pmsco-public/tests/test_database.py
matthias muntwiler acea809e4e update public distribution
based on internal repository c9a2ac8 2019-01-03 16:04:57 +0100
tagged rev-master-2.0.0
2019-01-31 15:45:02 +01:00

457 lines
20 KiB
Python

"""
@package tests.test_database
unit tests for pmsco.database
the purpose of these tests is to help debugging the code.
to run the tests, change to the directory which contains the tests directory, and execute =nosetests=.
@pre nose must be installed (python-nose package on Debian).
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2016 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import datetime
import os.path
import tempfile
import shutil
import numpy as np
import pmsco.database as db
import pmsco.dispatch as dispatch
import pmsco.optimizers.population as population
class TestDatabase(unittest.TestCase):
def setUp(self):
self.test_dir = tempfile.mkdtemp()
self.lock_filename = os.path.join(self.test_dir, "test_database.lock")
self.db = db.ResultsDatabase()
self.db.connect(":memory:", lock_filename=self.lock_filename)
def tearDown(self):
self.db.disconnect()
shutil.rmtree(self.test_dir)
@classmethod
def setup_class(cls):
# before any methods in this class
pass
@classmethod
def teardown_class(cls):
# teardown_class() after any methods in this class
pass
def test_regular_params(self):
d1 = {'parA': 1.234, 'par_B': 5.678, '_model': 91, '_rfac': 0.534}
d2 = db.regular_params(d1)
d3 = {'parA': d1['parA'], 'par_B': d1['par_B']}
self.assertEqual(d2, d3)
self.assertIsNot(d2, d1)
def test_special_params(self):
d1 = {'parA': 1.234, 'par_B': 5.678, '_model': 91, '_rfac': 0.534, '_db_model': 99}
d2 = db.special_params(d1)
d3 = {'model': d1['_model'], 'rfac': d1['_rfac']}
self.assertEqual(d2, d3)
self.assertIsNot(d2, d1)
dt = [('parA', 'f4'), ('par_B', 'f4'), ('_model', 'i4'), ('_rfac', 'f4'), ('_db_model', 'f4')]
arr = np.zeros(1, dtype=dt)
for k, v in d1.items():
arr[0][k] = v
d4 = db.special_params(arr[0])
self.assertEqual(d4.keys(), d3.keys())
for k in d4:
self.assertAlmostEqual(d4[k], d3[k])
cid1 = dispatch.CalcID(1, 2, 3, 4, -1)
cid2 = db.special_params(cid1)
cid3 = {'model': 1, 'scan': 2, 'sym': 3, 'emit': 4, 'region': -1}
self.assertEqual(cid2, cid3)
l1 = d1.keys()
l2 = db.special_params(l1)
l3 = d3.keys()
self.assertEqual(list(l2), list(l3))
t1 = tuple(l1)
t2 = db.special_params(t1)
t3 = tuple(l3)
self.assertEqual(t2, t3)
def setup_sample_database(self):
self.db.register_project("unittest", "testcode")
self.db.register_job(self.db.project_id, "testjob", "testmode", "testhost", None, datetime.datetime.now())
self.ex_model = {'parA': 1.234, 'parB': 5.678, '_model': 91, '_rfac': 0.534}
self.db.register_params(self.ex_model)
self.db.insert_model(self.ex_model)
self.db.create_models_view()
def test_register_project(self):
id1 = self.db.register_project("unittest1", "Atest")
self.assertIsInstance(id1, int)
id2 = self.db.register_project("unittest2", "Btest")
self.assertIsInstance(id2, int)
id3 = self.db.register_project("unittest1", "Ctest")
self.assertIsInstance(id3, int)
self.assertNotEqual(id1, id2)
self.assertEqual(id1, id3)
c = self.db._conn.cursor()
c.execute("select count(*) from Projects")
count = c.fetchone()
self.assertEqual(count[0], 2)
c.execute("select name, code from Projects where id=:id", {'id': id1})
row = c.fetchone()
self.assertIsNotNone(row)
self.assertEqual(len(row), 2)
self.assertEqual(row[0], "unittest1")
