.img.array.ArrayImg as ArrayImg
import net.imglib2.img.array.ArrayImgs as ArrayImgs
import net.imglib2.img.array.ArrayRandomAccess as ArrayRandomAccess
import net.imglib2.img.basictypeaccess.array.ByteArray as ByteArray
import net.imglib2.img.basictypeaccess.array.FloatArray as FloatArray
import net.imglib2.img.basictypeaccess.array.LongArray as LongArray
import net.imglib2.type.logic.BitType as BitType
import net.imglib2.type.numeric.integer.UnsignedByteType as UnsignedByteType
import net.imglib2.type.numeric.real.FloatType as FloatType
import net.imglib2.view.IntervalView as IntervalView
import net.imglib2.view.Views as Views
import net.imglib2.algorithm.morphology.Erosion as Erosion
import net.imglib2.algorithm.morphology.Dilation as Dilation
import net.imglib2.algorithm.morphology.StructuringElements as StructuringElements
import net.imglib2.algorithm.morphology.MorphologyUtils as MorphologyUtils
import net.imglib2.img.display.imagej.ImageJFunctions as ImageJFunctions
import net.imglib2.script.bufferedimage.BufferedImageImg as BufferedImageImg
#import net.imglib2.script.algorithm.FFT as FFT
"""
import ij.IJ as IJ
import ij.ImageJ as ImageJ
import ij.io.FileSaver as FileSaver
#import ij.gui.GenericDialog as GenericDialog
#import ij.macro.Interpreter as Interpreter
import ij.WindowManager as WindowManager
import ij.ImagePlus as ImagePlus
import ij.Prefs as Prefs
import ij.process.ImageProcessor as ImageProcessor
import ij.process.ByteProcessor as ByteProcessor
import ij.process.ShortProcessor as ShortProcessor
import ij.process.ColorProcessor as ColorProcessor
import ij.process.FloatProcessor as FloatProcessor
import ij.process.ImageConverter as ImageConverter
import ij.process.AutoThresholder as AutoThresholder
import ij.process.LUT as LUT
import ij.measure.Measurements as Measurements
import ij.measure.ResultsTable as ResultsTable
import ij.plugin.filter.Analyzer as Analyzer
import ij.plugin.filter.GaussianBlur as GaussianBlur
import ij.plugin.filter.Filters as Filters
import ij.plugin.filter.Binary as Binary
import ij.plugin.filter.FFTFilter as FFTFilter
import ij.plugin.filter.BackgroundSubtracter as BackgroundSubtracter
import ij.plugin.filter.EDM as EDM
import ij.plugin.filter.Shadows as Shadows
import ij.plugin.filter.UnsharpMask as UnsharpMask
import ij.plugin.filter.MaximumFinder as MaximumFinder
import ij.plugin.filter.EDM as EDM
import ij.plugin.filter.Shadows as Shadows
import ij.plugin.filter.UnsharpMask as UnsharpMask
import ij.plugin.filter.RankFilters as RankFilters
import ij.plugin.filter.Convolver as Convolver
import ij.plugin.filter.ParticleAnalyzer as ParticleAnalyzer
import ij.plugin.ContrastEnhancer as ContrastEnhancer
import ij.plugin.Thresholder as Thresholder
import ij.plugin.ImageCalculator as ImageCalculator
import ij.plugin.FFT as FFT
import ij.plugin.Concatenator as Concatenator
#ImageJ customizations
import ij.plugin.FFTOper as FFTOper
import ij.plugin.filter.BandpassFilter as BandpassFilter
import ij.plugin.filter.BinaryFilterConfig as BinaryFilterConfig
import ij.plugin.StackSlicer as StackSlicer
#This eliminates the error messages due to the bug on ij.gui.ImageWindow row 555 (ij is null)
if not "image_j" in globals().keys():
image = ImageJ(None, ImageJ.NO_SHOW)
"""
def to_imagelib2(bi):
if bi.getType() not in [BufferedImage.TYPE_INT_RGB, BufferedImage.TYPE_INT_ARGB,
BufferedImage.TYPE_BYTE_GRAY, BufferedImage.TYPE_BYTE_INDEXED,
BufferedImage.TYPE_USHORT_GRAY]:
bi = Utils.copy(bi, BufferedImage.TYPE_INT_RGB, None)
return BufferedImageImg(bi)
"""
#Image creation & copying
