This commit is contained in:
2023-05-01 11:28:04 +02:00
parent 3a83f3cf34
commit abe3bcb19c
265 changed files with 28663 additions and 1295 deletions

642
script/imaging/sim.py Normal file
View File

@@ -0,0 +1,642 @@
from ijutils import *
import java.lang.reflect
import flanagan.complex.ComplexMatrix as ComplexMatrix
import flanagan.math.Matrix as Matrix
import flanagan.complex.Complex as Complex
import org.jtransforms.fft.DoubleFFT_2D as DoubleFFT_2D
import math
from startup import ScriptUtils
import ij.plugin.filter.PlugInFilterRunner as PlugInFilterRunner
import ij.plugin.filter.ExtendedPlugInFilter as ExtendedPlugInFilter
import ij.plugin.filter.ExtendedPlugInFilter as ExtendedPlugInFilter
import java.lang.Thread as Thread
def new_array(type, *dimensions):
return java.lang.reflect.Array.newInstance(ScriptUtils.getPrimitiveType(type), *dimensions)
def load_stack(title, file_list, show=False):
ip_list = []
for f in file_list:
ip_list.append(open_image(expand_path(f)))
stack = create_stack(ip_list, title=title)
if show:
stack.show()
return stack
def load_test_stack(title="Test", show=False, size=9):
file_list = []
for index in range(40, 40+size):
file_list.append("{images}/TestObjAligner/i210517_0" + str(index) + "#001.tif")
return load_stack(title, file_list, show)
def load_corr_stack(title="Corr", show=False):
file_list = []
for index in range(40, 49):
file_list.append("{images}/TestObjAligner_corr/i210517_0" + str(index) + "#001.tif")
return load_stack(title, file_list, show)
def complex_edge_filtering(imp, complex=True, g_sigma=3.0, g_resolution=1e-4, show=False, java_code=False):
if java_code:
get_context().getPluginManager().loadInitializePlugin("Align_ComplexEdgeFiltering.java")
complex_edge_filter = get_context().getClassByName("Align_ComplexEdgeFiltering").newInstance()
complex_edge_filter.setup(str(g_sigma)+","+str(complex)+","+str(show), imp) #Gaussian blur radius, Complex (True) or Real (False), show dialog = False
complex_edge_filter.run(imp.getProcessor())
return complex_edge_filter.output
gb = GaussianBlur()
sobel_r = [1, 0, -1, 2, 0, -2, 1, 0, -1]
sobel_i = [1, 2, 1, 0, 0, 0, -1, -2, -1]
imp_r = imp.createImagePlus()
stack_r = ImageStack(imp.getWidth(), imp.getHeight())
if (complex):
imp_i = imp.createImagePlus()
stack_i = ImageStack(imp.getWidth(), imp.getHeight())
for i in range(1, imp.getImageStackSize() + 1):
ip_r = imp.getStack().getProcessor(i).duplicate().convertToFloat()
# Gaussian blurring
gb.blurGaussian(ip_r, g_sigma, g_sigma, g_resolution)
ip_i = ip_r.duplicate()
# Sobel edge filtering
ip_r.convolve3x3(sobel_r)
ip_i.convolve3x3(sobel_i)
stack_r.addSlice(imp.getStack().getSliceLabel(i), ip_r)
stack_i.addSlice(imp.getStack().getSliceLabel(i), ip_i)
IJ.showProgress(i, imp.getImageStackSize())
# imag
imp_i.setStack("EdgeImag_" + imp.getTitle(), stack_i);
imp_i.resetDisplayRange()
if show:
imp_i.show()
imp_i.updateAndDraw()
else:
imp_i = None
for i in range(1, imp.getImageStackSize() + 1):
