3 Commits

92 changed files with 7210 additions and 2207 deletions

14
.gitlab-ci.yml Normal file
View File

@ -0,0 +1,14 @@
pages:
stage: deploy
script:
- ~/miniconda3/bin/activate pmsco
- make docs
- mv docs/html/ public/
artifacts:
paths:
- public
only:
- master
tags:
- doxygen

59
CHANGES.md Normal file
View File

@ -0,0 +1,59 @@
Release 3.0.0 (2021-02-01)
==========================
| Hash | Date | Description |
| ---- | ---- | ----------- |
| 72a9f38 | 2021-02-06 | introduce run file based job scheduling |
| 42e12d8 | 2021-02-05 | compatibility with recent conda and singularity versions |
| caf9f43 | 2021-02-03 | installation: include plantuml.jar |
| 574c88a | 2021-02-01 | docs: replace doxypy by doxypypy |
| a5cb831 | 2021-02-05 | redefine output_file property |
| 49dbb89 | 2021-01-27 | documentation of run file interface |
| 940d9ae | 2021-01-07 | introduce run file interface |
| 6950f98 | 2021-02-05 | set legacy fortran for compatibility with recent compiler |
| 28d8bc9 | 2021-01-27 | graphics: fixed color range for modulation functions |
| 1382508 | 2021-01-16 | cluster: build_element accepts symbol or number |
| 53508b7 | 2021-01-06 | graphics: swarm plot |
| 4a24163 | 2021-01-05 | graphics: genetic chart |
| 99e9782 | 2020-12-23 | periodic table: use common binding energies in condensed matter XPS |
| fdfcf90 | 2020-12-23 | periodic table: reformat bindingenergy.json, add more import/export functions |
| 13cf90f | 2020-12-21 | hbnni: parameters for xpd demo with two domains |
| 680edb4 | 2020-12-21 | documentation: update documentation of optimizers |
| d909469 | 2020-12-18 | doc: update top components diagram (pmsco module is entry point) |
| 574993e | 2020-12-09 | spectrum: add plot cross section function |
Release 2.2.0 (2020-09-04)
==========================
| Hash | Date | Description |
| ---- | ---- | ----------- |
| 4bb2331 | 2020-07-30 | demo project for arbitrary molecule (cluster file) |
| f984f64 | 2020-09-03 | bugfix: DATA CORRUPTION in phagen translator (emitter mix-up) |
| 11fb849 | 2020-09-02 | bugfix: load native cluster file: wrong column order |
| d071c97 | 2020-09-01 | bugfix: initial-state command line option not respected |
| 9705eed | 2020-07-28 | photoionization cross sections and spectrum simulator |
| 98312f0 | 2020-06-12 | database: use local lock objects |
| c8fb974 | 2020-04-30 | database: create view on results and models |
| 2cfebcb | 2020-05-14 | REFACTORING: Domain -> ModelSpace, Params -> CalculatorParams |
| d5516ae | 2020-05-14 | REFACTORING: symmetry -> domain |
| b2dd21b | 2020-05-13 | possible conda/mpi4py conflict - changed installation procedure |
| cf5c7fd | 2020-05-12 | cluster: new calc_scattering_angles function |
| 20df82d | 2020-05-07 | include a periodic table of binding energies of the elements |
| 5d560bf | 2020-04-24 | clean up files in the main loop and in the end |
| 6e0ade5 | 2020-04-24 | bugfix: database ingestion overwrites results from previous jobs |
| 263b220 | 2020-04-24 | time out at least 10 minutes before the hard time limit given on the command line |
| 4ec526d | 2020-04-09 | cluster: new get_center function |
| fcdef4f | 2020-04-09 | bugfix: type error in grid optimizer |
| a4d1cf7 | 2020-03-05 | bugfix: file extension in phagen/makefile |
| 9461e46 | 2019-09-11 | dispatch: new algo to distribute processing slots to task levels |
| 30851ea | 2020-03-04 | bugfix: load single-line data files correctly! |
| 71fe0c6 | 2019-10-04 | cluster generator for zincblende crystal |
| 23965e3 | 2020-02-26 | phagen translator: fix phase convention (MAJOR), fix single-energy |
| cf1814f | 2019-09-11 | dispatch: give more priority to mid-level tasks in single mode |
| 58c778d | 2019-09-05 | improve performance of cluster add_bulk, add_layer and rotate |
| 20ef1af | 2019-09-05 | unit test for Cluster.translate, bugfix in translate and relax |
| 0b80850 | 2019-07-17 | fix compatibility with numpy >= 1.14, require numpy >= 1.13 |
| 1d0a542 | 2019-07-16 | database: introduce job-tags |
| 8461d81 | 2019-07-05 | qpmsco: delete code after execution |

