701 lines
21 KiB
Java
701 lines
21 KiB
Java
import ij.*;
|
|
import ij.process.*;
|
|
import ij.gui.*;
|
|
import java.awt.*;
|
|
import ij.plugin.PlugIn;
|
|
import ij.WindowManager;
|
|
//import edu.emory.mathcs.jtransforms.fft.*;
|
|
//import edu.emory.mathcs.utils.*;
|
|
import org.jtransforms.fft.*;
|
|
import org.jtransforms.utils.*;
|
|
import flanagan.complex.*;
|
|
import flanagan.math.*;
|
|
import ij.plugin.frame.RoiManager;
|
|
import ij.gui.Roi;
|
|
|
|
|
|
public class Align_ComputeShifts2 implements PlugIn {
|
|
protected ImagePlus imp_r, imp_i;
|
|
protected int reference_slide;
|
|
protected Roi roi;
|
|
protected int usfac;
|
|
protected boolean debug = true;
|
|
double[][] shifts;
|
|
boolean allShifts;
|
|
|
|
public void setup(int upscaleFactor, boolean allShifts, ImagePlus imp_r, ImagePlus imp_i,
|
|
int reference_slide, Roi roi) {
|
|
if (imp_r==null){
|
|
throw new RuntimeException("Real part image must exist!");
|
|
}
|
|
|
|
if (roi==null){
|
|
roi = new Roi(0,0,imp_r.getWidth(), imp_r.getHeight());
|
|
}
|
|
Rectangle box = roi.getBounds();
|
|
if (!ConcurrencyUtils.isPowerOf2(box.height)
|
|
|| !ConcurrencyUtils.isPowerOf2(box.width)) {
|
|
throw new RuntimeException("The selected ROI height and with must be a power of 2");
|
|
}
|
|
|
|
this.usfac = upscaleFactor;
|
|
this.allShifts = allShifts;
|
|
this.imp_r = imp_r;
|
|
this.imp_i = imp_i;
|
|
this.reference_slide=reference_slide;
|
|
this.roi = roi;
|
|
|
|
}
|
|
|
|
public void run(String arg) {
|
|
if (allShifts) {
|
|
calculateAllShiftsRun();
|
|
|
|
} else {
|
|
calculateShiftsRun();
|
|
}
|
|
return;
|
|
}
|
|
|
|
private void calculateShiftsRun() {
|
|
// perform the FFT of each slice
|
|
|
|
IJ.showStatus("1/2 Perform FFT of each slice");
|
|
ComplexMatrix[] ffts = computeFFT();
|
|
|
|
// calculate shifts
|
|
IJ.showStatus("2/2 Calculate shifts between slices");
|
|
shifts = calculateShifts(ffts);
|
|
|
|
/*
|
|
// save shifts
|
|
ShiftsIO sio = new ShiftsIO();
|
|
sio.save(shifts, "directshifts");
|
|
*/
|
|
}
|
|
|
|
public double[][] getShifts(){
|
|
return shifts;
|
|
}
|
|
|
|
private void calculateAllShiftsRun() {
|
|
// perform the FFT of each slice
|
|
IJ.showStatus("1/2 Perform FFT of each slice");
|
|
ComplexMatrix[] ffts = computeFFT();
|
|
|
|
// calculate shifts
|
|
IJ.showStatus("2/2 Calculate shifts between slices");
|
|
double[][] shifts = calculateAllShifts(ffts);
|
|
// save shifts
|
|
ShiftsIO sio = new ShiftsIO();
|
|
sio.save(shifts, "allshifts");
|
|
}
|
|
|
|
// perform the FFT of each slice
|
|
private ComplexMatrix[] computeFFT() {
|
|
|
|
int slices = imp_r.getStackSize();
|
|
|
|
ComplexMatrix[] ffts = new ComplexMatrix[slices];
|
|
for (int i=1; i <= slices; i++) {
|
|
if (imp_i == null) {
|
|
ImageProcessor ip = imp_r.getStack().getProcessor(i);
|
|
ip.setRoi(roi);
|
|
ImageProcessor curr = ip.crop().convertToFloat();
|
|
double[][] data = ImageProcessor_to_FFTArray2D(curr);
