from mathutils import * """ a = [1,2,3,4,7,10,50,4,3,2,1,2,1,1,2,3,4,7,10,50,4,3,2,1,1,2,1,2,3,4,7,10,50,4,3,2,1,2,1,2,3,4,7,10,50,4,3,2,1,1,2,1,2,3,4,7,10,50,4,3,2,1,2] ft = fft(a) it = ffti(ft) plot([a,get_real(ft),get_imag(ft) ,get_real(it),get_imag(it)],("a", "real","img", "i real","i img")) data = [2,3,4,10,20,5,3,2,1] print estimate_peak_indexes(data) print estimate_peak_indexes(data, threshold =21.0) print estimate_peak_indexes(data, positive=False) print estimate_peak_indexes(data, threshold =1.0, positive=False) print estimate_peak_indexes(data, threshold = None, min_peak_distance = 10.0 , positive=False) xdata = [1,3,7,23,34,45,56,58, 61] print estimate_peak_indexes(data, xdata, threshold = None, min_peak_distance = 10.0 , positive=False) """ import random #A sin wave is: A.sin(2.pi.f.t) #The signal is composed by 3 sinusoids (100Hz, 200Hz, 400Hz) and a background noise def signal_generator(t): return math.sin(100*2*math.pi*t) + 0.5 * math.sin(200*2*math.pi*t) + 0.25 * math.sin(400*2*math.pi*t) + 0.5* random.random() sampling_frequency = 1024.0 number_of_samples = 1024 time_vector = [x / sampling_frequency for x in frange(0, number_of_samples, 1)] signal = [signal_generator(x) for x in time_vector] tranform = fft(signal) two_side_spectrum = [x / number_of_samples for x in get_modulus(tranform)] spectrum = [two_side_spectrum[0],] + [x * 2 for x in two_side_spectrum[1:len(two_side_spectrum)/2 + 1] ] number_of_samples = len(tranform) # Signal may have been padded to next power of two freq_vector = [x * sampling_frequency / float(number_of_samples) for x in frange(0, len(spectrum) , 1)] #print f plot([signal,spectrum], ["signal", "spectrum"],[time_vector, freq_vector]) #plot(p1, xdata = f)