self.assertEqual(row[1], "Atest")
self.assertEqual(row['name'], "unittest1")
self.assertEqual(row['code'], "Atest")
def test_register_params(self):
self.setup_sample_database()
model5 = {'parA': 2.341, 'parC': 6.785, '_model': 92, '_rfac': 0.453}
self.db.register_params(model5)
expected = ['parA', 'parB', 'parC']
c = self.db._conn.cursor()
c.execute("select * from Params order by key")
results = c.fetchall()
self.assertEqual(len(results), 3)
result_params = [row['key'] for row in results]
self.assertEqual(result_params, expected)
def test_query_project_params(self):
self.setup_sample_database()
project1 = self.db.project_id
self.db.register_project("unittest2", "testcode2")
self.db.register_job(self.db.project_id, "testjob2", "test", "localhost", None, datetime.datetime.now())
model5 = {'parA': 2.341, 'parC': 6.785, '_model': 92, '_rfac': 0.453}
self.db.register_params(model5)
self.db.insert_model(model5)
results = self.db.query_project_params(project_id=project1)
expected = ['parA', 'parB']
self.assertEqual(expected, sorted(results.keys()))
def test_insert_model(self):
self.setup_sample_database()
c = self.db._conn.cursor()
c.execute("select count(*) from Models")
count = c.fetchone()
self.assertEqual(count[0], 1)
c.execute("select * from Models")
row = c.fetchone()
model_id = row['id']
self.assertIsInstance(model_id, int)
self.assertEqual(row['job_id'], self.db.job_id)
self.assertEqual(row['model'], self.ex_model['_model'])
self.assertIsNone(row['gen'])
self.assertIsNone(row['particle'])
sql = "select key, value from ParamValues " + \
"join Params on ParamValues.param_id = Params.id " + \
"where model_id = :model_id"
c.execute(sql, {'model_id': model_id})
result = c.fetchall() # list of Row objects
self.assertEqual(len(result), 2)
for row in result:
self.assertAlmostEqual(row['value'], self.ex_model[row['key']])
def test_query_model(self):
self.setup_sample_database()
c = self.db._conn.cursor()
c.execute("select * from Models")
row = c.fetchone()
model_id = row['id']
model = self.db.query_model(model_id)
del self.ex_model['_model']
del self.ex_model['_rfac']
self.assertEqual(model, self.ex_model)
def test_query_model_array(self):
self.setup_sample_database()
index = {'_scan': -1, '_sym': -1, '_emit': -1, '_region': -1}
model2 = {'parA': 4.123, 'parB': 8.567, '_model': 92, '_rfac': 0.654}
model3 = {'parA': 3.412, 'parB': 7.856, '_model': 93, '_rfac': 0.345}
model4 = {'parA': 4.123, 'parB': 8.567, '_model': 94, '_rfac': 0.354}
model5 = {'parA': 2.341, 'parC': 6.785, '_model': 95, '_rfac': 0.453}
model6 = {'parA': 4.123, 'parB': 8.567, '_model': 96, '_rfac': 0.354}
self.db.register_params(model5)
self.db.create_models_view()
model2.update(index)
model3.update(index)
model4.update(index)
model5.update(index)
model6.update(index)
self.db.insert_result(model2, model2)
self.db.insert_result(model3, model3)
self.db.insert_result(model4, model4)
self.db.insert_result(model5, model5)
self.db.insert_result(model6, model6)
# only model3, model4 and model5 fulfill all conditions and limits
fil = ['mode = "testmode"', 'rfac <= 0.6']
lim = 3
result = self.db.query_model_array(filter=fil, limit=lim)
template = ['parA', 'parB', 'parC', '_model', '_rfac', '_gen', '_particle']
dt = population.Population.get_pop_dtype(template)
expected = np.zeros((lim,), dtype=dt)
expected['parA'] = np.array([3.412, 4.123, 2.341])
expected['parB'] = np.array([7.856, 8.567, None])