|
|
ffts[i-1] = fft2(data);
|
|
} else {
|
|
ImageProcessor ip1, ip2;
|
|
ip1 = imp_r.getStack().getProcessor(i);
|
|
ip1.setRoi(roi);
|
|
ImageProcessor curr_r = ip1.crop().convertToFloat();
|
|
ip2 = imp_i.getStack().getProcessor(i);
|
|
ip2.setRoi(roi);
|
|
ImageProcessor curr_i = ip2.crop().convertToFloat();
|
|
double[][] data = ImageProcessor_to_FFTComplexArray2D(curr_r, curr_i);
|
|
ffts[i-1] = cfft2(data);
|
|
}
|
|
IJ.showProgress(i, slices);
|
|
}
|
|
|
|
return ffts;
|
|
}
|
|
|
|
//calculate the shifts between ffts
|
|
private double[][] calculateShifts(ComplexMatrix[] ffts) {
|
|
|
|
double[][] shifts = new double[ffts.length][6];
|
|
for (int i = 0; i < ffts.length; i++) {
|
|
shifts[i][0] = reference_slide; shifts[i][1] = i+1;
|
|
double[] temp = DFTRegistration(ffts[reference_slide - 1], ffts[i]);
|
|
shifts[i][2] = temp[2]; shifts[i][3] = temp[3];
|
|
shifts[i][4] = temp[0]; shifts[i][5] = temp[1];
|
|
IJ.showProgress(i + 1, ffts.length);
|
|
}
|
|
return shifts; // [ref, drifted, dr, dc, error, diffphase]
|
|
|
|
}
|
|
|
|
//calculate all the shifts between ffts
|
|
private double[][] calculateAllShifts(ComplexMatrix[] ffts) {
|
|
|
|
double[][] shifts = new double[ffts.length*(ffts.length-1)/2][6];
|
|
int id = 0;
|
|
for (int i = 0; i < ffts.length-1; i++) {
|
|
for (int j = i+1; j < ffts.length; j++) {
|
|
shifts[id][0] = i+1; shifts[id][1] = j+1;
|
|
double[] temp = DFTRegistration(ffts[i], ffts[j]);
|
|
shifts[id][2] = temp[2]; shifts[id][3] = temp[3];
|
|
shifts[id][4] = temp[0]; shifts[id][5] = temp[1];
|
|
id = id + 1;
|
|
IJ.showProgress(id + 1, ffts.length*(ffts.length-1)/2);
|
|
}
|
|
}
|
|
|
|
return shifts; // [ref,drifted,dr,dc,error, diffphase]
|
|
}
|
|
|
|
// compute 2D fft from an image
|
|
private ComplexMatrix fft2(double[][] data) {
|
|
|
|
int h = data.length;
|
|
int w = data[0].length;
|
|
DoubleFFT_2D fft = new DoubleFFT_2D(h, w);
|
|
|
|
fft.realForward(data);
|
|
ComplexMatrix m = FFTArray2D_to_ComplexMatrix(data, h, w);
|
|
|
|
return m;
|
|
}
|
|
|
|
// compute complex 2D fft from an image
|
|
private ComplexMatrix cfft2(double[][] data) {
|
|
|
|
int h = data.length;
|
|
int w = data[0].length;
|
|
DoubleFFT_2D fft = new DoubleFFT_2D(h, w/2);
|
|
|
|
fft.complexForward(data);
|
|
ComplexMatrix m = FFTComplexArray2D_to_ComplexMatrix(data, h, w/2);
|
|
|
|
return m;
|
|
}
|
|
|
|
// compute inverse 2D fft from a complex matrix
|
|
private double[][] ifft2(ComplexMatrix m) {
|
|
int w = m.getNcol();
|
|
int h = m.getNrow();
|
|
|
|
DoubleFFT_2D fft = new DoubleFFT_2D(h, w);
|
|
|
|
double[][] data = ComplexMatrix_to_FFTArray2D(m);
|
|
fft.realInverse(data, true);
|
|
|
|
return data;
|
|
}
|
|
|
|
// compute complex inverse 2D fft from a complex matrix
|
|
private ComplexMatrix cifft2(ComplexMatrix m) {
|
|
int w = m.getNcol();
|
|
int h = m.getNrow();
|
|
|
|
DoubleFFT_2D fft = new DoubleFFT_2D(h, w);
|
|
|
|
double[][] data = new double[h][2*w];