ip_r = imp.getStack().getProcessor(i).duplicate().convertToFloat()
# Gaussian blurring
gb.blurGaussian(ip_r, g_sigma, g_sigma, g_resolution)
# Sobel edge filtering
ip_r.filter(ImageProcessor.FIND_EDGES)
stack_r.addSlice(imp.getStack().getSliceLabel(i), ip_r)
IJ.showProgress(i, imp.getImageStackSize())
# real
imp_r.setStack("EdgeReal_" + imp.getTitle(), stack_r)
imp_r.resetDisplayRange()
if show:
imp_r.show()
imp_r.updateAndDraw()
return [imp_r, imp_i]
class TranslationFilter(ExtendedPlugInFilter):
def __init__(self):
self.shifts=None
self.flags = (self.DOES_ALL-self.DOES_RGB)|self.DOES_STACKS|self.NO_CHANGES|self.FINAL_PROCESSING
self.imp=None
self.output = None
self.translated = None
self.pifr = None
self.nbslices = 0
self.processed = 0
def setup(self, arg, imp):
if "final"==arg:
self.output.setStack("REG_" + self.imp.getTitle(), self.translated)
return self.DONE
else:
if self.imp is None:
self.imp = imp;
return self.flags;
def showDialog(self,imp, command, pfr):
self.pifr = pfr
return flags
# Called by ImageJ to set the number of calls to run(ip) corresponding to 100% of the progress bar
def setNPasses(self, nPasses):
self.nbslices = nPasses;
self.output = self.imp.createImagePlus();
self.translated = ImageStack(self.imp.getWidth(), self.imp.getHeight(), self.nbslices)
#Process a FloatProcessor (with the CONVERT_TO_FLOAT flag, ImageJ does the conversion to float).
# Called by ImageJ for each stack slice (when processing a full stack); for RGB also called once for each color. */
def run(self, ip):
if Thread.currentThread().isInterrupted():
return
thisone = self.pifr.getSliceNumber()
nip = ip.duplicate().convertToFloat()
nip.setInterpolationMethod(ImageProcessor.BICUBIC)
if len(self.shifts) != self.nbslices:
xoff, yoff = self.shifts[1][3], self.shifts[1][2] # translate all the frame by the same shifts
else:
xoff, yoff = self.shifts[thisone-1][3], self.shifts[thisone-1][2]
nip.translate(xoff, yoff)
lbl = self.imp.getStack().getSliceLabel(thisone)
if lbl != None:
self.translated.addSlice(lbl, nip, thisone - 1)
else:
self.translated.addSlice("" + thisone, nip, thisone - 1)
self.translated.deleteSlice(thisone + 1)
self.processed+=1
IJ.showProgress(self.processed, self.nbslices);
def translate(stack, shifts, show=False, java_code=False):
WindowManager.setTempCurrentImage(stack)
if java_code:
get_context().getPluginManager().loadInitializePlugin("Align_TranslationFilter.java")
translation_filter = get_context().getClassByName("Align_TranslationFilter").newInstance()
translation_filter.imp = imp
translation_filter.shifts = shifts
pfr = PlugInFilterRunner(translation_filter, "", "" )
ret = translation_filter.output
else:
translation_filter = TranslationFilter()
translation_filter.shifts = shifts
translation_filter.imp = stack
pfr = PlugInFilterRunner(translation_filter, "", "" )
ret = translation_filter.output
if show:
ret.show()
ret.updateAndDraw()
return ret
def load_shifts(filename):
get_context().getPluginManager().loadInitializePlugin("ShiftsIO.java")
