import math from mathutils import fit_polynomial, PolynomialFunction from plotutils import plot_line, plot_function import org.apache.commons.math3.stat.correlation.PearsonsCorrelation as PearsonsCorrelation if get_exec_pars().source == CommandSource.ui: dx = sin dy = isin interval = 0.10 window = 40 p = plot(None, "Data")[0] if isinstance(dx, basestring): dx = Channel(dx) if isinstance(dy, basestring): dy = Channel(dy) sd=p.getSeries(0) sd.setLinesVisible(False) sd.setPointSize(4) marker=None while(True): #Sample and plot data x=dx.read() y=dy.read() sd.appendData(x, y) if len(sd.x) > window: #Remove First Element sd.token.remove(0) ax = sd.x ay = sd.y if len(ax)>2: x1, x2 = min(ax), max(ax) res = (x2-x1)/100 if x1!=x2: #Display correlation corr= PearsonsCorrelation().correlation(to_array(ax,'d'), to_array(ay,'d')) s = "Correlation=" + str(round(corr,4)) #print s if marker is not None: p.removeMarker(marker) marker = p.addMarker(x2+res, p.AxisId.X, s, p.getBackground()) marker.setLabelPaint(Color.BLACK) #Calculate, print and plot linear fit pars_lin = (a0,a1) = fit_polynomial(ay, ax, 1) #print "Fit lin a1:" , a1, " a0:",a0 y1 = poly(x1, pars_lin) y2 = poly(x2, pars_lin) plot_line(p, x1, y1, x2, y2, width = 2, color = Color.BLUE, name = "Fit Linear") #Calculate, print and plot quadratic fit pars_quad = (a0,a1,a2) = fit_polynomial(ay, ax, 2) #print "Fit quad a2:" , a2, "a1:" , a1, " a0:",a0 fitted_quad_function = PolynomialFunction(pars_quad) ax = frange(x1, x2, res, True) plot_function(p, fitted_quad_function, "Fit Quadratic", ax, color=Color.GREEN) time.sleep(interval)