|
|
for (int j=0; j<h; j++) {
|
|
for (int i=0; i<w; i++) {
|
|
data[j][2*i] = m.getElementReference(j, i).getReal();
|
|
data[j][2*i+1] = m.getElementReference(j, i).getImag();
|
|
}
|
|
}
|
|
|
|
fft.complexInverse(data, true);
|
|
|
|
ComplexMatrix out = new ComplexMatrix(h, w);
|
|
for (int j=0; j<h; j++) {
|
|
for (int i=0; i<w; i++) {
|
|
out.setElement(j, i, data[j][2*i], data[j][2*i+1]);
|
|
}
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
private double[] DFTRegistration(ComplexMatrix ref, ComplexMatrix drifted) {
|
|
int m = ref.getNrow();
|
|
int n = ref.getNcol();
|
|
double[] output = new double[4];
|
|
|
|
// First upsample by a factor of 2 to obtain initial estimate
|
|
// Embed Fourier data in a 2x larger array
|
|
int mlarge = m*2;
|
|
int nlarge = n*2;
|
|
ComplexMatrix large = new ComplexMatrix(mlarge, nlarge);
|
|
ComplexMatrix c = fftshift(ElementProduct(ref, drifted.conjugate()));
|
|
|
|
for (int j = 0; j < m; j++) {
|
|
for (int i = 0; i < n; i++) {
|
|
large.setElement((int)(j + m - Math.floor(m/2.0)), (int)(i + n - Math.floor(n/2.0)), c.getElementReference(j, i));
|
|
}
|
|
}
|
|
|
|
// Compute crosscorrelation and locate the peak
|
|
ComplexMatrix CC = cifft2(ifftshift(large));
|
|
double[] peak = cFindPeak(CC); //max, r, c, max_r, max_c
|
|
|
|
// Obtain shift in original pixel grid from the position of the
|
|
// crosscorrelation peak
|
|
if (peak[1] > m) {
|
|
peak[1] = peak[1] - mlarge;
|
|
}
|
|
if (peak[2] > n) {
|
|
peak[2] = peak[2] - nlarge;
|
|
}
|
|
|
|
//% If upsampling > 2, then refine estimate with matrix multiply DFT
|
|
if (this.usfac > 2) {
|
|
// %%% DFT computation %%%
|
|
// % Initial shift estimate in upsampled grid
|
|
double row_shift = Math.round(peak[1]/2.0*this.usfac)/this.usfac;
|
|
double col_shift = Math.round(peak[2]/2.0*this.usfac)/this.usfac;
|
|
int dftshift = (int)Math.floor(Math.ceil(this.usfac*1.5)/2); // Center of output array at dftshift+1
|
|
// % Matrix multiply DFT around the current shift estimate
|
|
ComplexMatrix in = ElementProduct(drifted, ref.conjugate());
|
|
ComplexMatrix nCC = dftups(in, (int)Math.ceil(this.usfac*1.5), (int)Math.ceil(this.usfac*1.5),
|
|
dftshift-row_shift*this.usfac, dftshift-col_shift*this.usfac);
|
|
nCC = nCC.times(1.0/(m*n*this.usfac*this.usfac)).conjugate();
|
|
// % Locate maximum and map back to original pixel grid
|
|
double[] npeak = cFindPeak(nCC); //max_r, max_i, r, c
|
|
|
|
ComplexMatrix mrg00 = dftups(ElementProduct(ref, ref.conjugate()),1,1,0,0);
|
|
double rg00 = mrg00.getElementReference(0, 0).abs()/(m*n*this.usfac*this.usfac);
|
|
ComplexMatrix mrf00 = dftups(ElementProduct(drifted, drifted.conjugate()),1,1,0,0);
|
|
double rf00 = mrf00.getElementReference(0, 0).abs()/(m*n*this.usfac*this.usfac);
|
|
|
|
npeak[1] = npeak[1] - dftshift;
|
|
npeak[2] = npeak[2] - dftshift;
|
|
output[0] = Math.sqrt(Math.abs(1.0 - npeak[0]*npeak[0]/(rg00*rf00))); //error
|
|