201
LICENSE Normal file
View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2015-2020 Paul Scherrer Institut
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -6,29 +6,33 @@ It is a collection of computer programs to calculate photoelectron diffraction p
and to optimize structural models based on measured data.
The actual scattering calculation is done by code developed by other parties.
PMSCO wraps around that program and facilitates parameter handling, cluster building, structural optimization and parallel processing.
PMSCO wraps around those programs and facilitates parameter handling, cluster building, structural optimization and parallel processing.
In the current version, the [EDAC](http://garciadeabajos-group.icfo.es/widgets/edac/) code
developed by F. J. García de Abajo, M. A. Van Hove, and C. S. Fadley (1999) is used for scattering calculations.
Other code can be integrated as well.
Instead of EDAC built-in routines, alternatively,
the PHAGEN program from [MsSpec-1.0](https://msspec.cnrs.fr/index.html) can be used to calculate atomic scattering factors.
Highlights
----------
- angle or energy scanned XPD.
- various scanning modes including energy, polar angle, azimuthal angle, analyser angle.
- averaging over multiple symmetries (domains or emitters).
- angle and energy scanned XPD.
- various scanning modes including energy, manipulator angle (polar/azimuthal), emission angle.
- averaging over multiple domains and emitters.
- global optimization of multiple scans.
- structural optimization algorithms: particle swarm optimization, grid search, gradient search.
- structural optimization algorithms: particle swarm optimization, genetic algorithm, grid scan, table scan.
- detailed reports and graphs of result files.
- calculation of the modulation function.
- calculation of the weighted R-factor.
- automatic parallel processing using OpenMPI.
- compatible with Slurm resource manager on Linux cluster machines.
Installation
============
PMSCO is written in Python 3.6 and compatible with Python 2.7.
The code will run in any recent Linux environment on a workstation or in a virtual machine.
PMSCO is written in Python 3.6.
The code will run in any recent Linux environment on a workstation or virtual machine.
Scientific Linux, CentOS7, [Ubuntu](https://www.ubuntu.com/)
and [Lubuntu](http://lubuntu.net/) (recommended for virtual machine) have been tested.
For optimization jobs, a cluster with 20-50 available processor cores is recommended.
@ -36,7 +40,12 @@ The code requires about 2 GB of RAM per process.
Detailed installation instructions and dependencies can be found in the documentation
(docs/src/installation.dox).
A [Doxygen](http://www.stack.nl/~dimitri/doxygen/index.html) compiler with Doxypy is required to generate the documentation in HTML or LaTeX format.
A [Doxygen](http://www.stack.nl/~dimitri/doxygen/index.html) compiler with Doxypypy is required to generate the documentation in HTML format.
The easiest way to set up an environment with all dependencies and without side-effects on other installed software is to use a [Singularity](https://www.sylabs.io/guides/3.7/user-guide/index.html) container.
A Singularity recipe file is part of the distribution, see the PMSCO documentation for details, Singularity must be installed separately.
Installation in a [virtual box](https://www.virtualbox.org/) on Windows or Mac is straightforward using pre-compiled images with [Vagrant](https://www.vagrantup.com/).
A Vagrant definition file is included in the distribution.
The public distribution of PMSCO does not contain the [EDAC](http://garciadeabajos-group.icfo.es/widgets/edac/) code.
Please obtain the EDAC source code from the original author, copy it to the pmsco/edac directory, and apply the edac_all.patch patch.
@ -61,10 +70,39 @@ Matthias Muntwiler, <mailto:matthias.muntwiler@psi.ch>
Copyright
---------
Copyright 2015-2018 by [Paul Scherrer Institut](http://www.psi.ch)
Copyright 2015-2021 by [Paul Scherrer Institut](http://www.psi.ch)
Release Notes
=============
For a detailed list of changes, see the CHANGES.md file.
3.0.0 (2021-02-08)
------------------
- Run file interface replaces command line arguments:
- Specify all run-time parameters in a JSON-formatted text file.
- Override any public attribute of the project class.
- Only the name of the run file is needed on the command line.
- The command line interface is still available, some default values and the handling of directory paths have changed.
Check your code for compatibility.
- Integrated job scheduling with the Slurm resource manager:
- Declare all job arguments in the run file and have PMSCO submit the job.
- Graphics scripts for genetic chart and swarm population (experimental feature).
- Update for compatibility with recent Ubuntu (20.04), Anaconda (4.8) and Singularity (3.7).
- Drop compatibility with Python 2.7, minimum requirement is Python 3.6.
2.2.0 (2020-09-04)
------------------
This release breaks existing project code unless the listed refactorings are applied.
- Major refactoring: The 'symmetry' calculation level is renamed to 'domain'.
The previous Domain class is renamed to ModelSpace, Params to CalculatorParams.
The refactorings must be applied to project code as well.
- Included periodic table of elements with electron binding energies and scattering cross-sections.
- Various bug fixes in cluster routines, data file handling, and in the PHAGEN interface.
- Experimental sqlite3 database interface for optimization results.