sio = get_context().getClassByName("ShiftsIO").newInstance()
return sio.load(expand_path(filename), "directshifts")
def save_shifts(filename, shifts):
get_context().getPluginManager().loadInitializePlugin("ShiftsIO.java")
sio = get_context().getClassByName("ShiftsIO").newInstance()
sio.save(expand_path(filename), shifts, "directshifts")
def ip_to_fft_array_2d(ip):
pixels = ip.getPixels()
w = ip.getWidth()
h = ip.getHeight()
data = new_array('d', h, w) # new double[h][w]
for j in range(h): # (int j = 0; j < h; j++)
for i in range(w): # for (int i = 0; i < w; i++)
data[j][i] = pixels[j * w + i]
return data
def ip_to_fft_complex_array_2d(ip_r, ip_i):
pixels_r = ip_r.getPixels()
pixels_i = ip_i.getPixels()
w = ip_r.getWidth()
h = ip_r.getHeight()
data = new_array('d', h, 2 * w) # new double[h][2*w];
for j in range(h): # (int j = 0; j < h; j++)
for i in range(w): # for (int i = 0; i < w; i++)
data[j][2 * i] = pixels_r[j * w + i]
data[j][2 * i + 1] = pixels_i[j * w + i];
return data
def fft_array_2d_to_complex_matrix(data, h, w):
m = ComplexMatrix(h,w)
for j in range(h): #for (int j = 0; j < h; j++) {
for i in range(w/2): # for (int i = 0; i <= w/2; i++) {
if (j > 0) and (i > 0) and (i < w/2):
m.setElement(j, i, Complex(data[j][2*i], data[j][2*i+1]))
m.setElement(h-j, w-i, Complex(data[j][2*i], -data[j][2*i+1]))
if (j == 0) and (i > 0) and (i < w/2):
m.setElement(0, i, Complex(data[0][2*i], data[0][2*i+1]))
m.setElement(0, w-i, Complex(data[0][2*i], -data[0][2*i+1]))
if (i == 0) and (j > 0) and (j < h/2):
m.setElement(j,0, Complex(data[j][0], data[j][1]))
m.setElement(h-j, 0, Complex(data[j][0], -data[j][1]))
m.setElement(j, w/2, Complex(data[h-j][1], -data[h-j][0]))
m.setElement(h-j, w/2, Complex(data[h-j][1], data[h-j][0]))
if (j == 0) and (i == 0):
m.setElement(0, 0, Complex(data[0][0], 0));
if (j == 0) and (i == w/2):
m.setElement(0, w/2, Complex(data[0][1], 0));
if (j == h/2) and (i == 0):
m.setElement(h/2, 0, Complex(data[h/2][0], 0));
if (j == h/2) and (i == w/2):
m.setElement(h/2, w/2, Complex(data[h/2][1], 0));
return m
def fft_complex_array_2d_to_complex_matrix(data, h, w):
m = ComplexMatrix(h,w);
for j in range(h): #for (int j = 0; j < h; j++) {
for i in range(w): # for (int i = 0; i < w; i++) {
m.setElement(j,i, Complex(data[j][2*i], data[j][2*i+1]))
return m
def complex_matrix_to_fft_array_2d(m):
w = m.getNcol()
h = m.getNrow()
data = new_array('d', h,w) #new double[h][w];
for j in range(h): #for (int j = 0; j < h; j++) {
for i in range(w): #for (int i = 0; i <= w/2; i++) {
if (j > 0) and (i > 0) and (i < w/2):
data[j][2*i] = m.getElementReference(j,i).getReal()
data[j][2*i+1] = m.getElementReference(j,i).getImag()
if (j == 0) and (i > 0) and (i < w/2):
data[0][2*i] = m.getElementReference(0,i).getReal()
data[0][2*i+1] = m.getEementReference(0,i).getImag()
if (i == 0) and (j > 0) and (j < h/2):
data[j][0] = m.getElementReference(j,0).getReal()
data[j][1] = m.getElementReference(j,0).getImag()