def load_image(image, title = "img"):
"""
image: file name or BufferedImage
"""
if isinstance(image, str):
try:
from startup import expand_path
image = expand_path(image)
except:
pass
image = Utils.newImage(image)
return ImagePlus(title, image)
def new_image(width, height, image_type="byte", title = "img", fill_color = None):
"""
type = "byte", "short", "color" or "float"
"""
if image_type == "byte": p=ByteProcessor(width, height)
elif image_type == "short": p=ShortProcessor(width, height)
elif image_type == "color": p=ColorProcessor(width, height)
elif image_type == "float": p=FloatProcessor(width, height)
else: raise Exception("Invalid image type " + str(image_type))
ret = ImagePlus(title, p)
if fill_color is not None:
p.setColor(fill_color)
p.resetRoi()
p.fill()
return ret
def sub_image(ip, x, y, width, height):
"""
Returns new ImagePlus
"""
orig.setRoi(x, y, width, height)
p=orig.getProcessor().crop()
return ImagePlus(ip.getTitle() + " subimage", p)
def copy_image(ip):
return ip.duplicate()
def copy_image_to(ip_source, ip_dest, x, y):
ip_source.deleteRoi()
ip_source.copy()
ip_dest.setRoi(x, y, ip_source.getWidth(), ip_source.getHeight())
ip_dest.paste()
ip_dest.changes = False
ip_dest.deleteRoi()
def pad_image(ip, left=0, right=0, top=0, bottom=0, fill_color = None):
p=ip.getProcessor()
width = p.getWidth() + left + right
height = p.getHeight() + top + bottom
image_type = get_image_type(ip)
ret = new_image(width, height, image_type, ip.getTitle() + " padded", fill_color)
ip.deleteRoi()
ip.copy()
ret.setRoi(left, top, p.getWidth(), p.getHeight())
ret.paste()
ret.changes = False
ret.deleteRoi()
return ret
def get_image_type(ip):
"""
Returns: "byte", "short", "color" or "float"
"""
p=ip.getProcessor()
if type(p) == ShortProcessor: return "short"
elif type(p) == ColorProcessor: return "color"
elif type(p) == FloatProcessor: return "float"
return "byte"
#Type conversion
def grayscale(ip, in_place=True):
ip = ip if in_place else ip.duplicate()
ic = ImageConverter(ip)
ic.convertToGray8()
return ip
def get_channel(ip, channel):
"""
Return a channel from a color image as a new ImagePlus.
channel: "red", "green","blue", "alpha", "brightness",
"""
proc = ip.getProcessor()
if channel == "red": ret = proc.getChannel(1, None)
elif channel == "green": ret = proc.getChannel(2, None)
elif channel == "blue": ret = proc.getChannel(3, None)
elif channel == "alpha": ret = proc.getChannel(4, None)
elif channel == "brightness": ret = proc.getBrightness()
else: raise Exception("Invalid channel " + str(channel))
return ImagePlus(ip.getTitle() + " channel: " + channel, ret)
#Thresholder
def threshold(ip, min_threshold, max_threshold, in_place=True):
ip = ip if in_place else ip.duplicate()
ip.getProcessor().setThreshold(min_threshold, max_threshold, ImageProcessor.NO_LUT_UPDATE)
WindowManager.setTempCurrentImage(ip)
Thresholder().run("mask")
return ip
def auto_threshold(ip, dark_background = False, method = AutoThresholder.getMethods()[0], in_place=True):
ip = ip if in_place else ip.duplicate()
ip.getProcessor().setAutoThreshold(method, dark_background , ImageProcessor.NO_LUT_UPDATE)
WindowManager.setTempCurrentImage(ip)
thresholder=Thresholder().run("mask")
return ip
#Binary functions
def binary_op(ip, op, dark_background=False, iterations=1, count=1, in_place=True):
"""
op = "erode","dilate", "open","close", "erode", "outline", "fill holes", "skeletonize"
"""
ip = ip if in_place else ip.duplicate()
binary = Binary()
BinaryFilterConfig.setCount(count)
BinaryFilterConfig.setIterations(iterations)
Prefs.blackBackground=dark_background