output[1] = Math.atan2(npeak[4], npeak[3]); //diffphase
|
|
output[2] = row_shift + npeak[1]/this.usfac; //delta row
|
|
output[3] = col_shift + npeak[2]/this.usfac; //delta col
|
|
|
|
} else {
|
|
// % If upsampling = 2, no additional pixel shift refinement
|
|
double rg00 = SumSquareAbs(ref)/(mlarge*nlarge);
|
|
double rf00 = SumSquareAbs(drifted)/(mlarge*nlarge);
|
|
|
|
output[0] = Math.sqrt(Math.abs(1.0 - peak[0]*peak[0]/(rg00*rf00))); //error
|
|
output[1] = Math.atan2(peak[4], peak[3]); //diffphase
|
|
output[2] = peak[1]/2.0; //delta row
|
|
output[3] = peak[2]/2.0; //delta col
|
|
}
|
|
|
|
return output;
|
|
}
|
|
|
|
private double SumSquareAbs(ComplexMatrix m) {
|
|
double sum = 0.0;
|
|
|
|
for (int j = 0; j < m.getNrow(); j ++){
|
|
for (int i = 0; i < m.getNcol(); i++) {
|
|
sum += m.getElementReference(j, i).squareAbs();
|
|
}
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
private double[] cFindPeak(ComplexMatrix m) {
|
|
double max = 0.0;
|
|
double realmax = 0.0;
|
|
double imagmax = 0.0;
|
|
int cmax = 0, rmax = 0;
|
|
|
|
for (int j = 0; j < m.getNrow(); j ++){
|
|
for (int i = 0; i < m.getNcol(); i++) {
|
|
if (m.getElementReference(j, i).abs() > max) {
|
|
max = m.getElementReference(j, i).abs();
|
|
realmax = m.getElementReference(j, i).getReal();
|
|
imagmax = m.getElementReference(j, i).getImag();
|
|
rmax = j;
|
|
cmax = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
double[] res = new double[5];
|
|
res[0] = Math.sqrt(realmax*realmax+imagmax*imagmax); res[1] = rmax; res[2] = cmax;
|
|
res[3] = realmax; res[4] = imagmax;
|
|
return res;
|
|
}
|
|
|
|
private ComplexMatrix fftshift(ComplexMatrix in) {
|
|
int nc = in.getNcol();
|
|
int nr = in.getNrow();
|
|
|
|
ComplexMatrix out = new ComplexMatrix (nr, nc);
|
|
|
|
int midi = (int)Math.floor(nc/2.0);
|
|
int offi = (int)Math.ceil(nc/2.0);
|
|
int midj = (int)Math.floor(nr/2.0);
|
|
int offj = (int)Math.ceil(nr/2.0);
|
|
|
|
for (int j = 0; j < nr; j ++){
|
|
for (int i = 0; i < nc; i++) {
|
|
if (j < midj) {
|
|
if (i < midi) {
|
|
out.setElement(j, i, in.getElementReference(j+offj, i+offi));
|
|
} else {
|
|
out.setElement(j, i, in.getElementReference(j+offj, i-midi));
|
|
}
|
|
} else {
|
|
if (i < midi) {
|
|
out.setElement(j, i, in.getElementReference(j-midj, i+offi));
|
|
} else {
|
|
out.setElement(j, i, in.getElementReference(j-midj, i-midi));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
private ComplexMatrix ifftshift(ComplexMatrix in) {
|
|
int nc = in.getNcol();
|
|
int nr = in.getNrow();
|
|
|
|
ComplexMatrix out = new ComplexMatrix (nr, nc);
|
|
|
|
int midi = (int)Math.ceil(nc/2.0);
|
|
int offi = (int)Math.floor(nc/2.0);
|
|
int midj = (int)Math.ceil(nr/2.0);
|
|
int offj = (int)Math.floor(nr/2.0);
|
|
|
|
for (int j = 0; j < nr; j ++){
|
|
for (int i = 0; i < nc; i++) {
|
|
if (j < midj) {
|
|
if (i < midi) {
|
|
out.setElement(j, i, in.getElementReference(j+offj, i+offi));
|
|
} else {
|
|
