Files
pmsco-public/pmsco/database/query.py

471 lines
17 KiB
Python

"""
@package pmsco.database.query
specialized query functions for the pmsco database
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2016-21 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
import logging
import numpy as np
from sqlalchemy import func
import pmsco.database.orm as orm
import pmsco.database.util as util
import pmsco.dispatch as dispatch
logger = logging.getLogger(__name__)
def query_newest_job(session):
"""
retrieve the entry of the newest job
the newest entry is determined by the datetime field.
@param session:
@return: pmsco.database.orm.Job object
"""
q = session.query(orm.Job)
q = q.order_by(orm.Job.datetime.desc(), orm.Job.id.desc())
job = q.first()
return job
def query_model(session, job_id=None, model_id=None, model=None):
"""
retrieve model parameters and control variables from the database.
@param model_id: id of the model in the database.
@return: (dict, dict) value dictionary and delta dictionary.
dictionary keys are parameter values.
the special value '_model' is included.
"""
query = session.query(orm.ParamValue)
if job_id is not None:
query = query.filter(orm.Job.id == job_id)
if model_id is not None:
query = query.filter(orm.Model.id == model_id)
if model is not None:
query = query.filter(orm.Model.model == model)
result = query.all()
param_value = {}
param_delta = {}
model_obj = None
for pv in result:
if model_obj is None:
model_obj = pv.model
param_value[pv.param.key] = pv.value
param_delta[pv.param.key] = pv.delta
param_value['_model_id'] = model_obj.id
param_value['_model'] = model_obj.model
param_value['_gen'] = model_obj.gen
param_value['_particle'] = model_obj.particle
param_delta['_model_id'] = model_obj.id
param_delta['_model'] = model_obj.model
param_delta['_gen'] = model_obj.gen
param_delta['_particle'] = model_obj.particle
return param_value, param_delta
def query_results(session, job_id):
query = session.query(orm.Result)
query = query.join(orm.Model)
query = query.filter(orm.Job == job_id)
return None
def query_tasks(session, job_id):
"""
query the task index used in a calculation job.
this query neglects the model index
and returns the unique tuples (-1, scan, domain, emit, region).
@param job_id: (int) id of the associated Jobs entry.
@return list of pmsco.dispatch.CalcID tuples of task indices.
the model attribute is -1 in all elements.
"""
query = session.query(orm.Result.scan, orm.Result.domain, orm.Result.emit, orm.Result.region)
query = query.join(orm.Model)
query = query.filter(orm.Model.job_id == job_id)
query = query.distinct()
query = query.order_by(orm.Result.scan, orm.Result.domain, orm.Result.emit, orm.Result.region)
results = query.all()
output = []
for row in results:
d = row._asdict()
d['model'] = -1
output.append(dispatch.CalcID(**d))
return output
def query_best_task_models(session, job_id, level, count):
"""
query N best models per task.
this query is used by the file tracker to determine the models to keep.
@param job_id: (int) id of the associated Jobs entry.
@param level: level up to which to query.
the level can be specified by level name (str) or numeric index (0..4).
if it is scan (equivalent to 1), the method queries the model and scan levels.
@param count: number of models to query per task.
@return set of matching model numbers (Models.model field).
"""
try:
level = int(level)
except ValueError:
level = dispatch.CALC_LEVELS.index(level)
assert 0 <= level < len(dispatch.CALC_LEVELS)
def _query_models(t):
query = session.query(orm.Model.model).join(orm.Job).join(orm.Result)
query = query.filter(orm.Job.id == job_id)
query = query.filter(orm.Result.scan == t.scan)
query = query.filter(orm.Result.domain == t.domain)
query = query.filter(orm.Result.emit == t.emit)
query = query.filter(orm.Result.region == t.region)
query = query.order_by(orm.Result.rfac)
results = query[0:count]
return set((row.model for row in results))
tasks = query_tasks(session, job_id)
models = set()
for task in tasks:
if task.numeric_level <= level:
q_models = _query_models(task)
models |= q_models
return models
def query_model_params_array(session, jobs=None, models=None, order=None, limit=None):
"""
query parameter values and return them in a numpy array
the models table can be filtered by job and/or model.
else, the whole database is returned (which might be huge!).
@param session:
@param jobs: filter by job.
the argument can be a singleton or sequence of orm.Job objects or numeric id.
@param models: filter by model.
the argument can be a singleton or sequence of orm.Model objects or their id.
@param order: ordering of results. this can be a sequence of orm.Model attributes.
the default order is by job_id and model.