binary.setup(op, ip)
binary.run(ip.getProcessor())
return ip
def binary_erode(ip, dark_background=False, iterations=1, count=1, in_place=True):
return binary_op(ip, "erode", dark_background, iterations, count, in_place)
def binary_dilate(ip, dark_background=False, iterations=1, count=1, in_place=True):
return binary_op(ip, "dilate", dark_background, iterations, count, in_place)
def binary_open(ip, dark_background=False, iterations=1, count=1, in_place=True):
return binary_op(ip, "open", dark_background, iterations, count, in_place)
def binary_close(ip, dark_background=False, iterations=1, count=1, in_place=True):
return binary_op(ip, "close", dark_background, iterations, count)
def binary_erode(ip, dark_background=False, iterations=1, count=1, in_place=True):
return binary_op(ip, "erode", dark_background, iterations, count, in_place)
def binary_outline(ip, dark_background=False, in_place=True):
return binary_op(ip, "outline", dark_background, in_place=in_place)
def binary_fill_holes(ip, dark_background=False, in_place=True):
return binary_op(ip, "fill holes", dark_background, in_place=in_place)
def binary_skeletonize(ip, dark_background=False, in_place=True):
return binary_op(ip, "skeletonize", dark_background, in_place=in_place)
def analyse_particles(ip, min_size, max_size, fill_holes = True, exclude_edges = True, extra_measurements = 0, \
print_table = False, output_image = "outlines", minCirc = 0.0, maxCirc = 1.0):
"""
Returns: tuple (ResultsTable results_table, ImagePlus output_image)
output_image = "outlines", "overlay_outlines", "masks", "overlay_masks", "roi_masks" or None
extra_measurements = mask with Measurements.CENTROID, PERIMETER, RECT, MIN_MAX, ELLIPSE, CIRCULARITY, AREA_FRACTION, INTEGRATED_DENSITY, INVERT_Y, FERET, KURTOSIS, MEDIAN, MODE, SKEWNESS, STD_DEV
Measurements is a mask of flags: https://imagej.nih.gov/ij/developer/api/ij/measure/Measurements.html.
Returned ResultsTable hold public fields: https://imagej.nih.gov/ij/developer/api/ij/measure/ResultsTable.html
"""
rt = ResultsTable()
show_summary = False
options = ParticleAnalyzer.SHOW_RESULTS | ParticleAnalyzer.CLEAR_WORKSHEET
"""
ParticleAnalyzer.SHOW_ROI_MASKS | \
#ParticleAnalyzer.RECORD_STARTS | \
#ParticleAnalyzer.ADD_TO_MANAGER | \
#ParticleAnalyzer.FOUR_CONNECTED | \
#ParticleAnalyzer.IN_SITU_SHOW | \
#ParticleAnalyzer.SHOW_NONE | \
"""
if show_summary: options = options | ParticleAnalyzer.DISPLAY_SUMMARY
if output_image == "outlines": options = options | ParticleAnalyzer.SHOW_OUTLINES
elif output_image == "overlay_outlines": options = options | ParticleAnalyzer.SHOW_OVERLAY_OUTLINES
elif output_image == "masks": options = options | ParticleAnalyzer.SHOW_MASKS
elif output_image == "overlay_masks": options = options | ParticleAnalyzer.SHOW_OVERLAY_MASKS
elif output_image == "roi_masks": options = options | ParticleAnalyzer.SHOW_ROI_MASKS
#ParticleAnalyzer.SHOW_ROI_MASKS
if exclude_edges: options = options | ParticleAnalyzer.EXCLUDE_EDGE_PARTICLES
if fill_holes: options = options | ParticleAnalyzer.INCLUDE_HOLES
measurements = Measurements.AREA | Measurements.MEAN | Measurements.CENTER_OF_MASS | Measurements.RECT
pa = ParticleAnalyzer(options, measurements, rt, min_size, max_size, minCirc, maxCirc)
pa.setHideOutputImage(True)
pa.setResultsTable(rt)
if pa.analyze(ip):
if print_table:
print rt.getColumnHeadings()
for row in range (rt.counter):
print rt.getRowAsString(row)
return (rt, pa.getOutputImage())
#Image operators
def op_image(ip1, ip2, op, float_result=False, in_place=True):
"""