expected['parC'] = np.array([None, None, 6.785])
expected['_model'] = np.array([93, 94, 95])
expected['_rfac'] = np.array([0.345, 0.354, 0.453])
expected['_gen'] = np.array([0, 0, 0])
expected['_particle'] = np.array([0, 0, 0])
self.assertEqual(result.shape, expected.shape)
np.testing.assert_array_almost_equal(result['parA'], expected['parA'])
np.testing.assert_array_almost_equal(result['parB'], expected['parB'])
np.testing.assert_array_almost_equal(result['parC'], expected['parC'])
np.testing.assert_array_almost_equal(result['_model'], expected['_model'])
np.testing.assert_array_almost_equal(result['_gen'], expected['_gen'])
np.testing.assert_array_almost_equal(result['_particle'], expected['_particle'])
def test_query_best_results(self):
self.setup_sample_database()
model2 = {'parA': 4.123, 'parB': 8.567, '_model': 92, '_rfac': 0.654, '_gen': 1, '_particle': 2}
model3 = {'parA': 3.412, 'parB': 7.856, '_model': 93, '_rfac': 0.345, '_gen': 1, '_particle': 3}
model4 = {'parA': 4.123, 'parB': 8.567, '_model': 94, '_rfac': 0.354, '_gen': 1, '_particle': 4}
model5 = {'parA': 2.341, 'parC': 6.785, '_model': 95, '_rfac': 0.453, '_gen': 1, '_particle': 5}
model6 = {'parA': 4.123, 'parB': 8.567, '_model': 96, '_rfac': 0.354, '_gen': 1, '_particle': 6}
model7 = {'parA': 5.123, 'parB': 6.567, '_model': 97, '_rfac': 0.154, '_gen': 1, '_particle': 7}
self.db.register_params(model5)
self.db.create_models_view()
model2.update({'_scan': -1, '_sym': 11, '_emit': 21, '_region': 31})
model3.update({'_scan': 1, '_sym': 12, '_emit': 22, '_region': 32})
model4.update({'_scan': 2, '_sym': 11, '_emit': 23, '_region': 33})
model5.update({'_scan': 3, '_sym': 11, '_emit': 24, '_region': 34})
model6.update({'_scan': 4, '_sym': 11, '_emit': 25, '_region': 35})
model7.update({'_scan': 5, '_sym': -1, '_emit': -1, '_region': -1})
self.db.insert_result(model2, model2)
self.db.insert_result(model3, model3)
self.db.insert_result(model4, model4)
self.db.insert_result(model5, model5)
self.db.insert_result(model6, model6)
self.db.insert_result(model7, model7)
# only model3, model4 and model5 fulfill all conditions and limits
fil = ['mode = "testmode"', 'sym = 11']
lim = 3
result = self.db.query_best_results(filter=fil, limit=lim)
ifields = ['_db_job', '_db_model', '_db_result',
'_model', '_scan', '_sym', '_emit', '_region',
'_gen', '_particle']
ffields = ['_rfac']
dt = [(f, 'i8') for f in ifields]
dt.extend([(f, 'f8') for f in ffields])
expected = np.zeros((lim,), dtype=dt)
expected['_rfac'] = np.array([0.354, 0.354, 0.453])
expected['_model'] = np.array([94, 96, 95])
expected['_scan'] = np.array([2, 4, 3])
expected['_sym'] = np.array([11, 11, 11])
expected['_emit'] = np.array([23, 25, 24])
expected['_region'] = np.array([33, 35, 34])
expected['_gen'] = np.array([1, 1, 1])
expected['_particle'] = np.array([4, 6, 5])
self.assertEqual(result.shape, expected.shape)
np.testing.assert_array_almost_equal(result['_rfac'], expected['_rfac'])
np.testing.assert_array_equal(result['_model'], expected['_model'])
np.testing.assert_array_equal(result['_scan'], expected['_scan'])
np.testing.assert_array_equal(result['_sym'], expected['_sym'])
np.testing.assert_array_equal(result['_emit'], expected['_emit'])
np.testing.assert_array_equal(result['_region'], expected['_region'])
np.testing.assert_array_equal(result['_gen'], expected['_gen'])
np.testing.assert_array_equal(result['_particle'], expected['_particle'])
