matthias muntwiler acea809e4e update public distribution
based on internal repository c9a2ac8 2019-01-03 16:04:57 +0100
tagged rev-master-2.0.0
2019-01-31 15:45:02 +01:00

263 lines
9.4 KiB
Python

#!/usr/bin/env python2
"""
@package pmsco.projects.fcc
scattering calculation project for the (111) surface of an arbitrary face-centered cubic crystal
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2015 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import os.path
import periodictable as pt
import argparse
import logging
import pmsco.cluster as mc
import pmsco.project as mp
from pmsco.helpers import BraceMessage as BMsg
logger = logging.getLogger(__name__)
class FCC111Project(mp.Project):
def __init__(self):
"""
initialize a project instance
"""
super(FCC111Project, self).__init__()
self.scan_dict = {}
self.element = "Ni"
def create_cluster(self, model, index):
"""
calculate a specific set of atom positions given the optimizable parameters.
@param model (dict) optimizable parameters
@arg model['dlat'] bulk lattice constant in Angstrom
@arg model['dl1l2'] distance between top and second layer (may deviate from bulk)
@arg model['rmax'] cluster radius
@arg model['phi'] azimuthal rotation angle in degrees
"""
clu = mc.Cluster()
clu.comment = "{0} {1}".format(self.__class__, index)
clu.set_rmax(model['rmax'])
# fcc lattice constant
a_lat = model['dlat']
# surface lattice constant of the (111) surface
a_surf = a_lat / math.sqrt(2.0)
# lattice vectors
# a1 and a2 span the (111) surface
a1 = np.array((a_surf, 0.0, 0.0))
a2 = np.array((a_surf / 2.0, a_surf * math.sqrt(3.0) / 2.0, 0.0))
a3 = np.array((0.0, a_surf * math.sqrt(3.0) / 3.0, a_lat * math.sqrt(3.0) / 3))
a_l1 = np.array((0.0, 0.0, 0.0))
a_l2 = np.array(((a1[0] + a2[0]) * 2.0 / 3.0,
(a1[1] + a2[1]) * 2.0 / 3.0,
-(model['dl1l2'])))
a_l3 = np.array(((a1[0] + a2[0]) / 3.0,
(a1[1] + a2[1]) / 3.0,
-(a3[2] + model['dl1l2'])))
a_bulk = np.array((0.0, 0.0,
-(2.0 * a3[2] + model['dl1l2'])))
clu.add_layer(self.element, a_l1, a1, a2)
clu.add_layer(self.element, a_l2, a1, a2)
clu.add_layer(self.element, a_l3, a1, a2)
clu.add_bulk(self.element, a_bulk, a1, a2, a3, a_bulk[2] + 0.01)
clu.set_emitter(a_l1)
clu.rotate_z(model['phi'])
return clu
def create_params(self, model, index):
"""
set a specific set of parameters given the optimizable parameters.
par = optimizable parameters
par['V0'] = inner potential
par['Zsurf'] = position of surface
"""
params = mp.Params()
params.title = "fcc(111)"
params.comment = "{0} {1}".format(self.__class__, index)
params.cluster_file = ""
params.output_file = ""
params.initial_state = self.scans[index.scan].initial_state
params.spherical_order = 2
params.polarization = "H"
params.scattering_level = 5
params.fcut = 15.0
params.cut = 15.0
params.angular_resolution = 0.0
params.lattice_constant = 1.0
params.z_surface = model['Zsurf']
params.atom_types = 3
params.atomic_number = [pt.elements.symbol(self.element).number]
params.phase_file = []
params.msq_displacement = [0.00]
params.planewave_attenuation = 1.0
params.inner_potential = model['V0']
params.work_function = 4.5
params.symmetry_range = 360.0
params.polar_incidence_angle = 60.0
params.azimuthal_incidence_angle = 0.0
params.vibration_model = "P"
params.substrate_atomic_mass = pt.elements.symbol(self.element).mass
params.experiment_temperature = 300.0
params.debye_temperature = 400.0
params.debye_wavevector = 1.7558
params.rme_minus_value = 0.0
params.rme_minus_shift = 0.0
params.rme_plus_value = 1.0
params.rme_plus_shift = 0.0
# used by EDAC only
params.emitters = []
params.lmax = 15
params.dmax = 5.0
params.orders = [25]
return params
def create_domain(self):
"""
define the domain of the optimization parameters.