op = "add","subtract", "multiply","divide", "and", "or", "xor", "min", "max", "average", "difference" or "copy"
"""
ip1 = ip1 if in_place else ip1.duplicate()
ic = ImageCalculator()
pars = op
if float_result:
op = op + " float"
ic.run(pars, ip1, ip2)
return ip1
def op_const(ip, op, val, in_place=True):
"""
op = "add","subtract", "multiply","divide", "and", "or", "xor", "min", "max", "gamma", "set" or "log", "exp", "sqr", "sqrt","abs"
"""
ip = ip if in_place else ip.duplicate()
pr = ip.getProcessor()
if op == 'add': pr.add(val)
elif op == 'sub': pr.subtract(val)
elif op == 'multiply': pr.multiply(val)
elif op == 'divide' and val!=0: pr.multiply(1.0/val)
elif op == 'and': pr.and(val)
elif op == 'or': pr.or(val)
elif op == 'xor': pr.xor(val)
elif op == 'min': pr.min(val);pr.resetMinAndMax()
elif op == 'max': pr.max(val);pr.resetMinAndMax()
elif op == 'gamma' and 0.05 < val < 5.0: pr.gamma(val)
elif op == 'set': pr.set(val)
elif op == 'log': pr.log()
elif op == 'exp': pr.exp()
elif op == 'sqr': pr.sqr()
elif op == 'sqrt': pr.sqrt()
elif op == 'abs': pr.abs();pr.resetMinAndMax()
else: raise Exception("Invalid operation " + str(op))
return ip
def op_fft(ip1, ip2, op, do_inverse = True) :
"""
Images must have same sizes, and multipe of 2 height and width.
op = "correlate", "convolve", "deconvolve"
"""
if op == "correlate": op_index = 0
elif op == "convolve": op_index = 1
elif op == "deconvolve": op_index = 2
else: raise Exception("Invalid operation " + str(op))
return FFTOper().doMath(ip1, ip2, op_index, do_inverse)
#RankFilters
def op_rank(ip, op, kernel_radius =1 , dark_outliers = False ,threshold = 50, in_place=True):
"""
op = "mean", "min", "max", "variance", "median", "close_maxima", "open_maxima", "remove_outliers", "remove_nan", "despeckle"
"""
if op == "mean": filter_type = RankFilters.MEAN
elif op == "min": filter_type = RankFilters.MIN
elif op == "max": filter_type = RankFilters.MAX
elif op == "variance": filter_type = RankFilters.VARIANCE
elif op == "median": filter_type = RankFilters.MEDIAN
elif op == "close_maxima": filter_type = RankFilters.CLOSE
elif op == "open_maxima": filter_type = RankFilters.OPEN
elif op == "remove_outliers": filter_type = RankFilters.OUTLIERS
elif op == "remove_nan": filter_type = RankFilters.REMOVE_NAN
elif op == "despeckle": filter_type, kernel_radius = RankFilters.MEDIAN, 1
else: raise Exception("Invalid operation " + str(op))
ip = ip if in_place else ip.duplicate()
RankFilters().rank(ip.getProcessor(), kernel_radius, filter_type, RankFilters.DARK_OUTLIERS if dark_outliers else RankFilters.BRIGHT_OUTLIERS ,threshold)
return ip
def op_edm(ip, op="edm", dark_background=False, in_place=True):
"""
Euclidian distance map & derived operations
op ="edm", "watershed","points", "voronoi"
"""
ip = ip if in_place else ip.duplicate()
pr = ip.getProcessor()
edm=EDM()
Prefs.blackBackground=dark_background
if op=="edm":
#pr.setPixels(0, edm.makeFloatEDM(pr, 0, False));
#pr.resetMinAndMax();
if dark_background:
pr.invert()
edm.toEDM(pr)
else:
edm.setup(op, ip)
edm.run(pr)
return ip
def watershed(ip, dark_background=False, in_place=True):
return op_edm(ip, "watershed", dark_background, in_place)
def ultimate_points(ip, dark_background=False, in_place=True):
return op_edm(ip, "points", dark_background, in_place)
def veronoi(ip, dark_background=False, in_place=True):
return op_edm(ip, "voronoi", dark_background, in_place)
def edm(ip, dark_background=False, in_place=True):
return op_edm(ip, "edm", dark_background, in_place)
def op_filter(ip, op, in_place=True):
"""
This is redundant as just calls processor methods.