out.setElement(j, i, in.getElementReference(j+offj, i-midi));
|
|
}
|
|
} else {
|
|
if (i < midi) {
|
|
out.setElement(j, i, in.getElementReference(j-midj, i+offi));
|
|
} else {
|
|
out.setElement(j, i, in.getElementReference(j-midj, i-midi));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
private Matrix ifftshift(Matrix in) {
|
|
int nc = in.getNcol();
|
|
int nr = in.getNrow();
|
|
|
|
Matrix out = new Matrix (nr, nc);
|
|
|
|
int midi = (int)Math.ceil(nc/2.0);
|
|
int offi = (int)Math.floor(nc/2.0);
|
|
int midj = (int)Math.ceil(nr/2.0);
|
|
int offj = (int)Math.floor(nr/2.0);
|
|
|
|
for (int j = 0; j < nr; j ++){
|
|
for (int i = 0; i < nc; i++) {
|
|
if (j < midj) {
|
|
if (i < midi) {
|
|
out.setElement(j, i, in.getElement(j+offj, i+offi));
|
|
} else {
|
|
out.setElement(j, i, in.getElement(j+offj, i-midi));
|
|
}
|
|
} else {
|
|
if (i < midi) {
|
|
out.setElement(j, i, in.getElement(j-midj, i+offi));
|
|
} else {
|
|
out.setElement(j, i, in.getElement(j-midj, i-midi));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
public Matrix times(Matrix amat, Matrix bmat){
|
|
|
|
if(amat.getNumberOfColumns()!=bmat.getNumberOfRows())throw new IllegalArgumentException("Nonconformable matrices");
|
|
|
|
Matrix cmat = new Matrix(amat.getNumberOfRows(), bmat.getNumberOfColumns());
|
|
double [][] aarray = amat.getArrayReference();
|
|
double [][] barray = bmat.getArrayReference();
|
|
double [][] carray = cmat.getArrayReference();
|
|
double sum = 0.0D;
|
|
|
|
for(int i=0; i<amat.getNumberOfRows(); i++){
|
|
for(int j=0; j<bmat.getNumberOfColumns(); j++){
|
|
sum=0.0D;
|
|
for(int k=0; k<amat.getNumberOfColumns(); k++){
|
|
sum += aarray[i][k]*barray[k][j];
|
|
}
|
|
carray[i][j]=sum;
|
|
}
|
|
}
|
|
return cmat;
|
|
}
|
|
|
|
private ComplexMatrix dftups(ComplexMatrix in, int nor, int noc, double roff, double coff) {
|
|
// function out=dftups(in,nor,noc,usfac,roff,coff);
|
|
// Upsampled DFT by matrix multiplies, can compute an upsampled DFT in just
|
|
// a small region.
|
|
// usfac Upsampling factor (default usfac = 1)
|
|
// [nor,noc] Number of pixels in the output upsampled DFT, in
|
|
// units of upsampled pixels (default = size(in))
|
|
// roff, coff Row and column offsets, allow to shift the output array to
|
|
// a region of interest on the DFT (default = 0)
|
|
// Recieves DC in upper left corner, image center must be in (1,1)
|
|
// Loïc Le Guyader - Jun 11, 2011 Java version for ImageJ plugin
|
|
// Manuel Guizar - Dec 13, 2007
|
|
// Modified from dftus, by J.R. Fienup 7/31/06
|
|
|
|
// This code is intended to provide the same result as if the following
|
|
// operations were performed
|
|
// - Embed the array "in" in an array that is usfac times larger in each
|
|
// dimension. ifftshift to bring the center of the image to (1,1).
|
|
// - Take the FFT of the larger array
|
|
// - Extract an [nor, noc] region of the result. Starting with the
|
|
// [roff+1 coff+1] element.
