Files
dev/script/tutorial/61_MultipleGaussianFit.js
2018-04-17 12:05:48 +02:00

43 lines
1.4 KiB
JavaScript
Executable File

///////////////////////////////////////////////////////////////////////////////////////////////////
// Multiple Gaussians peak search with mathutils.py
///////////////////////////////////////////////////////////////////////////////////////////////////
run("mathutils")
start = 0
end = 50
step_size = 0.2
result= lscan(ao1,ai1,start,end,[step_size,])
readable = result.getReadable(0)
positions = result.getPositions(0)
min = Math.min.apply(null, readable)
max = Math.max.apply(null, readable)
threshold = (min + max)/2
min_peak_distance = 5.0
peaks = estimate_peak_indexes(readable, positions, threshold, min_peak_distance)
print ("Peak indexes: " + peaks)
print ("Peak x: " + peaks.map(function(x) {return positions[x]}))
print ("Peak y: " + peaks.map(function(x) {return readable[x]}))
gaussians = fit_gaussians(readable, positions, peaks)
plots = plot([readable],["sin"],[positions], undefined, title="Data" )
for (var i=0; i< peaks.length; i++){
peak = peaks[i]
pars_gaussian = gaussians[i]
normalization = pars_gaussian[0]
mean_val = pars_gaussian[1]
sigma = pars_gaussian [2]
if (Math.abs(mean_val - positions[peak]) < min_peak_distance){
print ("Peak -> " + mean_val)
plots[0].addMarker(mean_val, null, "N="+ Math.round(normalization,2), new Color(210,0,0))
}else {
print ("Invalid gaussian fit: " + mean_val)
}
}