op ="invert", "smooth", "sharpen", "edge", "add"
"""
ip = ip if in_place else ip.duplicate()
f = Filters()
f.setup(op, ip )
f.run(ip.getProcessor())
return ip
#Other operations
def gaussian_blur(ip, sigma_x=3.0, sigma_y=3.0, accuracy = 0.01, in_place=True):
ip = ip if in_place else ip.duplicate()
GaussianBlur().blurGaussian(ip.getProcessor(), sigma_x, sigma_y, accuracy)
return ip
def find_maxima(ip, tolerance=25, threshold = ImageProcessor.NO_THRESHOLD, output_type=MaximumFinder.IN_TOLERANCE, exclude_on_edges = False, is_edm = False):
"""
Returns new ImagePlus
tolerance: maxima are accepted only if protruding more than this value from the ridge to a higher maximum
threshhold: minimum height of a maximum (uncalibrated);
output_type = SINGLE_POINTS, IN_TOLERANCE or SEGMENTED. No output image is created for output types POINT_SELECTION, LIST and COUNT.
"""
byte_processor = MaximumFinder().findMaxima(ip.getProcessor(), tolerance, threshold, output_type, exclude_on_edges, is_edm)
return ImagePlus(ip.getTitle() + " maxima", byte_processor)
def get_maxima_points(ip, tolerance=25, exclude_on_edges = False):
polygon = MaximumFinder().getMaxima(ip.getProcessor(), tolerance, exclude_on_edges)
return (polygon.xpoints, polygon.ypoints)
def enhance_contrast(ip, equalize_histo = True, saturated_pixels = 0.5, normalize = False, stack_histo = False, in_place=True):
ip = ip if in_place else ip.duplicate()
ce = ContrastEnhancer()
if equalize_histo:
ce.equalize(ip.getProcessor());
else:
ce.stretchHistogram(ip.getProcessor(), saturated_pixels)
if normalize:
ip.getProcessor().setMinAndMax(0,1.0 if (ip.getProcessor().getBitDepth()==32) else ip.getProcessor().maxValue())
return ip
def shadows(ip, op, in_place=True):
"""
op ="north","northeast", "east", "southeast","south", "southwest", "west","northwest"
"""
ip = ip if in_place else ip.duplicate()
shadows= Shadows()
shadows.setup(op, ip)
shadows.run(ip.getProcessor())
return ip
def unsharp_mask(ip, sigma, weight, in_place=True):
"""
Float processor
"""
ip = ip if in_place else ip.duplicate()
ip.getProcessor().snapshot()
unsharp=UnsharpMask()
USmask.setup(" ", ip)
USmask.sharpenFloat( ip.getProcessor(),sigma, weight)
return ip
def subtract_background(ip, radius = 50, create_background=False, dark_background=False, use_paraboloid =True, do_presmooth = True, correctCorners = True, rgb_brightness=False, in_place=True):
ip = ip if in_place else ip.duplicate()
if rgb_brightness:
BackgroundSubtracter().rollingBallBrightnessBackground(ip.getProcessor(), radius, create_background,not dark_background, use_paraboloid, do_presmooth, correctCorners)
else:
BackgroundSubtracter().rollingBallBackground(ip.getProcessor(), radius, create_background, not dark_background, use_paraboloid, do_presmooth, correctCorners)
return ip
#FFT
def image_fft(ip, show = True):
WindowManager.setTempCurrentImage(ip)
fft = FFT()
fft.run("fft")
#TODO: how to avoid it to be created?
#ret = ImagePlus("FHT of " + ip.getTitle(), WindowManager.getCurrentImage().getProcessor())
ret = WindowManager.getCurrentImage()
if not show:
WindowManager.getCurrentImage().hide()
return ret
def image_ffti(ip, show = True):
WindowManager.setTempCurrentImage(ip)
fft = FFT()
fft.run("inverse")
#WindowManager.getCurrentImage().hide()
#TODO: how to avoid it to be created?