View File

@ -1,136 +0,0 @@
#!/bin/bash
#
# Slurm script template for PMSCO calculations on the Ra cluster
# based on run_mpi_HPL_nodes-2.sl by V. Markushin 2016-03-01
#
# this version checks out the source code from a git repository
# to a temporary location and compiles the code.
# this is to minimize conflicts between different jobs
# but requires that each job has its own git commit.
#
# Use:
# - enter the appropriate parameters and save as a new file.
# - call the sbatch command to pass the job script.
# request a specific number of nodes and tasks.
# example:
# sbatch --nodes=2 --ntasks-per-node=24 --time=02:00:00 run_pmsco.sl
# the qpmsco script does all this for you.
#
# PMSCO arguments
# copy this template to a new file, and set the arguments
#
# PMSCO_WORK_DIR
# path to be used as working directory.
# contains the script derived from this template
# and a copy of the pmsco code in the 'pmsco' directory.
# receives output and temporary files.
#
# PMSCO_PROJECT_FILE
# python module that declares the project and starts the calculation.
# must include the file path relative to $PMSCO_WORK_DIR.
#
# PMSCO_OUT
# name of output file. should not include a path.
#
# all paths are relative to $PMSCO_WORK_DIR or (better) absolute.
#
#
# Further arguments
#
# PMSCO_JOBNAME (required)
# the job name is the base name for output files.
#
# PMSCO_WALLTIME_HR (integer, required)
# wall time limit in hours. must be integer, minimum 1.
# this value is passed to PMSCO.
# it should specify the same amount of wall time as requested from the scheduler.
#
# PMSCO_PROJECT_ARGS (optional)
# extra arguments that are parsed by the project module.
#
#SBATCH --job-name="_PMSCO_JOBNAME"
#SBATCH --output="_PMSCO_JOBNAME.o.%j"
#SBATCH --error="_PMSCO_JOBNAME.e.%j"
PMSCO_WORK_DIR="_PMSCO_WORK_DIR"
PMSCO_JOBNAME="_PMSCO_JOBNAME"
PMSCO_WALLTIME_HR=_PMSCO_WALLTIME_HR
PMSCO_PROJECT_FILE="_PMSCO_PROJECT_FILE"
PMSCO_OUT="_PMSCO_JOBNAME"
PMSCO_PROJECT_ARGS="_PMSCO_PROJECT_ARGS"
module load psi-python36/4.4.0
module load gcc/4.8.5
module load openmpi/3.1.3
source activate pmsco3
echo '================================================================================'
echo "=== Running $0 at the following time and place:"
date
/bin/hostname
cd $PMSCO_WORK_DIR
pwd
ls -lA
#the intel compiler is currently not compatible with mpi4py. -mm 170131
#echo
#echo '================================================================================'
#echo "=== Setting the environment to use Intel Cluster Studio XE 2016 Update 2 intel/16.2:"
#cmd="source /opt/psi/Programming/intel/16.2/bin/compilervars.sh intel64"
#echo $cmd
#$cmd
echo
echo '================================================================================'
echo "=== The environment is set as following:"
env
echo
echo '================================================================================'
echo "BEGIN test"
which mpirun
cmd="mpirun /bin/hostname"
echo $cmd
$cmd
echo "END test"
echo
echo '================================================================================'
echo "BEGIN mpirun pmsco"
echo
cd "$PMSCO_WORK_DIR"
cd pmsco
echo "code revision"
git log --pretty=tformat:'%h %ai %d' -1
make -C pmsco all
python -m compileall pmsco
python -m compileall projects
echo
cd "$PMSCO_WORK_DIR"
PMSCO_CMD="python pmsco/pmsco $PMSCO_PROJECT_FILE"
PMSCO_ARGS="$PMSCO_PROJECT_ARGS"
if [ -n "$PMSCO_SCAN_FILES" ]; then
PMSCO_ARGS="-s $PMSCO_SCAN_FILES $PMSCO_ARGS"
fi
if [ -n "$PMSCO_OUT" ]; then
PMSCO_ARGS="-o $PMSCO_OUT $PMSCO_ARGS"
fi
if [ "$PMSCO_WALLTIME_HR" -ge 1 ]; then
PMSCO_ARGS="-t $PMSCO_WALLTIME_HR $PMSCO_ARGS"
fi
if [ -n "$PMSCO_LOGLEVEL" ]; then
PMSCO_ARGS="--log-level $PMSCO_LOGLEVEL --log-file $PMSCO_JOBNAME.log $PMSCO_ARGS"
fi
# Do no use the OpenMPI specific options, like "-x LD_LIBRARY_PATH", with the Intel mpirun.
cmd="mpirun $PMSCO_CMD $PMSCO_ARGS"
echo $cmd
$cmd
echo "END mpirun pmsco"
echo '================================================================================'
cd "$PMSCO_WORK_DIR"
rm -rf pmsco
date
ls -lAtr
echo '================================================================================'
exit 0