|
|
|
|
// It achieves this result by computing the DFT in the output array without
|
|
// the need to zeropad. Much faster and memory efficient than the
|
|
// zero-padded FFT approach if [nor noc] are much smaller than [nr*usfac nc*usfac]
|
|
|
|
int nr = in.getNrow();
|
|
int nc = in.getNcol();
|
|
// Compute kernels and obtain DFT by matrix products
|
|
double amplitude = -2.0*Math.PI/(nc*usfac);
|
|
|
|
Matrix u = new Matrix(nc, 1);
|
|
for (int i = 0; i < nc; i++) {
|
|
u.setElement(i, 0, i - Math.floor(nc/2.0));
|
|
}
|
|
u = ifftshift(u);
|
|
|
|
Matrix v = new Matrix(1, noc);
|
|
for (int i = 0; i < noc; i++) {
|
|
v.setElement(0, i, i-coff);
|
|
}
|
|
Matrix phase = u.times(v);
|
|
//Matrix phase = times(u,v);
|
|
|
|
ComplexMatrix kernc = new ComplexMatrix(nc, noc);
|
|
for (int j = 0; j < nc; j++) {
|
|
for (int i = 0; i < noc; i++) {
|
|
Complex t = new Complex();
|
|
t.polar(1.0, amplitude*phase.getElement(j, i));
|
|
kernc.setElement(j, i, t);
|
|
}
|
|
}
|
|
//ComplexMatrixPrint(kernc);
|
|
|
|
amplitude = -2.0*Math.PI/(nr*usfac);
|
|
|
|
Matrix w = new Matrix(nor, 1);
|
|
for (int i = 0; i < nor; i++) {
|
|
w.setElement(i, 0, i - roff);
|
|
}
|
|
|
|
Matrix x = new Matrix(1, nr);
|
|
for (int i = 0; i < nr; i++) {
|
|
x.setElement(0, i, i - Math.floor(nr/2.0));
|
|
}
|
|
x = ifftshift(x);
|
|
|
|
Matrix nphase = w.times(x);
|
|
//Matrix nphase = times(w,x);
|
|
ComplexMatrix kernr = new ComplexMatrix(nor, nr);
|
|
for (int j = 0; j < nor; j++) {
|
|
for (int i = 0; i < nr; i++) {
|
|
Complex t = new Complex();
|
|
t.polar(1.0, amplitude*nphase.getElement(j, i));
|
|
kernr.setElement(j, i, t);
|
|
}
|
|
}
|
|
//ComplexMatrixPrint(kernr);
|
|
|
|
ComplexMatrix out = kernr.times(in.times(kernc));
|
|
return out;
|
|
}
|
|
|
|
private double[][] CrossCorrelation(ComplexMatrix ref, ComplexMatrix drifted) {
|
|
int h = ref.getNrow();
|
|
int w = ref.getNcol();
|
|
ComplexMatrix b = drifted.conjugate();
|
|
ComplexMatrix res = ElementProduct(ref, b);
|
|
|
|
double[][] data = ComplexMatrix_to_FFTArray2D(res);
|
|
DoubleFFT_2D fft = new DoubleFFT_2D(h, w);
|
|
fft.realInverse(data, true);
|
|
|
|
return data;
|
|
}
|
|
|
|
private ComplexMatrix ElementProduct(ComplexMatrix a, ComplexMatrix b) {
|
|
int nr = a.getNrow();
|
|
int nc = a.getNcol();
|
|
|
|
ComplexMatrix res = new ComplexMatrix(nr, nc);
|
|
|
|
for(int j = 0; j < nr; j++) {
|
|
for(int i = 0; i < nc; i++) {
|
|
res.setElement(j, i, a.getElementReference(j, i).times(b.getElementReference(j, i)));
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
private double[][] ImageProcessor_to_FFTArray2D(ImageProcessor ip) {
|
|
|
|
float[] pixels = (float[])ip.getPixels();
|
|
int w = ip.getWidth();
|
|
int h = ip.getHeight();
|
|
double[][] data = new double[h][w];
|
|
|
|
for (int j = 0; j < h; j++) {
|
|
for (int i = 0; i < w; i++) {
|
|
data[j][i] = (double)pixels[j*w + i];
|
|
}
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
private double[][] ImageProcessor_to_FFTComplexArray2D(ImageProcessor ip_r, ImageProcessor ip_i) {
|
|
|
|
float[] pixels_r = (float[])ip_r.getPixels();
|
|
float[] pixels_i = (float[])ip_i.getPixels();
|
|
int w = ip_r.getWidth();
|
|
int h = ip_r.getHeight();
|
|
double[][] data = new double[h][2*w];
|
|
|
|
for (int j = 0; j < h; j++) {
|
|
for (int i = 0; i < w; i++) {
|
|
data[j][2*i] = (double)pixels_r[j*w + i];
|
|
data[j][2*i+1] = (double)pixels_i[j*w + i];
|
|
}