#ret = WindowManager.getCurrentImage()
#WindowManager.getCurrentImage().hide()
#ret = ImagePlus(ip.getTitle() + " ffti", WindowManager.getCurrentImage().getProcessor())
ret = WindowManager.getCurrentImage()
if not show:
WindowManager.getCurrentImage().hide()
return ret
def bandpass_filter(ip, small_dia_px, large_dia_px, suppress_stripes = 0, stripes_tolerance_direction = 5.0, autoscale_after_filtering = False, saturate_if_autoscale = False, display_filter = False, in_place=True):
"""
suppress_stripes = 0 for none, 1 for horizontal, 2 for vertical
"""
ip = ip if in_place else ip.duplicate()
filter= BandpassFilter();
BandpassFilter.filterLargeDia = large_dia_px
BandpassFilter.filterSmallDia = small_dia_px
BandpassFilter.choiceIndex = suppress_stripes
BandpassFilter.toleranceDia = stripes_tolerance_direction
BandpassFilter.doScalingDia = autoscale_after_filtering
BandpassFilter.saturateDia = saturate_if_autoscale
BandpassFilter.displayFilter =display_filter
filter.setup(None, ip);
filter.run(ip.getProcessor())
return ip
KERNEL_BLUR = [[0.1111, 0.1111, 0.1111], [0.1111, 0.1111, 0.1111], [0.1111, 0.1111, 0.1111]]
KERNEL_SHARPEN = [[0.0, -0.75, 0.0], [-0.75, 4.0, -0.75], [0.0, -0.75, 0.0]]
KERNEL_SHARPEN_2 = [[-1.0, -1.0, -1.0], [-1.0, 9.0, -1.0], [-1.0, -1.0, -1.0]]
KERNEL_LIGHT = [[0.1, 0.1, 0.1], [0.1, 1.0, 0.1],[0.1, 0.1, 0.1]]
KERNEL_DARK = [[0.01, 0.01, 0.01],[0.01, 0.5, 0.01],[0.01, 0.01, 0.01]]
KERNEL_EDGE_DETECT = [[0.0, -0.75, 0.0], [-0.75, 3.0, -0.75], [0.0, -0.75, 0.0]]
KERNEL_EDGE_DETECT_2 = [[-0.5, -0.5, -0.5], [-0.5, 4.0, -0.5], [-0.5, -0.5, -0.5]]
KERNEL_DIFFERENTIAL_EDGE_DETECT = [[-1.0, 0.0, 1.0], [0.0, 0.0, 0.0], [1.0, 0.0, -1.0]]
KERNEL_PREWITT = [[-2.0, -1.0, 0.0], [-1.0, 0.0, 1.0 ], [0.0, 1.0, 2.0]]
KERNEL_SOBEL = [[2.0, 2.0, 0.0], [2.0, 0.0, -2.0 ], [0.0, -2.0, -2.0]]
def convolve(ip, kernel, in_place=True):
"""
kernel: list of lists
"""
ip = ip if in_place else ip.duplicate()
kernel_width = len(kernel)
kernel_height= len(kernel[0])
kernel = [item for row in kernel for item in row]
#Convolver().convolve(ip.getProcessor(), kernel, kernel_width, kernel_height)
ip.getProcessor().convolve(kernel, kernel_width, kernel_height)
return ip
#Processor methods
def invert(ip, in_place=True):
ip = ip if in_place else ip.duplicate()
ip.getProcessor().invert()
return ip
def smooth(ip, in_place=True):
ip = ip if in_place else ip.duplicate()
ip.getProcessor().smooth()
return ip
def sharpen(ip, in_place=True):
ip = ip if in_place else ip.duplicate()
ip.getProcessor().sharpen()
return ip
def edges(ip, in_place=True): #Sobel
ip = ip if in_place else ip.duplicate()
ip.getProcessor().findEdges()
return ip
def noise(ip, sigma = 25.0, in_place=True):
ip = ip if in_place else ip.duplicate()
ip.getProcessor().noise(sigma)
return ip
def remap(ip, min=None, max=None, in_place=True):
ip = ip if in_place else ip.duplicate()
if min is None or max is None:
stats = get_statistics(ip, Measurements.MIN_MAX)
if min is None: min = stats.min
if max is None: max = stats.max
ip.getProcessor().setMinAndMax(min, max)
return ip
def set_lut(ip, r, g, b):
"""
r,g and b are lists of 256 integers
"""
r = [x if x<128 else x-256 for x in r]
g = [x if x<128 else x-256 for x in g]
b = [x if x<128 else x-256 for x in b]