@param limit: maximum number of models to return
@return: dict['values']: numpy values array, dict['deltas']: numpy deltas array
"""
count_query = session.query(orm.Model)
pn_query = session.query(orm.Param.key)
pv_query = session.query(orm.ParamValue)
if jobs:
try:
jobs = [int(jobs)]
except TypeError:
pass
job_ids = [j if isinstance(j, int) else j.id for j in jobs]
count_query = count_query.filter(orm.Model.job_id.in_(job_ids))
pn_query = pn_query.filter(orm.Model.job_id.in_(job_ids))
pv_query = pv_query.filter(orm.Model.job_id.in_(job_ids))
if models:
try:
models = [int(models)]
except TypeError:
pass
model_ids = [m if isinstance(m, int) else m.id for m in models]
count_query = count_query.filter(orm.ParamValue.model_id.in_(model_ids))
pn_query = pn_query.filter(orm.ParamValue.model_id.in_(model_ids))
pv_query = pv_query.filter(orm.ParamValue.model_id.in_(model_ids))
if order is not None:
pv_query = pv_query.order_by(*order)
else:
pv_query = pv_query.order_by(orm.Model.job_id, orm.Model.model)
if limit:
pv_query = pv_query[0:limit]
n_models = count_query.count()
param_names = pn_query.all()
param_values = pv_query.all()
special_names = orm.Model().as_dict().keys()
dt_names = special_names + param_names
dt = np.dtype([(n, util.field_to_numpy_type(n)) for n in sorted(dt_names, key=str.lower)])
values = np.zeros((n_models,), dtype=dt)
deltas = np.zeros((n_models,), dtype=dt)
for i, pv in enumerate(param_values):
for k, v in pv.model.as_dict():
values[i][k] = deltas[i][k] = v
values[i][pv.param_key] = pv.value
deltas[i][pv.param_key] = pv.delta
return {'values': values, 'deltas': deltas}
calc_id_props = {'model': orm.Model.model,
'scan': orm.Result.scan,
'domain': orm.Result.domain,
'emit': orm.Result.emit,
'region': orm.Result.region}
def query_model_results_array(session, jobs=None, models=None, order=None, limit=None,
query_hook=None, hook_data=None, include_params=False, **index):
"""
query a results table with flexible filtering options
the function returns a structured numpy array of the results and, optionally, parameter values.
the database is fully flattened, row of the array represents one result.
the jobs and models arguments filter for specific jobs and/or models.
custom filters can be added in a query hook function.
the hook function receives an sqlalchemy Query object of the Result table,
joined with the Model and Job tables.
other joins must be added explicitly.
the hook function can add more filters and return the modified query.
the hook function is called after the filters from the other function arguments
(job, models, index) have been applied,
and before the ordering and limit are applied.
@param session:
@param jobs: filter by job.
the argument can be a singleton or sequence of orm.Job objects or numeric id.
@param models: filter by model.
the argument can be a singleton or sequence of orm.Model objects or their id.
@param order: ordering of results. this can be a sequence of orm.Result attributes.
the default order is by `orm.Result.rfac`.
to override the default ascending order, append a modifier, e.g., `orm.Result.rfac.desc()`.
@param limit: maximum number of models to return
@param query_hook: hook function that modifies an sqlalchemy.orm.Query object.
the function receives the query as first argument, and any data from hook_data as keyword arguments.
it must return the modified query object.
@param hook_data: (dict) keyword arguments to be passed to the query_hook function.
@param include_params: include parameter values of each model in the result.
by default, only data from the Model and Result records is included.
@param index: filters the results list by scan, domain, emit, and/or region index.
for example, to get only the final results per model, specify `scan=-1`.
@return: numpy values array
"""
results_query = session.query(orm.Result).join(orm.Model).join(orm.Job)
if jobs:
results_query = filter_objects(results_query, orm.Job, jobs)
if models:
results_query = filter_objects(results_query, orm.Model, models)
for k, v in index.items():
results_query = results_query.filter(calc_id_props[k] == v)
if query_hook is not None:
results_query = query_hook(results_query, **hook_data)
if order is not None:
results_query = results_query.order_by(*order)
if limit:
results = results_query[0:limit]
else:
results = results_query.all()
n_results = len(results)
logger.debug(f"query_model_results_array: {results_query.statement} ({n_results} rows)")
dt_names = [n for n in util.DB_SPECIAL_PARAMS.values()]
if include_params:
model_ids = {r.model_id for r in results}
pn_query = session.query(orm.Param.key).join(orm.ParamValue)
pn_query = pn_query.filter(orm.ParamValue.model_id.in_(model_ids))
pn_query = pn_query.distinct()
pn_query = pn_query.order_by(orm.Param.key)
p_names = [r.key for r in pn_query.all()]
dt_names.extend(p_names)
logger.debug(f"query_model_results_array: {pn_query.statement} ({len(p_names)} rows)")
dt = []
v0 = []
for n in dt_names:
ft = util.field_to_numpy_type(n)
dt.append((n, ft))
v0.append(np.nan if ft[0] == 'f' else 0)
dt = np.dtype(dt)
v0 = np.array([tuple(v0)], dtype=dt)
values_array = np.full((n_results,), v0, dtype=dt)
deltas_array = np.full((n_results,), v0, dtype=dt)
for i, r in enumerate(results):
d = {**r.as_dict(), **r.model.as_dict()}
for k, v in d.items():
try:
values_array[i][k] = v
except TypeError:
values_array[i][k] = 0
deltas_array[i] = values_array[i]
if include_params:
for k, v in r.model.values.items():
values_array[i][k] = v
for k, v in r.model.deltas.items():
deltas_array[i][k] = v
return values_array, deltas_array
def query_best_models_per_job(session, projects=None, jobs=None, task_level='model', order=None, limit=None):
"""
return the best model (by rfac) of each selected job
the query gathers the R-factors of the selected jobs at the selected task levels
and, for each job, returns the (database) model id where the lowest R-factor is reported
among the gathered results.