data[h-j][1] = m.getElementReference(j,w/2).getReal()
data[h-j][0] = m.getElementReference(h-j,w/2).getImag()
if (j == 0) and (i == 0):
data[0][0] = m.getElementReference(0,0).getReal()
if (j == 0) and (i == w/2):
data[0][1] = m.getElementReference(0,w/2).getReal()
if (j == h/2) and (i == 0):
data[h/2][0] = m.getElementReference(h/2,0).getReal()
if (j == h/2) and ( i == w/2):
data[h/2][1] = m.getElementReference(h/2,w/2).getReal()
return data
# convert a Complex Matrix into an 2d real part array data[0][][] and 2d imaginary part data[1][][]
def complex_matrix_to_real_array_2d(m):
w = m.getNcol()
h = m.getNrow()
data = new_array('d', 2,h,w) #new double[2][h][w];
for j in range(h): #for (int j = 0; j < h; j++) {
for i in range(w): #for (int i = 0; i < w; i++) {
data[0][j][i] = m.getElementReference(j,i).getReal()
data[1][j][i] = m.getElementReference(j,i).getImag()
return data;
def compute_fft(imp_r, imp_i, roi):
slices = imp_r.getStackSize()
ffts = java.lang.reflect.Array.newInstance(ComplexMatrix, slices) # new ComplexMatrix[slices]
for i in range(1, slices + 1):
if imp_i is None:
ip = imp_r.getStack().getProcessor(i)
ip.setRoi(roi)
curr = ip.crop().convertToFloat();
data = ip_to_fft_array_2d(curr)
ffts[i - 1] = fft2(data)
else:
ip1 = imp_r.getStack().getProcessor(i)
ip1.setRoi(roi)
curr_r = ip1.crop().convertToFloat()
ip2 = imp_i.getStack().getProcessor(i)
ip2.setRoi(roi)
curr_i = ip2.crop().convertToFloat()
data = ip_to_fft_complex_array_2d(curr_r, curr_i)
ffts[i - 1] = cfft2(data)
IJ.showProgress(i, slices)
return ffts
def element_product(a, b):
nr = a.getNrow()
nc = a.getNcol()
res = ComplexMatrix(nr, nc)
for j in range(nr): # (int j = 0; j < nr; j++) {
for i in range(nc): # (int i = 0; i < nc; i++) {
res.setElement(j, i, a.getElementReference(j, i).times(b.getElementReference(j, i)))
return res;
def fft_shift(complex_matrix):
nc = complex_matrix.getNcol()
nr = complex_matrix.getNrow()
out = ComplexMatrix(nr, nc)
midi = int(math.floor(nc / 2.0))
offi = int(math.ceil(nc / 2.0))
midj = int(math.floor(nr / 2.0))
offj = int(math.ceil(nr / 2.0))
for j in range(nr): # for (int j = 0; j < nr; j ++){
for i in range(nc): # for (int i = 0; i < nc; i++) {
if j < midj:
if i < midi:
out.setElement(j, i, complex_matrix.getElementReference(j + offj, i + offi))
else:
out.setElement(j, i, complex_matrix.getElementReference(j + offj, i - midi))
else:
if i < midi:
out.setElement(j, i, complex_matrix.getElementReference(j - midj, i + offi))
else:
out.setElement(j, i, complex_matrix.getElementReference(j - midj, i - midi))
return out
def ifft_shift(complex_matrix):
nc = complex_matrix.getNcol()
nr = complex_matrix.getNrow()
out = ComplexMatrix(nr, nc)
midi = int(math.ceil(nc / 2.0))
offi = int(math.floor(nc / 2.0))
midj = int(math.ceil(nr / 2.0))
offj = int(math.floor(nr / 2.0))
for j in range(nr): # (int j = 0; j < nr; j ++){
for i in range(nc): # for (int i = 0; i < nc; i++) {
if j < midj:
if i < midi:
out.setElement(j, i, complex_matrix.getElementReference(j + offj, i + offi))
else:
out.setElement(j, i, complex_matrix.getElementReference(j + offj, i - midi))
else:
if i < midi:
out.setElement(j, i, complex_matrix.getElementReference(j - midj, i + offi))
else:
out.setElement(j, i, complex_matrix.getElementReference(j - midj, i - midi))
return out;
def ifft_shift_real(matrix):
nc = matrix.getNcol()
nr = matrix.getNrow()
out = Matrix (nr, nc)
midi = int(math.ceil(nc/2.0))
offi = int(math.floor(nc/2.0))
midj = int(math.ceil(nr/2.0))
offj = int(math.floor(nr/2.0))
for j in range(nr): # for (int j = 0; j < nr; j ++){
for i in range(nc): #for (int i = 0; i < nc; i++) {
if j < midj:
if i < midi:
out.setElement(j, i, matrix.getElement(j+offj, i+offi))
else:
out.setElement(j, i, matrix.getElement(j+offj, i-midi))
else:
if i < midi:
out.setElement(j, i, matrix.getElement(j-midj, i+offi))
else:
out.setElement(j, i, matrix.getElement(j-midj, i-midi))
return out
# compute 2D fft from an image
def fft2(data):
h =len(data)
w = len(data[0])
fft = DoubleFFT_2D(h, w)
fft.realForward(data)
return fft_array_2d_to_complex_matrix(data, h, w)
# compute complex 2D fft from an image
def cfft2(data):
h = len(data)
w = len(data[0])
fft = DoubleFFT_2D(h, w/2)
fft.complexForward(data)
return fft_complex_array_2d_to_complex_matrix(data, h, w/2)
# compute inverse 2D fft from a complex matrix
def ifft2(m):
w = m.getNcol()
h = m.getNrow()
fft = DoubleFFT_2D(h, w)
data = complex_matrix_to_fft_array_2d(m)
fft.realInverse(data, True)
return data
# compute complex inverse 2D fft from a complex matrix
def cifft2(m):
w = m.getNcol()
h = m.getNrow()
fft = DoubleFFT_2D(h, w)
data = new_array('d', h, 2 * w) # new double[h][2*w];
for j in range(h): # for (int j=0; j<h; j++):
for i in range(w): # for (int i=0; i<w; i++) {
data[j][2 * i] = m.getElementReference(j, i).getReal()
data[j][2 * i + 1] = m.getElementReference(j, i).getImag()
fft.complexInverse(data, True)
out = ComplexMatrix(h, w)
for j in range(h): # (int j=0; j<h; j++) {
for i in range(w): # (int i=0; i<w; i++) {
out.setElement(j, i, data[j][2 * i], data[j][2 * i + 1])
return out;
def c_find_peak(m):
max = 0.0
realmax = 0.0
imagmax = 0.0
cmax = 0
rmax = 0
for j in range(m.getNrow()): # (int j = 0; j < m.getNrow(); j ++){
for i in range(m.getNcol()): # for (int i = 0; i < m.getNcol(); i++) {
if m.getElementReference(j, i).abs() > max:
max = m.getElementReference(j, i).abs()
realmax = m.getElementReference(j, i).getReal()
imagmax = m.getElementReference(j, i).getImag()
rmax = j
cmax = i
res = new_array("d", 5)
res[0] = math.sqrt(realmax * realmax + imagmax * imagmax)
res[1] = rmax
res[2] = cmax
res[3] = realmax
res[4] = imagmax
return res;
def sum_square_abs(m):
s = 0.0
for j in range(m.getNrow()): # (int j = 0; j < m.getNrow(); j ++):
for i in range(m.getNcol()): # for (int i = 0; i < m.getNcol(); i++):
s += m.getElementReference(j, i).squareAbs();
return s;
def dftups(complex_matrix, nor, noc, roff, coff, usfac):