ip.setLut(LUT(to_array(r,'b'),to_array(g,'b'),to_array(b,'b')))
def resize(ip, width, height):
"""
Returns new ImagePlus
"""
p = ip.getProcessor().resize(width, height)
return ImagePlus(ip.getTitle() + " resized", p)
def binning(ip, factor):
p=ip.getProcessor().bin(factor)
return ImagePlus(ip.getTitle() + " resized", p)
def get_histogram(ip, hist_min = 0, hist_max = 0, hist_bins = 256, roi=None):
"""
hist_min, hist_max, hist_bins onlyu used onlu for float images (otherwise fixed to 0,255,256)
roi is list [x,y,w,h]
"""
if roi == None: ip.deleteRoi()
else: ip.setRoi(roi[0],roi[1],roi[2],roi[3])
print (hist_min, hist_max)
image_statistics = ip.getStatistics(0, hist_bins, hist_min, hist_max)
return image_statistics.getHistogram()
def get_array(ip):
return ip.getProcessor().getIntArray()
def get_line(ip, x1, y1, x2, y2):
return ip.getProcessor().getLine(x1, y1, x2, y2)
def get_pixel_range(ip):
return (ip.getProcessor().getMin(), ip.getProcessor().getMax())
def get_num_channels(ip):
return ip.getProcessor().getNChannels()
def is_binary(ip):
return ip.getProcessor().isBinary()
def get_pixel(ip, x, y):
return ip.getProcessor().getPixel(x,y)
def get_pixel_array(ip, x, y):
a = [0]*get_num_channels(ip)
return ip.getProcessor().getPixel(x,y,a)
def get_pixels(ip):
return ip.getProcessor().getPixels()
def get_width(ip):
return ip.getProcessor().getWidth()
def get_height(ip):
return ip.getProcessor().getHeight()
def get_row(ip, y):
a = [0]*get_width(ip)
array = to_array(a,'i')
ip.getProcessor().getRow(0, y, array, get_width(ip))
return array
def get_col(ip, x):
a = [0]*get_height(ip)
array = to_array(a,'i')
ip.getProcessor().getColumn(x, 0, array, get_height(ip))
return array
def get_statistics(ip, measurements = None):
"""
Measurements is a mask of flags: https://imagej.nih.gov/ij/developer/api/ij/measure/Measurements.html.
Statistics object hold public fields: https://imagej.nih.gov/ij/developer/api/ij/process/ImageStatistics.html
"""
if measurements is None:
return ip.getStatistics()
else:
return ip.getStatistics(measurements)
#Stack functions
def create_stack(ip_list, keep=True):
return Concatenator().concatenate(ip_list, keep)
def reslice(stack, start_at = "Top", vertically = True, flip = True, output_pixel_spacing=1.0, avoid_interpolation = True):
ss = StackSlicer()
ss.rotate = vertically
ss.startAt = start_at
ss.flip = flip
ss.nointerpolate = avoid_interpolation
ss.outputZSpacing = output_pixel_spacing
return ss.reslice(stack)
def save_image(ip, path=None, format = None):
"""
Saves image or stack
If parameters ommited, resaves image in same location, with same format.
"""
fs = FileSaver(ip)
if path == None: fs.save()
elif format == "bmp": fs.saveAsBmp(path)
elif format == "fits": fs.saveAsFits(path)
elif format == "gif": fs.saveAsGif(path)
elif format == "jpeg": fs.saveAsJpeg(path)
elif format == "lut": fs.saveAsLut(path)
elif format == "pgm": fs.saveAsPgm(path)
elif format == "png": fs.saveAsPng(path)
elif format == "raw" and ip.getImageStackSize()>1: fs.saveAsRawStack(path)
elif format == "raw": fs.saveAsRaw(path)
elif format == "txt": fs.saveAsText(path)
elif format == "tiff" and ip.getImageStackSize()>1: fs.saveAsTiffStack(path)
elif format == "tiff": fs.saveAsTiff(path)
elif format == "zip": fs.saveAsZip(path)