View File

@ -1,157 +0,0 @@
#!/bin/bash
#
# Slurm script template for PMSCO calculations on the Ra cluster
# based on run_mpi_HPL_nodes-2.sl by V. Markushin 2016-03-01
#
# Use:
# - enter the appropriate parameters and save as a new file.
# - call the sbatch command to pass the job script.
# request a specific number of nodes and tasks.
# example:
# sbatch --nodes=2 --ntasks-per-node=24 --time=02:00:00 run_pmsco.sl
#
# PMSCO arguments
# copy this template to a new file, and set the arguments
#
# PMSCO_WORK_DIR
# path to be used as working directory.
# contains the script derived from this template.
# receives output and temporary files.
#
# PMSCO_PROJECT_FILE
# python module that declares the project and starts the calculation.
# must include the file path relative to $PMSCO_WORK_DIR.
#
# PMSCO_SOURCE_DIR
# path to the pmsco source directory
# (the directory which contains the bin, lib, pmsco sub-directories)
#
# PMSCO_SCAN_FILES
# list of scan files.
#
# PMSCO_OUT
# name of output file. should not include a path.
#
# all paths are relative to $PMSCO_WORK_DIR or (better) absolute.
#
#
# Further arguments
#
# PMSCO_JOBNAME (required)
# the job name is the base name for output files.
#
# PMSCO_WALLTIME_HR (integer, required)
# wall time limit in hours. must be integer, minimum 1.
# this value is passed to PMSCO.
# it should specify the same amount of wall time as requested from the scheduler.
#
# PMSCO_MODE (optional)
# calculation mode: single, swarm, grid, gradient
#
# PMSCO_CODE (optional)
# calculation code: edac, msc, test
#
# PMSCO_LOGLEVEL (optional)
# request log level: DEBUG, INFO, WARNING, ERROR
# create a log file based on the job name.
#
# PMSCO_PROJECT_ARGS (optional)
# extra arguments that are parsed by the project module.
#
#SBATCH --job-name="_PMSCO_JOBNAME"
#SBATCH --output="_PMSCO_JOBNAME.o.%j"
#SBATCH --error="_PMSCO_JOBNAME.e.%j"
PMSCO_WORK_DIR="_PMSCO_WORK_DIR"
PMSCO_JOBNAME="_PMSCO_JOBNAME"
PMSCO_WALLTIME_HR=_PMSCO_WALLTIME_HR
PMSCO_PROJECT_FILE="_PMSCO_PROJECT_FILE"
PMSCO_MODE="_PMSCO_MODE"
PMSCO_CODE="_PMSCO_CODE"
PMSCO_SOURCE_DIR="_PMSCO_SOURCE_DIR"
PMSCO_SCAN_FILES="_PMSCO_SCAN_FILES"
PMSCO_OUT="_PMSCO_JOBNAME"
PMSCO_LOGLEVEL="_PMSCO_LOGLEVEL"
PMSCO_PROJECT_ARGS="_PMSCO_PROJECT_ARGS"
module load psi-python36/4.4.0
module load gcc/4.8.5
module load openmpi/3.1.3
source activate pmsco3
echo '================================================================================'
echo "=== Running $0 at the following time and place:"
date
/bin/hostname
cd $PMSCO_WORK_DIR
pwd
ls -lA
#the intel compiler is currently not compatible with mpi4py. -mm 170131
#echo
#echo '================================================================================'
#echo "=== Setting the environment to use Intel Cluster Studio XE 2016 Update 2 intel/16.2:"
#cmd="source /opt/psi/Programming/intel/16.2/bin/compilervars.sh intel64"
#echo $cmd
#$cmd
echo
echo '================================================================================'
echo "=== The environment is set as following:"
env
echo
echo '================================================================================'
echo "BEGIN test"
echo "=== Intel native mpirun will get the number of nodes and the machinefile from Slurm"
which mpirun
cmd="mpirun /bin/hostname"
echo $cmd
$cmd
echo "END test"
echo
echo '================================================================================'
echo "BEGIN mpirun pmsco"
echo "Intel native mpirun will get the number of nodes and the machinefile from Slurm"
echo
echo "code revision"
cd "$PMSCO_SOURCE_DIR"
git log --pretty=tformat:'%h %ai %d' -1
python -m compileall pmsco
python -m compileall projects
cd "$PMSCO_WORK_DIR"
echo
PMSCO_CMD="python $PMSCO_SOURCE_DIR/pmsco $PMSCO_PROJECT_FILE"
PMSCO_ARGS="$PMSCO_PROJECT_ARGS"
if [ -n "$PMSCO_SCAN_FILES" ]; then
PMSCO_ARGS="-s $PMSCO_SCAN_FILES $PMSCO_ARGS"
fi
if [ -n "$PMSCO_CODE" ]; then
PMSCO_ARGS="-c $PMSCO_CODE $PMSCO_ARGS"
fi
if [ -n "$PMSCO_MODE" ]; then
PMSCO_ARGS="-m $PMSCO_MODE $PMSCO_ARGS"
fi
if [ -n "$PMSCO_OUT" ]; then
PMSCO_ARGS="-o $PMSCO_OUT $PMSCO_ARGS"
fi
if [ "$PMSCO_WALLTIME_HR" -ge 1 ]; then
PMSCO_ARGS="-t $PMSCO_WALLTIME_HR $PMSCO_ARGS"
fi
if [ -n "$PMSCO_LOGLEVEL" ]; then
PMSCO_ARGS="--log-level $PMSCO_LOGLEVEL --log-file $PMSCO_JOBNAME.log $PMSCO_ARGS"
fi
which mpirun
ls -l "$PMSCO_SOURCE_DIR"
ls -l "$PMSCO_PROJECT_FILE"
# Do no use the OpenMPI specific options, like "-x LD_LIBRARY_PATH", with the Intel mpirun.
cmd="mpirun $PMSCO_CMD $PMSCO_ARGS"
echo $cmd
$cmd
echo "END mpirun pmsco"
echo '================================================================================'
date
ls -lAtr
echo '================================================================================'
exit 0