# function out=dftups(in,nor,noc,usfac,roff,coff);
# Upsampled DFT by matrix multiplies, can compute an upsampled DFT in justa small region.
# usfac Upsampling factor (default usfac = 1)
# [nor,noc] Number of pixels in the output upsampled DFT, in
# units of upsampled pixels (default = size(in))
# roff, coff Row and column offsets, allow to shift the output array to
# a region of interest on the DFT (default = 0)
# Recieves DC in upper left corner, image center must be in (1,1)
# Loic Le Guyader - Jun 11, 2011 Java version for ImageJ plugin
# Manuel Guizar - Dec 13, 2007
# Modified from dftus, by J.R. Fienup 7/31/06
# This code is intended to provide the same result as if the following
# operations were performed
# - Embed the array "in" in an array that is usfac times larger in each
# dimension. ifftshift to bring the center of the image to (1,1).
# - Take the FFT of the larger array
# - Extract an [nor, noc] region of the result. Starting with the
# [roff+1 coff+1] element.
# It achieves this result by computing the DFT in the output array without
# the need to zeropad. Much faster and memory efficient than the
# zero-padded FFT approach if [nor noc] are much smaller than [nr*usfac nc*usfac]
nr = complex_matrix.getNrow()
nc = complex_matrix.getNcol()
# Compute kernels and obtain DFT by matrix products
amplitude = -2.0 * math.pi / (nc * usfac)
nor,noc=int(nor),int(noc)
u = Matrix(nc, 1)
for i in range(nc): # (int i = 0; i < nc; i++) {
u.setElement(i, 0, i - math.floor(nc / 2.0))
u = ifft_shift_real(u)
v = Matrix(1, noc)
for i in range(noc): # for (int i = 0; i < noc; i++) {
v.setElement(0, i, i - coff)
phase = u.times(v)
kernc = ComplexMatrix(nc, noc)
for j in range(nc): # for (int j = 0; j < nc; j++) {
for i in range(noc): # for (int i = 0; i < noc; i++) {
t = Complex()
t.polar(1.0, amplitude * phase.getElement(j, i));
kernc.setElement(j, i, t)
# ComplexMatrixPrint(kernc)
amplitude = -2.0 * math.pi / (nr * usfac)
w = Matrix(nor, 1)
for i in range(nor): # for (int i = 0; i < nor; i++) {
w.setElement(i, 0, i - roff)
x = Matrix(1, nr)
for i in range(nr): # for (int i = 0; i < nr; i++) {
x.setElement(0, i, i - math.floor(nr / 2.0))
x = ifft_shift_real(x)
nphase = w.times(x);
kernr = ComplexMatrix(nor, nr)
for j in range(nor): # for (int j = 0; j < nor; j++) {
for i in range(nr): # for (int i = 0; i < nr; i++) {
t = Complex();
t.polar(1.0, amplitude * nphase.getElement(j, i))
kernr.setElement(j, i, t)
# ComplexMatrixPrint(kernr);
return kernr.times(complex_matrix.times(kernc))
def dft_registration(ref, drifted, usfac):
m = ref.getNrow()
n = ref.getNcol()
output = new_array('d', 4) # new double[4]
# First upsample by a factor of 2 to obtain initial estimate
# Embed Fourier data in a 2x larger array
mlarge = m * 2
nlarge = n * 2
large = ComplexMatrix(mlarge, nlarge)
c = fft_shift(element_product(ref, drifted.conjugate()))
for j in range(m): # (int j = 0; j < m; j++):
for i in range(n): # (int i = 0; i < n; i++):
large.setElement(int(j + m - math.floor(m / 2.0)), int(i + n - math.floor(n / 2.0)), c.getElementReference(j, i))
# Compute crosscorrelation and locate the peak
CC = cifft2(ifft_shift(large));
peak = c_find_peak(CC); # max, r, c, max_r, max_c
# Obtain shift in original pixel grid from the position of the
# crosscorrelation peak
if peak[1] > m:
peak[1] = peak[1] - mlarge;
if peak[2] > n:
peak[2] = peak[2] - nlarge;
# If upsampling > 2, then refine estimate with matrix multiply DFT
if usfac > 2:
# DFT computation
# Initial shift estimate in upsampled grid
row_shift = round(peak[1] / 2.0 * usfac) / usfac