"""
dom = mp.Domain()
if self.mode == "single":
dom.add_param('rmax', 5.00, 5.00, 15.00, 2.50)
dom.add_param('phi', 0.00, 0.00, 0.00, 0.00)
dom.add_param('dlat', 3.52, 2.00, 5.00, 0.10)
dom.add_param('dl1l2', 2.03, 1.80, 2.20, 0.05)
dom.add_param('V0', 10.00, 0.00, 20.00, 1.00)
dom.add_param('Zsurf', 1.00, 0.00, 2.00, 0.50)
elif self.mode == "swarm":
dom.add_param('rmax', 7.50, 5.00, 15.00, 2.50)
dom.add_param('phi', 0.00, 0.00, 0.00, 0.00)
dom.add_param('dlat', 3.52, 2.00, 5.00, 0.10)
dom.add_param('dl1l2', 2.03, 1.80, 2.20, 0.05)
dom.add_param('V0', 10.00, 0.00, 20.00, 1.00)
dom.add_param('Zsurf', 1.00, 0.00, 2.00, 0.50)
elif self.mode == "grid":
dom.add_param('rmax', 7.50, 5.00, 15.00, 2.50)
dom.add_param('phi', 0.00, 0.00, 0.00, 0.00)
dom.add_param('dlat', 3.52, 2.00, 5.00, 0.10)
dom.add_param('dl1l2', 2.03, 1.80, 2.20, 0.05)
dom.add_param('V0', 10.00, 0.00, 20.00, 1.00)
dom.add_param('Zsurf', 1.00, 0.00, 2.00, 0.50)
else:
dom.add_param('rmax', 7.50, 5.00, 15.00, 2.50)
dom.add_param('phi', 0.00, 0.00, 0.00, 0.00)
dom.add_param('dlat', 3.52, 2.00, 5.00, 0.10)
dom.add_param('dl1l2', 2.03, 1.80, 2.20, 0.05)
dom.add_param('V0', 10.00, 0.00, 20.00, 1.00)
dom.add_param('Zsurf', 1.00, 0.00, 2.00, 0.50)
return dom
def create_project(element):
"""
create an FCC111Project calculation project.
@param element: symbol of the chemical element of the atoms contained in the cluster.
"""
project = FCC111Project()
project.element = element
project_dir = os.path.dirname(os.path.abspath(__file__))
project.data_dir = project_dir
# scan dictionary
# to select any number of scans, add their dictionary keys as scans option on the command line
project.scan_dict['default'] = {'filename': os.path.join(project_dir, "demo_holo_scan.etp"),
'emitter': "Ni", 'initial_state': "3s"}
project.scan_dict['holo'] = {'filename': os.path.join(project_dir, "demo_holo_scan.etp"),
'emitter': "Ni", 'initial_state': "3s"}
project.scan_dict['alpha'] = {'filename': os.path.join(project_dir, "demo_alpha_scan.etp"),
'emitter': "Ni", 'initial_state': "3s"}
project.add_symmetry({'default': 0.0})
return project
def set_project_args(project, project_args):
"""
set the project arguments of a MnGeTeProject calculation project.
@param project: project instance
@param project_args: (Namespace object) project arguments.
"""
scans = ['default']
try:
if project_args.scans:
scans = project_args.scans
else:
logger.warning(BMsg("missing scan argument, using {0}", scans[0]))
except AttributeError:
logger.warning(BMsg("missing scan argument, using {0}", scans[0]))
for scan_key in scans:
scan_spec = project.scan_dict[scan_key]
project.add_scan(**scan_spec)
logger.info(BMsg("add scan {filename} ({emitter} {initial_state})", **scan_spec))
try:
if project_args.element:
for scan in project.scans:
scan.emitter = project_args.element
logger.warning(BMsg("override emitters to {0}", project.emitter))
except AttributeError:
pass
try:
if project_args.initial_state:
project.initial_state = project_args.initial_state
logger.warning(BMsg("override initial states to {0}", project.initial_state))
except AttributeError:
pass
try:
if project_args.energy:
for scan in project.scans:
scan.energies = np.asarray((project_args.energy, ))
logger.warning(BMsg("override scan energy, set to {0}", project_args.energy))
except AttributeError:
pass
def parse_project_args(_args):
parser = argparse.ArgumentParser()
# main arguments
parser.add_argument('-e', '--element', help="chemical element symbol")
parser.add_argument('-s', '--scans', nargs="*", default=['default'],
help="nick names of scans to use in calculation (see create_project function)")
parser.add_argument('-i', '--initial-state',
help="inital state of photoelectron")
parser.add_argument('--energy', type=float,
help="kinetic energy of photoelectron (override scan file)")
parsed_args = parser.parse_known_args(_args)
return parsed_args