View File

@ -1,178 +0,0 @@
#!/bin/bash
#
# SGE script template for MSC calculations
#
# This script uses the tight integration of openmpi-1.4.5-gcc-4.6.3 in SGE
# using the parallel environment (PE) "orte".
# This script must be used only with qsub command - do NOT run it as a stand-alone
# shell script because it will start all processes on the local node.
#
# PhD arguments
# copy this template to a new file, and set the arguments
#
# PHD_WORK_DIR
# path to be used as working directory.
# contains the SGE script derived from this template.
# receives output and temporary files.
#
# PHD_PROJECT_FILE
# python module that declares the project and starts the calculation.
# must include the file path relative to $PHD_WORK_DIR.
#
# PHD_SOURCE_DIR
# path to the pmsco source directory
# (the directory which contains the bin, lib, pmsco sub-directories)
#
# PHD_SCAN_FILES
# list of scan files.
#
# PHD_OUT
# name of output file. should not include a path.
#
# all paths are relative to $PHD_WORK_DIR or (better) absolute.
#
#
# Further arguments
#
# PHD_JOBNAME (required)
# the job name is the base name for output files.
#
# PHD_NODES (required)
# number of computing nodes (processes) to allocate for the job.
#
# PHD_WALLTIME_HR (required)
# wall time limit (hours)
#
# PHD_WALLTIME_MIN (required)
# wall time limit (minutes)
#
# PHD_MODE (optional)
# calculation mode: single, swarm, grid, gradient
#
# PHD_CODE (optional)
# calculation code: edac, msc, test
#
# PHD_LOGLEVEL (optional)
# request log level: DEBUG, INFO, WARNING, ERROR
# create a log file based on the job name.
#
# PHD_PROJECT_ARGS (optional)
# extra arguments that are parsed by the project module.
#
PHD_WORK_DIR="_PHD_WORK_DIR"
PHD_JOBNAME="_PHD_JOBNAME"
PHD_NODES=_PHD_NODES
PHD_WALLTIME_HR=_PHD_WALLTIME_HR
PHD_WALLTIME_MIN=_PHD_WALLTIME_MIN
PHD_PROJECT_FILE="_PHD_PROJECT_FILE"
PHD_MODE="_PHD_MODE"
PHD_CODE="_PHD_CODE"
PHD_SOURCE_DIR="_PHD_SOURCE_DIR"
PHD_SCAN_FILES="_PHD_SCAN_FILES"
PHD_OUT="_PHD_JOBNAME"
PHD_LOGLEVEL="_PHD_LOGLEVEL"
PHD_PROJECT_ARGS="_PHD_PROJECT_ARGS"
# Define your job name, parallel environment with the number of slots, and run time:
#$ -cwd
#$ -N _PHD_JOBNAME.job
#$ -pe orte _PHD_NODES
#$ -l ram=2G
#$ -l s_rt=_PHD_WALLTIME_HR:_PHD_WALLTIME_MIN:00
#$ -l h_rt=_PHD_WALLTIME_HR:_PHD_WALLTIME_MIN:30
#$ -V
###################################################
# Fix the SGE environment-handling bug (bash):
source /usr/share/Modules/init/sh
export -n -f module
# Load the environment modules for this job (the order may be important):
module load python/python-2.7.5
module load gcc/gcc-4.6.3
module load mpi/openmpi-1.4.5-gcc-4.6.3
module load blas/blas-20110419-gcc-4.6.3
module load lapack/lapack-3.4.2-gcc-4.6.3
export LD_LIBRARY_PATH=$PHD_SOURCE_DIR/lib/:$LD_LIBRARY_PATH
###################################################
# Set the environment variables:
MPIEXEC=$OPENMPI/bin/mpiexec
# OPENMPI is set by the mpi/openmpi-* module.
export OMP_NUM_THREADS=1
export OMPI_MCA_btl='openib,sm,self'
# export OMPI_MCA_orte_process_binding=core
##############
# BEGIN DEBUG
# Print the SGE environment on master host:
echo "================================================================"
echo "=== SGE job JOB_NAME=$JOB_NAME JOB_ID=$JOB_ID"
echo "================================================================"
echo DATE=`date`
echo HOSTNAME=`hostname`
echo PWD=`pwd`
echo "NSLOTS=$NSLOTS"
echo "PE_HOSTFILE=$PE_HOSTFILE"
cat $PE_HOSTFILE
echo "================================================================"
echo "Running environment:"
env
echo "================================================================"
echo "Loaded environment modules:"
module list 2>&1
echo
# END DEBUG
##############
##############
# Setup
cd "$PHD_SOURCE_DIR"
python -m compileall .
cd "$PHD_WORK_DIR"
ulimit -c 0
###################################################
# The command to run with mpiexec:
CMD="python $PHD_PROJECT_FILE"
ARGS="$PHD_PROJECT_ARGS"
if [ -n "$PHD_SCAN_FILES" ]; then
ARGS="-s $PHD_SCAN_FILES -- $ARGS"
fi
if [ -n "$PHD_CODE" ]; then
ARGS="-c $PHD_CODE $ARGS"
fi
if [ -n "$PHD_MODE" ]; then
ARGS="-m $PHD_MODE $ARGS"
fi
if [ -n "$PHD_OUT" ]; then
ARGS="-o $PHD_OUT $ARGS"
fi
if [ "$PHD_WALLTIME_HR" -ge 1 ]
then
ARGS="-t $PHD_WALLTIME_HR $ARGS"
else
ARGS="-t 0.5 $ARGS"
fi
if [ -n "$PHD_LOGLEVEL" ]; then
ARGS="--log-level $PHD_LOGLEVEL --log-file $PHD_JOBNAME.log $ARGS"
fi
# The MPI command to run:
MPICMD="$MPIEXEC --prefix $OPENMPI -x PATH -x LD_LIBRARY_PATH -x OMP_NUM_THREADS -x OMPI_MCA_btl -np $NSLOTS $CMD $ARGS"
echo "Command to run:"
echo "$MPICMD"
echo
exec $MPICMD
exit 0

