pmsco-public/tests/test_swarm.py

141 lines
4.6 KiB
Python

"""
@package tests.test_swarm
unit tests for @ref pmsco.optimizers.swarm
the purpose of these tests is to help debugging the code.
to run the tests, change to the directory which contains the tests directory, and execute =nosetests=.
@pre nose must be installed (python-nose package on Debian).
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2015 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import os
import os.path
import random
import shutil
import tempfile
import unittest
import pmsco.optimizers.swarm as swarm
import pmsco.project as project
POP_SIZE = 5
class TestSwarmPopulation(unittest.TestCase):
def setUp(self):
random.seed(0)
self.test_dir = tempfile.mkdtemp()
self.model_space = project.ModelSpace()
self.model_space.add_param('A', 1.5, 1.0, 2.0, 0.1)
self.model_space.add_param('B', 2.5, 2.0, 3.0, 0.1)
self.model_space.add_param('C', 3.5, 3.0, 4.0, 0.1)
self.expected_names = ('_gen', '_model', '_particle', '_rfac', 'A', 'B', 'C')
self.size = POP_SIZE
self.pop = swarm.SwarmPopulation()
self.optimum1 = {'A': 1.045351, 'B': 2.346212, 'C': 3.873627}
def tearDown(self):
# after each test method
self.pop = None
shutil.rmtree(self.test_dir)
@classmethod
def setup_class(cls):
# before any methods in this class
pass
@classmethod
def teardown_class(cls):
# teardown_class() after any methods in this class
pass
def rfactor1(self, pos):
r = (pos['A'] - self.optimum1['A'])**2 \
+ (pos['B'] - self.optimum1['B'])**2 \
+ (pos['C'] - self.optimum1['C'])**2
r /= 3.0
return r
def test_best_friend(self):
self.pop.setup(self.size, self.model_space)
self.pop.best['_rfac'] = np.arange(self.size)
friend = self.pop.best_friend(0)
self.assertNotIsInstance(friend, np.ndarray)
self.assertEqual(friend.dtype.names, self.expected_names)
def test_advance_particle(self):
self.pop.setup(self.size, self.model_space)
self.pop.pos['A'] = np.linspace(1.0, 2.0, POP_SIZE)
self.pop.pos['B'] = np.linspace(2.0, 3.0, POP_SIZE)
self.pop.pos['C'] = np.linspace(3.0, 4.0, POP_SIZE)
self.pop.pos['_rfac'] = np.linspace(2.0, 1.0, POP_SIZE)
self.pop.vel['A'] = np.linspace(-0.1, 0.1, POP_SIZE)
self.pop.vel['B'] = np.linspace(-0.1, 0.1, POP_SIZE)
self.pop.vel['C'] = np.linspace(-0.1, 0.1, POP_SIZE)
pos0 = self.pop.pos['A'][0]
self.pop.advance_particle(0)
pos1 = self.pop.pos['A'][0]
self.assertNotAlmostEqual(pos0, pos1, delta=0.001)
for key in ['A','B','C']:
for pos in self.pop.pos[key]:
self.assertGreaterEqual(pos, self.model_space.min[key])
self.assertLessEqual(pos, self.model_space.max[key])
def test_is_converged(self):
self.pop.setup(self.size, self.model_space)
self.assertFalse(self.pop.is_converged())
i_sample = 0
result = self.pop.pos[i_sample]
for i in range(POP_SIZE):
rfac = 1.0 - float(i)/POP_SIZE
self.pop.add_result(result, rfac)
self.assertFalse(self.pop.is_converged())
for i in range(POP_SIZE):
rfac = (1.0 - float(i)/POP_SIZE) / 1000.0
self.pop.add_result(result, rfac)
self.assertTrue(self.pop.is_converged())
def test_convergence_1(self):
self.pop.setup(self.size, self.model_space)
self.pop.pos['A'] = np.linspace(1.0, 2.0, POP_SIZE)
self.pop.pos['B'] = np.linspace(2.0, 3.0, POP_SIZE)
self.pop.pos['C'] = np.linspace(3.0, 4.0, POP_SIZE)
self.pop.pos['_rfac'] = np.linspace(2.0, 1.0, POP_SIZE)
self.pop.vel['A'] = np.linspace(-0.1, 0.1, POP_SIZE)
self.pop.vel['B'] = np.linspace(-0.1, 0.1, POP_SIZE)
self.pop.vel['C'] = np.linspace(-0.1, 0.1, POP_SIZE)
for i in range(10):
self.pop.advance_population()
for pos in self.pop.pos:
self.pop.add_result(pos, self.rfactor1(pos))
for pos in self.pop.pos:
self.assertLess(pos['_rfac'], 0.2)
if __name__ == '__main__':
unittest.main()