def test_insert_result(self):
self.setup_sample_database()
index = dispatch.CalcID(15, 16, 17, 18, -1)
result = {'parA': 4.123, 'parB': 8.567, '_rfac': 0.654, '_particle': 21}
result_id = self.db.insert_result(index, result)
c = self.db._conn.cursor()
c.execute("select count(*) from Results")
count = c.fetchone()
self.assertEqual(count[0], 1)
c.execute("select * from Results")
row = c.fetchone()
self.assertIsInstance(row['id'], int)
self.assertEqual(row['id'], result_id)
model_id = row['model_id']
self.assertIsInstance(model_id, int)
self.assertEqual(row['scan'], index.scan)
self.assertEqual(row['sym'], index.sym)
self.assertEqual(row['emit'], index.emit)
self.assertEqual(row['region'], index.region)
self.assertEqual(row['rfac'], result['_rfac'])
c.execute("select * from Models where id = :model_id", {'model_id': model_id})
row = c.fetchone()
model_id = row['id']
self.assertIsInstance(model_id, int)
self.assertEqual(row['job_id'], self.db.job_id)
self.assertEqual(row['model'], index.model)
self.assertIsNone(row['gen'])
self.assertEqual(row['particle'], result['_particle'])
sql = "select key, value from ParamValues " + \
"join Params on ParamValues.param_id = Params.id " + \
"where model_id = :model_id"
c.execute(sql, {'model_id': model_id})
rows = c.fetchall() # list of Row objects
self.assertEqual(len(rows), 2)
for row in rows:
self.assertAlmostEqual(row['value'], result[row['key']])
def test_update_result(self):
self.setup_sample_database()
index = dispatch.CalcID(15, 16, 17, 18, -1)
result1 = {'parA': 4.123, 'parB': 8.567, '_rfac': 0.654, '_particle': 21}
result_id1 = self.db.insert_result(index, result1)
result2 = {'parA': 5.456, '_rfac': 0.254, '_particle': 11}
result_id2 = self.db.insert_result(index, result2)
result3 = result1.copy()
result3.update(result2)
self.assertEqual(result_id1, result_id2)
c = self.db._conn.cursor()
c.execute("select count(*) from Results")
count = c.fetchone()
self.assertEqual(count[0], 1)
c.execute("select * from Results")
row = c.fetchone()
self.assertIsInstance(row['id'], int)
self.assertEqual(row['id'], result_id1)
model_id = row['model_id']
self.assertIsInstance(model_id, int)
self.assertEqual(row['scan'], index.scan)
self.assertEqual(row['sym'], index.sym)
self.assertEqual(row['emit'], index.emit)
self.assertEqual(row['region'], index.region)
self.assertEqual(row['rfac'], result2['_rfac'])
c.execute("select * from Models where id = :model_id", {'model_id': model_id})
row = c.fetchone()
model_id = row['id']
self.assertIsInstance(model_id, int)
self.assertEqual(row['job_id'], self.db.job_id)
self.assertEqual(row['model'], index.model)
self.assertIsNone(row['gen'])
self.assertEqual(row['particle'], result2['_particle'])
sql = "select key, value from ParamValues " + \
"join Params on ParamValues.param_id = Params.id " + \
"where model_id = :model_id"
c.execute(sql, {'model_id': model_id})
rows = c.fetchall() # list of Row objects
self.assertEqual(len(rows), 2)
for row in rows:
self.assertAlmostEqual(row['value'], result3[row['key']])
def test_update_result_dict(self):
"""
test update result with index as dictionary
@return:
"""
self.setup_sample_database()
index = {'_model': 15, '_scan': 16, '_sym': 17, '_emit': 18, '_region': -1}
result1 = {'parA': 4.123, 'parB': 8.567, '_rfac': 0.654, '_particle': 21}
result_id1 = self.db.insert_result(index, result1)
result2 = {'parA': 5.456, '_rfac': 0.254, '_particle': 11}