View File

@ -1,145 +0,0 @@
#!/bin/sh
#
# submission script for PMSCO calculations on the Ra cluster
#
# this version clones the current git repository at HEAD to the work directory.
# thus, version conflicts between jobs are avoided.
#
if [ $# -lt 1 ]; then
echo "Usage: $0 [NOSUB] GIT_TAG DESTDIR JOBNAME NODES TASKS_PER_NODE WALLTIME:HOURS PROJECT [ARGS [ARGS [...]]]"
echo ""
echo " NOSUB (optional): do not submit the script to the queue. default: submit."
echo " GIT_TAG: git tag or branch name of the code. HEAD for current code."
echo " DESTDIR: destination directory. must exist. a sub-dir \$JOBNAME is created."
echo " JOBNAME (text): name of job. use only alphanumeric characters, no spaces."
echo " NODES (integer): number of computing nodes. (1 node = 24 or 32 processors)."
echo " do not specify more than 2."
echo " TASKS_PER_NODE (integer): 1...24, or 32."
echo " 24 or 32 for full-node allocation."
echo " 1...23 for shared node allocation."
echo " WALLTIME:HOURS (integer): requested wall time."
echo " 1...24 for day partition"
echo " 24...192 for week partition"
echo " 1...192 for shared partition"
echo " PROJECT: python module (file path) that declares the project and starts the calculation."
echo " ARGS (optional): any number of further PMSCO or project arguments (except time)."
echo ""
echo "the job script is written to \$DESTDIR/\$JOBNAME which is also the destination of calculation output."
exit 1
fi
# location of the pmsco package is derived from the path of this script
SCRIPTDIR="$(dirname $(readlink -f $0))"
SOURCEDIR="$(readlink -f $SCRIPTDIR/..)"
PMSCO_SOURCE_DIR="$SOURCEDIR"
# read arguments
if [ "$1" == "NOSUB" ]; then
NOSUB="true"
shift
else
NOSUB="false"
fi
if [ "$1" == "HEAD" ]; then
BRANCH_ARG=""
else
BRANCH_ARG="-b $1"
fi
shift
DEST_DIR="$1"
shift
PMSCO_JOBNAME=$1
shift
PMSCO_NODES=$1
PMSCO_TASKS_PER_NODE=$2
PMSCO_TASKS=$(expr $PMSCO_NODES \* $PMSCO_TASKS_PER_NODE)
shift 2
PMSCO_WALLTIME_HR=$1
PMSCO_WALLTIME_MIN=$(expr $PMSCO_WALLTIME_HR \* 60)
shift
# select partition
if [ $PMSCO_WALLTIME_HR -ge 25 ]; then
PMSCO_PARTITION="week"
else
PMSCO_PARTITION="day"
fi
if [ $PMSCO_TASKS_PER_NODE -lt 24 ]; then
PMSCO_PARTITION="shared"
fi
PMSCO_PROJECT_FILE="$(readlink -f $1)"
shift
PMSCO_PROJECT_ARGS="$*"
# set up working directory
cd "$DEST_DIR"
if [ ! -d "$PMSCO_JOBNAME" ]; then
mkdir "$PMSCO_JOBNAME"
fi
cd "$PMSCO_JOBNAME"
WORKDIR="$(pwd)"
PMSCO_WORK_DIR="$WORKDIR"
# copy code
PMSCO_SOURCE_REPO="file://$PMSCO_SOURCE_DIR"
echo "$PMSCO_SOURCE_REPO"
cd "$PMSCO_WORK_DIR"
git clone $BRANCH_ARG --single-branch --depth 1 $PMSCO_SOURCE_REPO pmsco || exit
cd pmsco
PMSCO_REV=$(git log --pretty=format:"%h, %ai" -1) || exit
cd "$WORKDIR"
echo "$PMSCO_REV" > revision.txt
# generate job script from template
sed -e "s:_PMSCO_WORK_DIR:$PMSCO_WORK_DIR:g" \
-e "s:_PMSCO_JOBNAME:$PMSCO_JOBNAME:g" \
-e "s:_PMSCO_NODES:$PMSCO_NODES:g" \
-e "s:_PMSCO_WALLTIME_HR:$PMSCO_WALLTIME_HR:g" \
-e "s:_PMSCO_PROJECT_FILE:$PMSCO_PROJECT_FILE:g" \
-e "s:_PMSCO_PROJECT_ARGS:$PMSCO_PROJECT_ARGS:g" \
"$SCRIPTDIR/pmsco.ra-git.template" > $PMSCO_JOBNAME.job
chmod u+x "$PMSCO_JOBNAME.job" || exit
# request nodes and tasks
#
# The option --ntasks-per-node is meant to be used with the --nodes option.
# (For the --ntasks option, the default is one task per node, use the --cpus-per-task option to change this default.)
#
# sbatch options
# --cores-per-socket=16
# 32 cores per node
# --partition=[shared|day|week]
# --time=8-00:00:00
# override default time limit (2 days in long queue)
# time formats: "minutes", "minutes:seconds", "hours:minutes:seconds", "days-hours", "days-hours:minutes", "days-hours:minutes:seconds"
# --mail-type=ALL
# --test-only
# check script but do not submit
#
SLURM_ARGS="--nodes=$PMSCO_NODES --ntasks-per-node=$PMSCO_TASKS_PER_NODE"
if [ $PMSCO_TASKS_PER_NODE -gt 24 ]; then
SLURM_ARGS="--cores-per-socket=16 $SLURM_ARGS"
fi
SLURM_ARGS="--partition=$PMSCO_PARTITION $SLURM_ARGS"
SLURM_ARGS="--time=$PMSCO_WALLTIME_HR:00:00 $SLURM_ARGS"
CMD="sbatch $SLURM_ARGS $PMSCO_JOBNAME.job"
echo $CMD
if [ "$NOSUB" != "true" ]; then
$CMD
fi
exit 0