col_shift = round(peak[2] / 2.0 * usfac) / usfac
dftshift = math.floor(math.ceil(usfac * 1.5) / 2) # Center of output array at dftshift+1
# Matrix multiply DFT around the current shift estimate
cm = element_product(drifted, ref.conjugate())
nCC = dftups(cm, math.ceil(usfac * 1.5), math.ceil(usfac * 1.5), \
dftshift - row_shift * usfac, dftshift - col_shift * usfac, usfac)
nCC = nCC.times(1.0 / (m * n * usfac * usfac)).conjugate()
# Locate maximum and map back to original pixel grid
npeak = c_find_peak(nCC) # max_r, max_i, r, c
mrg00 = dftups(element_product(ref, ref.conjugate()), 1, 1, 0, 0, usfac)
rg00 = mrg00.getElementReference(0, 0).abs() / (m * n * usfac * usfac)
mrf00 = dftups(element_product(drifted, drifted.conjugate()), 1, 1, 0, 0, usfac)
rf00 = mrf00.getElementReference(0, 0).abs() / (m * n * usfac * usfac)
npeak[1] = npeak[1] - dftshift
npeak[2] = npeak[2] - dftshift
output[0] = math.sqrt(abs(1.0 - npeak[0] * npeak[0] / (rg00 * rf00))) # error
output[1] = math.atan2(npeak[4], npeak[3]) # diffphase
output[2] = row_shift + npeak[1] / usfac # delta row
output[3] = col_shift + npeak[2] / usfac # delta col
else:
# If upsampling = 2, no additional pixel shift refinement
rg00 = sum_square_abs(ref) / (mlarge * nlarge)
rf00 = sum_square_abs(drifted) / (mlarge * nlarge)
output[0] = math.sqrt(abs(1.0 - peak[0] * peak[0] / (rg00 * rf00))) # error
output[1] = math.atan2(peak[4], peak[3]) # diffphase
output[2] = peak[1] / 2.0 # delta row
output[3] = peak[2] / 2.0 # delta col
return output
def calculate_shifts(imp_r, imp_i, roi, upscale_factor=100, reference_slide=1, java_code=False):
if roi is None or roi.bounds.minX <0 or roi.bounds.minY<0 or roi.bounds.maxX>=imp_r.width or roi.bounds.maxY>=imp_r.height:
raise Exception("Invalid roi: " + str(roi))
if java_code:
get_context().getPluginManager().loadInitializePlugin("Align_ComputeShifts2.java")
compute_shifts_filter = get_context().getClassByName("Align_ComputeShifts2").newInstance()
compute_shifts_filter.setup(upscale_factor, False, imp_r, imp_i, 1, roi)
compute_shifts_filter.run(None)
return compute_shifts_filter.shifts
IJ.showStatus("1/2 Perform FFT of each slice")
ffts = compute_fft(imp_r, imp_i, roi)
# calculate shifts
IJ.showStatus("2/2 Calculate shifts between slices")
shifts = new_array('d', len(ffts), 6) # new double[ffts.length][6];
for i in range(len(ffts)): # (int i = 0; i < ffts.length; i++):
shifts[i][0] = reference_slide
shifts[i][1] = i + 1
temp = dft_registration(ffts[reference_slide - 1], ffts[i], upscale_factor)
shifts[i][2] = temp[2]
shifts[i][3] = temp[3]
shifts[i][4] = temp[0]
shifts[i][5] = temp[1]
IJ.showProgress(i + 1, len(ffts))\
return shifts # [ref, drifted, dr, dc, error, diffphase]
def to_ip(obj):
if is_string(obj):
obj = open_image(obj)
else:
if type(obj) == Data:
obj = obj.toBufferedImage(False)
if type(obj) == BufferedImage:
obj = load_image(obj)
return obj
def calculate_shift(ref,img, roi, g_sigma=3.0, upscale_factor=100):
ref = to_ip(ref)
img = to_ip(img)
stack = create_stack([ref,img])
ipr, ipi = complex_edge_filtering(stack, g_sigma=g_sigma, show=False)
shifts = calculate_shifts(ipr, ipi, roi, upscale_factor=upscale_factor, java_code=True)
xoff, yoff = shifts[1][3], shifts[1][2]
error, diffphase = shifts[1][4], shifts[1][5]
return xoff, yoff, error, diffphase
roi=Roi(256,0,128,128)
stack = load_test_stack(show=False, size=9)
ipr, ipi = complex_edge_filtering(stack, show=False)
shifts = calculate_shifts(ipr, ipi, roi, java_code=True)
#shifts= load_shifts("{images}/TestObjAligner/shifts.mat")
#stack = load_test_stack(show=True)
r=translate(stack, shifts, show=True)