this can be useful if you want to compile a report of the best model per job.
@param session:
@param projects: filter by project.
the argument can be a singleton or sequence of orm.Project objects or numeric id.
@param jobs: filter by job.
the argument can be a singleton or sequence of orm.Job objects or numeric id.
@param task_level: element of or index into @ref pmsco.dispatch.CALC_LEVELS.
deepest task_level to include in the query.
results on deeper levels are not considered.
e.g. if you pass 'scan', R-factors of individual scans are included in the query.
note that including deeper levels will not increase the number of results returned.
the lowest level that can be specified is `emit`.
@param order: ordering of results. this can be a sequence of orm.Result attributes.
the default order is by `orm.Result.rfac`.
@param limit: maximum number of models to return
@return sequence of (orm.Model, orm.Result) tuples.
the number of results corresponds to the number of jobs in the filter scope.
to find out details of the models, execute another query that filters on these model ids.
the method produces an SQL query similar to:
@code{.sql}
select Models.id from Models
join Results on Models.id = Results.model_id
join Jobs on Models.job_id = Jobs.id
where scan=-1
and project_id=1
and job_id in (1,2,3)
group by Models.job_id
having min(rfac)
order by rfac
@endcode
"""
try:
level = dispatch.CALC_LEVELS.index(task_level) + 1
except ValueError:
level = task_level + 1
try:
level_name = dispatch.CALC_LEVELS[level]
except IndexError:
level_name = dispatch.CALC_LEVELS[4]
query = session.query(orm.Model, orm.Result).join(orm.Result)
if projects:
query = filter_objects(query, orm.Project, projects)
if jobs:
query = filter_objects(query, orm.Job, jobs)
query = query.filter(getattr(orm.Result, level_name) == -1)
query = query.group_by(orm.Model.job_id)
query = query.having(func.min(orm.Result.rfac))
if order is not None:
query = query.order_by(*order)
else:
query = query.order_by(orm.Result.rfac)
if limit:
query = query[0:limit]
else:
query = query.all()
return query
def filter_objects(query, entity, objects):
"""
filter a query for the given objects
apply a simple object filter to a database query.
the criteria can be a single object or a sequence of objects.
the objects can be specified either by their object representation or numeric id.
the query is filtered by id.
thus, in the first case, the objects must have a valid id.
@param query: sqlalchemy.orm.Query object that queries a table that is linked to the entity table.
the function joins the entity table.
a table with a direct foreign key relationship to the entity table must already be in the query.
@param entity: orm entity class, e.g. pmsco.database.orm.Project.
@param objects: singleton or sequence of orm objects or their numeric ids.
@return: modified query
"""
# avoid duplicate joins
if str(query.statement).find(entity.__tablename__) < 0:
query = query.join(entity)
try:
objects = [p if isinstance(p, int) else p.id for p in objects]
query = query.filter(entity.id.in_(objects))
except TypeError:
object = objects if isinstance(objects, int) else objects.id
query = query.filter(entity.id == object)
return query
def filter_task_levels(query, level='model', include_parents=False):
"""
refine a query by filtering by task level.
@param query: sqlalchemy.orm.Query object that queries the Result table
(possibly joined with others).
@param level: element of or index into @ref pmsco.dispatch.CALC_LEVELS.
deepest task_level to include in the query.
results on deeper levels are not considered.
e.g. if you pass 'scan', R-factors of individual scans are included in the query.
the lowest level that can be specified is `emit`.
@param include_parents: by default, the query will return only results from the given level.
if True, combined results (parents) will be returned as well.
"""
try:
level = dispatch.CALC_LEVELS.index(level)
except ValueError:
level = int(level)
child_level = level + 1
try:
child_level_name = dispatch.CALC_LEVELS[child_level]
level_name = dispatch.CALC_LEVELS[level]
except IndexError:
child_level_name = dispatch.CALC_LEVELS[4]
level_name = dispatch.CALC_LEVELS[3]
query = query.filter(getattr(orm.Result, child_level_name) == -1)
if not include_parents:
query = query.filter(getattr(orm.Result, level_name) >= 0)
return query