View File

@ -1,151 +0,0 @@
#!/bin/sh
#
# submission script for PMSCO calculations on the Ra cluster
#
# CAUTION: the job will execute the pmsco code which is present in the directory tree
# of this script _at the time of job execution_, not submission!
# before changing the code, make sure that all pending jobs have started execution,
# otherwise you will experience version conflicts.
# it's better to use the qpmsco.ra-git.sh script which clones the code.
if [ $# -lt 1 ]; then
echo "Usage: $0 [NOSUB] DESTDIR JOBNAME NODES TASKS_PER_NODE WALLTIME:HOURS PROJECT MODE [ARGS [ARGS [...]]]"
echo ""
echo " NOSUB (optional): do not submit the script to the queue. default: submit."
echo " DESTDIR: destination directory. must exist. a sub-dir \$JOBNAME is created."
echo " JOBNAME (text): name of job. use only alphanumeric characters, no spaces."
echo " NODES (integer): number of computing nodes. (1 node = 24 or 32 processors)."
echo " do not specify more than 2."
echo " TASKS_PER_NODE (integer): 1...24, or 32."
echo " 24 or 32 for full-node allocation."
echo " 1...23 for shared node allocation."
echo " WALLTIME:HOURS (integer): requested wall time."
echo " 1...24 for day partition"
echo " 24...192 for week partition"
echo " 1...192 for shared partition"
echo " PROJECT: python module (file path) that declares the project and starts the calculation."
echo " MODE: PMSCO calculation mode (single|swarm|gradient|grid)."
echo " ARGS (optional): any number of further PMSCO or project arguments (except mode and time)."
echo ""
echo "the job script is written to \$DESTDIR/\$JOBNAME which is also the destination of calculation output."
exit 1
fi
# location of the pmsco package is derived from the path of this script
SCRIPTDIR="$(dirname $(readlink -f $0))"
SOURCEDIR="$SCRIPTDIR/.."
PMSCO_SOURCE_DIR="$SOURCEDIR"
# read arguments
if [ "$1" == "NOSUB" ]; then
NOSUB="true"
shift
else
NOSUB="false"
fi
DEST_DIR="$1"
shift
PMSCO_JOBNAME=$1
shift
PMSCO_NODES=$1
PMSCO_TASKS_PER_NODE=$2
PMSCO_TASKS=$(expr $PMSCO_NODES \* $PMSCO_TASKS_PER_NODE)
shift 2
PMSCO_WALLTIME_HR=$1
PMSCO_WALLTIME_MIN=$(expr $PMSCO_WALLTIME_HR \* 60)
shift
# select partition
if [ $PMSCO_WALLTIME_HR -ge 25 ]; then
PMSCO_PARTITION="week"
else
PMSCO_PARTITION="day"
fi
if [ $PMSCO_TASKS_PER_NODE -lt 24 ]; then
PMSCO_PARTITION="shared"
fi
PMSCO_PROJECT_FILE="$(readlink -f $1)"
shift
PMSCO_MODE="$1"
shift
PMSCO_PROJECT_ARGS="$*"
# use defaults, override explicitly in PMSCO_PROJECT_ARGS if necessary
PMSCO_SCAN_FILES=""
PMSCO_LOGLEVEL=""
PMSCO_CODE=""
# set up working directory
cd "$DEST_DIR"
if [ ! -d "$PMSCO_JOBNAME" ]; then
mkdir "$PMSCO_JOBNAME"
fi
cd "$PMSCO_JOBNAME"
WORKDIR="$(pwd)"
PMSCO_WORK_DIR="$WORKDIR"
# provide revision information, requires git repository
cd "$SOURCEDIR"
PMSCO_REV=$(git log --pretty=format:"%h, %ai" -1)
if [ $? -ne 0 ]; then
PMSCO_REV="revision unknown, "$(date +"%F %T %z")
fi
cd "$WORKDIR"
echo "$PMSCO_REV" > revision.txt
# generate job script from template
sed -e "s:_PMSCO_WORK_DIR:$PMSCO_WORK_DIR:g" \
-e "s:_PMSCO_JOBNAME:$PMSCO_JOBNAME:g" \
-e "s:_PMSCO_NODES:$PMSCO_NODES:g" \
-e "s:_PMSCO_WALLTIME_HR:$PMSCO_WALLTIME_HR:g" \
-e "s:_PMSCO_PROJECT_FILE:$PMSCO_PROJECT_FILE:g" \
-e "s:_PMSCO_PROJECT_ARGS:$PMSCO_PROJECT_ARGS:g" \
-e "s:_PMSCO_CODE:$PMSCO_CODE:g" \
-e "s:_PMSCO_MODE:$PMSCO_MODE:g" \
-e "s:_PMSCO_SOURCE_DIR:$PMSCO_SOURCE_DIR:g" \
-e "s:_PMSCO_SCAN_FILES:$PMSCO_SCAN_FILES:g" \
-e "s:_PMSCO_LOGLEVEL:$PMSCO_LOGLEVEL:g" \
"$SCRIPTDIR/pmsco.ra.template" > $PMSCO_JOBNAME.job
chmod u+x "$PMSCO_JOBNAME.job"
# request nodes and tasks
#
# The option --ntasks-per-node is meant to be used with the --nodes option.
# (For the --ntasks option, the default is one task per node, use the --cpus-per-task option to change this default.)
#
# sbatch options
# --cores-per-socket=16
# 32 cores per node
# --partition=[shared|day|week]
# --time=8-00:00:00
# override default time limit (2 days in long queue)
# time formats: "minutes", "minutes:seconds", "hours:minutes:seconds", "days-hours", "days-hours:minutes", "days-hours:minutes:seconds"
# --mail-type=ALL
# --test-only
# check script but do not submit
#
SLURM_ARGS="--nodes=$PMSCO_NODES --ntasks-per-node=$PMSCO_TASKS_PER_NODE"
if [ $PMSCO_TASKS_PER_NODE -gt 24 ]; then
SLURM_ARGS="--cores-per-socket=16 $SLURM_ARGS"
fi
SLURM_ARGS="--partition=$PMSCO_PARTITION $SLURM_ARGS"
SLURM_ARGS="--time=$PMSCO_WALLTIME_HR:00:00 $SLURM_ARGS"
CMD="sbatch $SLURM_ARGS $PMSCO_JOBNAME.job"
echo $CMD
if [ "$NOSUB" != "true" ]; then
$CMD
fi
exit 0

