Files
dev/script/Correlation/Correlation.py
2018-04-17 12:05:48 +02:00

172 lines
5.1 KiB
Python

import math
import sys, traceback
from mathutils import fit_polynomial, PolynomialFunction
from plotutils import plot_line, plot_function
from ch.psi.pshell.swing.Shell import STDOUT_COLOR
import org.apache.commons.math3.stat.correlation.PearsonsCorrelation as PearsonsCorrelation
start_task("outupdate", 0.0, 0.0)
if get_exec_pars().source == CommandSource.ui:
#dx = "SINEG01-RLLE-REF10:SIG-PHASE-AVG"
#dy = "SINEG01-RLLE-REF20:SIG-PHASE-AVG"
#dx = "SINEG01-RGUN-PUP10:SIG-AMPLT-AVG 4"
#dy = "SINEG01-RGUN-PUP20:SIG-AMPLT-AVG 4"
#dx = "SINDI01-RKLY-DCP10:REF-AMPLT"
#dy = "SINDI01-RKLY-DCP10:REF-PHASE"
#dx = "SINDI01-RLLE-REF10:SIG-PHASE-AVG"
#dy = "SINDI01-RLLE-REF20:SIG-PHASE-AVG"
dx = "TESTIOC:TESTCALCOUT:Input"
dx = "TESTIOC:TESTCALCOUT:Output"
dy = "TESTIOC:TESTSINUS:SinCalc"
#dx = "SINEG01-DICT215:B1_CHARGE"
#dy = "SINEG01-DBPM314:Q1"
#dx=gsx.getReadback()
#dy=gsy.getReadback()
interval = 0.1
window = 40
p = plot(None)[0]
bs = False
linear_fit = True
quadratic_fit = True
#print dx
#print dy
corr = None
pars_lin = None
pars_quad = None
for s in p.getAllSeries():
p.removeSeries(s)
_stream = None
instances = []
def _get_device(d):
global _stream
egu = None
if isinstance(d, basestring):
name = d.strip()
d = None
try:
d = get_device(name)
if d is None:
d = eval(name)
#print name
if d is not None:
if not isinstance(r, Device):
d = None
else:
try:
egu = d.unit
except:
pass
except:
pass
if d is None:
offset = 0
if " " in name:
tokens = name.split(" ")
name = tokens[0]
offset = int(tokens[1])
if bs == True:
if _stream == None:
_stream = Stream("corr_stream", dispatcher)
instances.append(_stream)
d = _stream.addScalar(name, name, int(interval*100), offset)
else:
d = Channel(name)
instances.append(d)
try:
egu = caget(name+".EGU",'s')
except:
pass
else:
try:
egu = d.unit
except:
pass
return d, egu
dx, egux = _get_device(dx)
dy, eguy = _get_device(dy)
p.getAxis(p.AxisId.X).setLabel(egux)
p.getAxis(p.AxisId.Y).setLabel(eguy)
try:
if _stream != None:
_stream.initialize()
_stream.start(True)
p.addSeries(LinePlotSeries("Data"))
sd=p.getSeries(0)
sd.setLinesVisible(False)
sd.setPointSize(4)
if get_exec_pars().source == CommandSource.ui:
if globals().has_key("marker"):
p.removeMarker(marker)
marker=None
while(True):
#Sample and plot data
if bs == True:
_stream.waitValueNot(_stream.take(), 10000)
(x,y) = _stream.take().values
else:
x=dx.read()
y=dy.read()
sd.appendData(x, y)
if len(sd.x) > window:
#Remove First Element
sd.token.remove(0)
ax = sd.x
ay = sd.y
if len(ax)>2:
x1, x2 = min(ax), max(ax)
res = (x2-x1)/100
if x1!=x2:
#Display correlation
corr= PearsonsCorrelation().correlation(to_array(ax,'d'), to_array(ay,'d'))
s = "Correlation=" + str(round(corr,4))
#print s
if get_exec_pars().source == CommandSource.ui:
if marker is not None:
p.removeMarker(marker)
marker = p.addMarker(x2+res, p.AxisId.X, s, p.getBackground())
marker.setLabelPaint(STDOUT_COLOR)
if linear_fit:
#Calculate, print and plot linear fit
pars_lin = (a0,a1) = fit_polynomial(ay, ax, 1)
#print "Fit lin a1:" , a1, " a0:",a0
y1 = poly(x1, pars_lin)
y2 = poly(x2, pars_lin)
plot_line(p, x1, y1, x2, y2, width = 2, color = Color.BLUE, name = "Fit Linear")
if quadratic_fit:
#Calculate, print and plot quadratic fit
pars_quad = (a0,a1,a2) = fit_polynomial(ay, ax, 2)
#print "Fit quad a2:" , a2, "a1:" , a1, " a0:",a0
fitted_quad_function = PolynomialFunction(pars_quad)
ax = frange(x1, x2, res, True)
plot_function(p, fitted_quad_function, "Fit Quadratic", ax, color=Color.GREEN)
if bs != True:
time.sleep(interval)
finally:
for dev in instances:
dev.close()
stop_task("outupdate")