Files
dev/script/ms/image_get_int.py
2019-08-16 09:54:45 +02:00

58 lines
1.4 KiB
Python

#!/usr/bin/env python
import sys
# parse aguments
# image info file
# threshold 1
# threshold 2
# threshold 3
# threshold 4
# median filter
# filter nsigma
info = sys.argv[1]
thres1 = int(sys.argv[2])
thres2 = int(sys.argv[3])
thres3 = int(sys.argv[4])
thres4 = int(sys.argv[5])
filter_median = False
if len(sys.argv) > 6 and sys.argv[6] == '-median':
filter_median = True
filter_nsigma = 0.0
if len(sys.argv) > 7:
filter_nsigma = float(sys.argv[7])
# read image info text file
f = open(info)
fname = f.next().strip()
timestamp = f.next().strip()
header = f.next().strip()
width, height, depth = [int(p) for p in f.next().strip().split()]
x1,y1,x2,y2 = [int(p) for p in f.next().strip().split()]
bx1,by1,bx2,by2 = [int(p) for p in f.next().strip().split()]
f.close()
# read actual image file
import numpy
img = numpy.fromfile(fname, dtype=numpy.uint32)
img.shape = height, width
# signal roi
area_I = ( x2 - x1 + 1) * ( y2 - y1 + 1)
I_sum = img[y1:y2, x1:x2].sum()
thresh1_count = len(numpy.where(img>thres1)[0])
thresh2_count = len(numpy.where(img>thres2)[0])
thresh3_count = len(numpy.where(img>thres3)[0])
thresh4_count = len(numpy.where(img>thres4)[0])
# background roi
I_sum_bgr = img[by1:by2, bx1:bx2].sum()
area_bgr= (bx2 - bx1 + 1) * (by2 - by1 + 1)
set_return ((I_sum, area_I, thresh1_count, thresh2_count, thresh3_count, thresh4_count, I_sum_bgr, area_bgr))