result_id2 = self.db.insert_result(index, result2)
result3 = result1.copy()
result3.update(result2)
self.assertEqual(result_id1, result_id2)
c = self.db._conn.cursor()
c.execute("select count(*) from Results")
count = c.fetchone()
self.assertEqual(count[0], 1)
c.execute("select * from Results")
row = c.fetchone()
self.assertIsInstance(row['id'], int)
self.assertEqual(row['id'], result_id1)
model_id = row['model_id']
self.assertIsInstance(model_id, int)
self.assertEqual(row['scan'], index['_scan'])
self.assertEqual(row['sym'], index['_sym'])
self.assertEqual(row['emit'], index['_emit'])
self.assertEqual(row['region'], index['_region'])
self.assertEqual(row['rfac'], result2['_rfac'])
c.execute("select * from Models where id = :model_id", {'model_id': model_id})
row = c.fetchone()
model_id = row['id']
self.assertIsInstance(model_id, int)
self.assertEqual(row['job_id'], self.db.job_id)
self.assertEqual(row['model'], index['_model'])
self.assertIsNone(row['gen'])
self.assertEqual(row['particle'], result2['_particle'])
sql = "select key, value from ParamValues " + \
"join Params on ParamValues.param_id = Params.id " + \
"where model_id = :model_id"
c.execute(sql, {'model_id': model_id})
rows = c.fetchall() # list of Row objects
self.assertEqual(len(rows), 2)
for row in rows:
self.assertAlmostEqual(row['value'], result3[row['key']])
def test_query_best_task_models(self):
self.setup_sample_database()
model0xxx = {'_model': 0, '_scan': -1, '_sym': -1, '_emit': -1, '_region': -1, 'parA': 4., 'parB': 8.567, '_rfac': 0.01}
model00xx = {'_model': 1, '_scan': 0, '_sym': -1, '_emit': -1, '_region': -1, 'parA': 4., 'parB': 8.567, '_rfac': 0.02}
model000x = {'_model': 2, '_scan': 0, '_sym': 0, '_emit': -1, '_region': -1, 'parA': 4., 'parB': 8.567, '_rfac': 0.03}
model01xx = {'_model': 3, '_scan': 1, '_sym': -1, '_emit': -1, '_region': -1, 'parA': 4., 'parB': 8.567, '_rfac': 0.04}
model010x = {'_model': 4, '_scan': 1, '_sym': 0, '_emit': -1, '_region': -1, 'parA': 4., 'parB': 8.567, '_rfac': 0.05}
model1xxx = {'_model': 5, '_scan': -1, '_sym': -1, '_emit': -1, '_region': -1, 'parA': 4.123, 'parB': 8.567, '_rfac': 0.09}
model10xx = {'_model': 6, '_scan': 0, '_sym': -1, '_emit': -1, '_region': -1, 'parA': 4.123, 'parB': 8.567, '_rfac': 0.08}
model100x = {'_model': 7, '_scan': 0, '_sym': 0, '_emit': -1, '_region': -1, 'parA': 4.123, 'parB': 8.567, '_rfac': 0.07}
model11xx = {'_model': 8, '_scan': 1, '_sym': -1, '_emit': -1, '_region': -1, 'parA': 4.123, 'parB': 8.567, '_rfac': 0.06}
model110x = {'_model': 9, '_scan': 1, '_sym': 0, '_emit': -1, '_region': -1, 'parA': 4.123, 'parB': 8.567, '_rfac': 0.05}
model2xxx = {'_model': 10, '_scan': -1, '_sym': -1, '_emit': -1, '_region': -1, 'parA': 4.123, 'parB': 8.567, '_rfac': 0.01}
self.db.insert_result(model0xxx, model0xxx)
self.db.insert_result(model00xx, model00xx)
self.db.insert_result(model000x, model000x)
self.db.insert_result(model01xx, model01xx)
self.db.insert_result(model010x, model010x)
self.db.insert_result(model1xxx, model1xxx)
self.db.insert_result(model10xx, model10xx)
self.db.insert_result(model100x, model100x)
self.db.insert_result(model11xx, model11xx)
self.db.insert_result(model110x, model110x)
self.db.insert_result(model2xxx, model2xxx)
result = self.db.query_best_task_models(level=1, count=2)
expected = {0, 1, 3, 6, 8, 10}
self.assertEqual(result, expected)
if __name__ == '__main__':
unittest.main()