Files
dev/script/test30.py
2018-01-19 10:56:53 +01:00

99 lines
4.2 KiB
Python
Executable File

###################################################################################################
# Example of least squares optimization
# http://commons.apache.org/proper/commons-math/userguide/leastsquares.html
###################################################################################################
from mathutils import *
from plotutils import *
[p1,p2] = plot([None, None], [None, None])
###################################################################################################
#Fitting the quadratic function f(x) = a x2 + b x + c
###################################################################################################
x = [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]
y = [36.0, 66.0, 121.0, 183.0, 263.0, 365.0, 473.0, 603.0, 753.0, 917.0]
num_samples = len(x)
weigths = [ 1.0] * num_samples
p1.getSeries(0).setData(x, y)
p1.getSeries(0)
class Model(MultivariateJacobianFunction):
def value(self, variables):
value = ArrayRealVector(num_samples)
jacobian = Array2DRowRealMatrix(num_samples, 3)
for i in range(num_samples):
(a,b,c) = (variables.getEntry(0), variables.getEntry(1), variables.getEntry(2))
model = a*x[i]*x[i] + b*x[i] + c
value.setEntry(i, model)
jacobian.setEntry(i, 0, x[i]*x[i]) # derivative with respect to p0 = a
jacobian.setEntry(i, 1, x[i]) # derivative with respect to p1 = b
jacobian.setEntry(i, 2, 1.0) # derivative with respect to p2 = c
return Pair(value, jacobian)
model = Model()
initial = [1.0, 1.0, 1.0] #parameters = a, b, c
target = [v for v in y] #the target is to have all points at the positios
(parameters, residuals, rms, evals, iters) = optimize_least_squares(model, target, initial, weigths)
(a,b,c) = parameters
print "A: ", a , " B: ", b, " C: ", c
print "RMS: " , rms, " evals: " , evals, " iters: " , iters
for i in range (num_samples):
print x[i], y[i], poly(x[i], [c,b,a])
plot_function(p1, PolynomialFunction((c,b,a)), "Fit", x)
print "----------------------------------------------------------------------------\n"
###################################################################################################
#Fiting center of circle of known radius to observerd points
###################################################################################################
#Fiting center of circle of radius 70 to observerd points
radius = 70.0
x = [30.0, 50.0, 110.0, 35.0, 45.0]
y = [68.0, -6.0, -20.0, 15.0, 97.0]
num_samples = len(x)
weigths = [ 1.0] * num_samples
weigths = [0.1, 0.1, 1.0, 0.1, 1.0]
p2.getSeries(0).setData(x, y)
p2.getSeries(0).setLinesVisible(False)
p2.getSeries(0).setPointSize(4)
# the model function components are the distances to current estimated center,
# they should be as close as possible to the specified radius
class Model(MultivariateJacobianFunction):
def value(self, variables):
(cx,cy) = (variables.getEntry(0), variables.getEntry(1))
value = ArrayRealVector(num_samples)
jacobian = Array2DRowRealMatrix(num_samples, 2)
for i in range(num_samples):
model = math.hypot(cx-x[i], cy-y[i])
value.setEntry(i, model)
jacobian.setEntry(i, 0, (cx - x[i]) / model) # derivative with respect to p0 = x center
jacobian.setEntry(i, 1, (cy - y[i]) / model) # derivative with respect to p1 = y center
return Pair(value, jacobian)
model = Model() #modeled radius should be close to target radius
initial = [mean(x), mean(y)] #parameters = cx, cy
target = [radius,] * num_samples #the target is to have all points at the specified radius from the center
(parameters, residuals, rms, evals, iters) = optimize_least_squares(model, target, initial, weigths)
(cx, cy) = parameters
print "CX: ", cx , " CY: ", cy
print "RMS: " , rms, " evals: " , evals, " iters: " , iters
from plotutils import *
plot_point(p2, cx, cy, name="Fit Cente")
plot_circle(p2, cx, cy, radius, name="Fit")