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
private ComplexMatrix FFTArray2D_to_ComplexMatrix(double[][] data, int h, int w) {
|
|
|
|
ComplexMatrix m = new ComplexMatrix(h,w);
|
|
|
|
for (int j = 0; j < h; j++) {
|
|
for (int i = 0; i <= w/2; i++) {
|
|
if (j > 0 && i > 0 && i < w/2) {
|
|
m.setElement(j,i, new Complex(data[j][2*i], data[j][2*i+1]));
|
|
m.setElement(h-j, w-i, new Complex(data[j][2*i], -data[j][2*i+1]));
|
|
}
|
|
if (j == 0 && i > 0 && i < w/2) {
|
|
m.setElement(0, i, new Complex(data[0][2*i], data[0][2*i+1]));
|
|
m.setElement(0, w-i, new Complex(data[0][2*i], -data[0][2*i+1]));
|
|
}
|
|
if (i == 0 && j > 0 && j < h/2) {
|
|
m.setElement(j,0, new Complex(data[j][0], data[j][1]));
|
|
m.setElement(h-j, 0, new Complex(data[j][0], -data[j][1]));
|
|
m.setElement(j, w/2, new Complex(data[h-j][1], -data[h-j][0]));
|
|
m.setElement(h-j, w/2, new Complex(data[h-j][1], data[h-j][0]));
|
|
}
|
|
if (j == 0 && i == 0) {
|
|
m.setElement(0, 0, new Complex(data[0][0], 0));
|
|
}
|
|
if (j == 0 && i == w/2) {
|
|
m.setElement(0, w/2, new Complex(data[0][1], 0));
|
|
}
|
|
if (j == h/2 && i == 0) {
|
|
m.setElement(h/2, 0, new Complex(data[h/2][0], 0));
|
|
}
|
|
if (j == h/2 && i == w/2) {
|
|
m.setElement(h/2, w/2, new Complex(data[h/2][1], 0));
|
|
}
|
|
}
|
|
}
|
|
|
|
return m;
|
|
}
|
|
|
|
private ComplexMatrix FFTComplexArray2D_to_ComplexMatrix(double[][] data, int h, int w) {
|
|
|
|
ComplexMatrix m = new ComplexMatrix(h,w);
|
|
|
|
for (int j = 0; j < h; j++) {
|
|
for (int i = 0; i < w; i++) {
|
|
m.setElement(j,i, new Complex(data[j][2*i], data[j][2*i+1]));
|
|
}
|
|
}
|
|
|
|
return m;
|
|
}
|
|
|
|
private double[][] ComplexMatrix_to_FFTArray2D(ComplexMatrix m) {
|
|
int w = m.getNcol();
|
|
int h = m.getNrow();
|
|
double[][] data = new double[h][w];
|
|
|
|
for (int j = 0; j < h; j++) {
|
|
for (int i = 0; i <= w/2; i++) {
|
|
if (j > 0 && i > 0 && i < w/2) {
|
|
data[j][2*i] = m.getElementReference(j,i).getReal();
|
|
data[j][2*i+1] = m.getElementReference(j,i).getImag();
|
|
}
|
|
if (j == 0 && i > 0 && i < w/2) {
|
|
data[0][2*i] = m.getElementReference(0,i).getReal();
|
|
data[0][2*i+1] = m.getElementReference(0,i).getImag();
|
|
}
|
|
if (i == 0 && j > 0 && j < h/2) {
|
|
data[j][0] = m.getElementReference(j,0).getReal();
|
|
data[j][1] = m.getElementReference(j,0).getImag();
|
|
data[h-j][1] = m.getElementReference(j,w/2).getReal();
|
|
data[h-j][0] = m.getElementReference(h-j,w/2).getImag();
|
|
}
|
|
if (j == 0 && i == 0) {
|
|
data[0][0] = m.getElementReference(0,0).getReal();
|
|
}
|
|
if (j == 0 && i == w/2) {
|
|
data[0][1] = m.getElementReference(0,w/2).getReal();
|
|
}
|
|
if (j == h/2 && i == 0) {
|
|
data[h/2][0] = m.getElementReference(h/2,0).getReal();
|
|
}
|
|
if (j == h/2 && i == w/2) {
|
|
data[h/2][1] = m.getElementReference(h/2,w/2).getReal();
|
|
}
|
|
}
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
// convert a Complex Matrix into an 2d real part array data[0][][]
|
|
// and 2d imaginary part data[1][][]
|
|
private double[][][] ComplexMatrix_to_RealArray2D(ComplexMatrix m) {
|
|
int w = m.getNcol();
|
|
int h = m.getNrow();
|
|
double[][][] data = new double[2][h][w];
|
|
|
|
for (int j = 0; j < h; j++) {
|
|
for (int i = 0; i < w; i++) {
|
|
data[0][j][i] = m.getElementReference(j,i).getReal();
|
|
data[1][j][i] = m.getElementReference(j,i).getImag();
|
|
}
|
|
}
|
|
|
|
return data;
|
|
}
|
|
} |