import numpy from scipy import signal, ndimage def img_get_int(fname, thres1, thres2, thres3, thres4, header, width, height, depth, x1,y1,x2,y2, bx1,by1,bx2,by2 , filter_median = False, filter_nsigma = 0): # read actual image file img = numpy.fromfile(fname, dtype=numpy.uint32) img.shape = height, width if filter_nsigma>0: img = ndimage.gaussian_filter(img, filter_nsigma) elif filter_median: #img = signal.medfilt2d(img.astype('d'), kernel_size=3) img = ndimage.median_filter(img, size=3) # signal roi area_I = ( x2 - x1 + 1) * ( y2 - y1 + 1) I_sum = img[y1:y2, x1:x2].sum() thresh1_count = len(numpy.where(img>thres1)[0]) thresh2_count = len(numpy.where(img>thres2)[0]) thresh3_count = len(numpy.where(img>thres3)[0]) thresh4_count = len(numpy.where(img>thres4)[0]) # background roi I_sum_bgr = img[by1:by2, bx1:bx2].sum() area_bgr= (bx2 - bx1 + 1) * (by2 - by1 + 1) return (I_sum, area_I, thresh1_count, thresh2_count, thresh3_count, thresh4_count, I_sum_bgr, area_bgr) def img_read(fname, header, width, height, depth): img = numpy.fromfile(fname, dtype=numpy.uint32) img.shape = height, width #return img.flatten().astype(int) return img.astype(int)