View File

@ -1,128 +0,0 @@
#!/bin/sh
#
# submission script for PMSCO calculations on Merlin cluster
#
if [ $# -lt 1 ]; then
echo "Usage: $0 [NOSUB] JOBNAME NODES WALLTIME:HOURS PROJECT MODE [LOG_LEVEL]"
echo ""
echo " NOSUB (optional): do not submit the script to the queue. default: submit."
echo " WALLTIME:HOURS (integer): sets the wall time limits."
echo " soft limit = HOURS:00:00"
echo " hard limit = HOURS:00:30"
echo " for short.q: HOURS = 0 (-> MINUTES=30)"
echo " for all.q: HOURS <= 24"
echo " for long.q: HOURS <= 96"
echo " PROJECT: python module (file path) that declares the project and starts the calculation."
echo " MODE: PMSCO calculation mode (single|swarm|gradient|grid)."
echo " LOG_LEVEL (optional): one of DEBUG, INFO, WARNING, ERROR if log files should be produced."
echo ""
echo "the job script complete with the program code and input/output data is generated in ~/jobs/\$JOBNAME"
exit 1
fi
# location of the pmsco package is derived from the path of this script
SCRIPTDIR="$(dirname $(readlink -f $0))"
SOURCEDIR="$SCRIPTDIR/.."
PHD_SOURCE_DIR="$SOURCEDIR"
PHD_CODE="edac"
# read arguments
if [ "$1" == "NOSUB" ]; then
NOSUB="true"
shift
else
NOSUB="false"
fi
PHD_JOBNAME=$1
shift
PHD_NODES=$1
shift
PHD_WALLTIME_HR=$1
PHD_WALLTIME_MIN=0
shift
PHD_PROJECT_FILE="$(readlink -f $1)"
PHD_PROJECT_ARGS=""
shift
PHD_MODE="$1"
shift
PHD_LOGLEVEL=""
if [ "$1" == "DEBUG" ] || [ "$1" == "INFO" ] || [ "$1" == "WARNING" ] || [ "$1" == "ERROR" ]; then
PHD_LOGLEVEL="$1"
shift
fi
# ignore remaining arguments
PHD_SCAN_FILES=""
# select allowed queues
QUEUE=short.q,all.q,long.q
# for short queue (limit 30 minutes)
if [ "$PHD_WALLTIME_HR" -lt 1 ]; then
PHD_WALLTIME_HR=0
PHD_WALLTIME_MIN=30
fi
# set up working directory
cd ~
if [ ! -d "jobs" ]; then
mkdir jobs
fi
cd jobs
if [ ! -d "$PHD_JOBNAME" ]; then
mkdir "$PHD_JOBNAME"
fi
cd "$PHD_JOBNAME"
WORKDIR="$(pwd)"
PHD_WORK_DIR="$WORKDIR"
# provide revision information, requires git repository
cd "$SOURCEDIR"
PHD_REV=$(git log --pretty=format:"%h, %ad" --date=iso -1)
if [ $? -ne 0 ]; then
PHD_REV="revision unknown, "$(date +"%F %T %z")
fi
cd "$WORKDIR"
echo "$PHD_REV" > revision.txt
# generate job script from template
sed -e "s:_PHD_WORK_DIR:$PHD_WORK_DIR:g" \
-e "s:_PHD_JOBNAME:$PHD_JOBNAME:g" \
-e "s:_PHD_NODES:$PHD_NODES:g" \
-e "s:_PHD_WALLTIME_HR:$PHD_WALLTIME_HR:g" \
-e "s:_PHD_WALLTIME_MIN:$PHD_WALLTIME_MIN:g" \
-e "s:_PHD_PROJECT_FILE:$PHD_PROJECT_FILE:g" \
-e "s:_PHD_PROJECT_ARGS:$PHD_PROJECT_ARGS:g" \
-e "s:_PHD_CODE:$PHD_CODE:g" \
-e "s:_PHD_MODE:$PHD_MODE:g" \
-e "s:_PHD_SOURCE_DIR:$PHD_SOURCE_DIR:g" \
-e "s:_PHD_SCAN_FILES:$PHD_SCAN_FILES:g" \
-e "s:_PHD_LOGLEVEL:$PHD_LOGLEVEL:g" \
"$SCRIPTDIR/pmsco.sge.template" > $PHD_JOBNAME.job
chmod u+x "$PHD_JOBNAME.job"
if [ "$NOSUB" != "true" ]; then
# suppress bash error [stackoverflow.com/questions/10496758]
unset module
# submit the job script
# EMAIL must be defined in the environment
if [ -n "$EMAIL" ]; then
qsub -q $QUEUE -m ae -M $EMAIL $PHD_JOBNAME.job
else
qsub -q $QUEUE $PHD_JOBNAME.job
fi
fi
exit 0

View File

@ -32,7 +32,7 @@ DOXYFILE_ENCODING = UTF-8
# title of most generated pages and in a few other places.
# The default value is: My Project.
PROJECT_NAME = "PEARL MSCO"
PROJECT_NAME = "PMSCO"
# The PROJECT_NUMBER tag can be used to enter a project or revision number. This
# could be handy for archiving the generated documentation or if some version
@ -765,8 +765,10 @@ src/concepts-tasks.dox \
src/concepts-emitter.dox \
src/concepts-atomscat.dox \
src/installation.dox \
src/project.dox \
src/execution.dox \
src/commandline.dox \
src/runfile.dox \
src/optimizers.dox \
../pmsco \
../projects \
@ -889,7 +891,7 @@ INPUT_FILTER =
# filters are used. If the FILTER_PATTERNS tag is empty or if none of the
# patterns match the file name, INPUT_FILTER is applied.
FILTER_PATTERNS = *.py=/usr/bin/doxypy
FILTER_PATTERNS = *.py=./py_filter.sh
# If the FILTER_SOURCE_FILES tag is set to YES, the input filter (if set using
# INPUT_FILTER) will also be used to filter the input files that are used for
@ -2083,12 +2085,6 @@ EXTERNAL_GROUPS = YES
EXTERNAL_PAGES = YES
# The PERL_PATH should be the absolute path and name of the perl script
# interpreter (i.e. the result of 'which perl').
# The default file (with absolute path) is: /usr/bin/perl.
PERL_PATH = /usr/bin/perl
#---------------------------------------------------------------------------
# Configuration options related to the dot tool
#---------------------------------------------------------------------------
@ -2102,15 +2098,6 @@ PERL_PATH = /usr/bin/perl
CLASS_DIAGRAMS = YES
# You can define message sequence charts within doxygen comments using the \msc
# command. Doxygen will then run the mscgen tool (see:
# http://www.mcternan.me.uk/mscgen/)) to produce the chart and insert it in the
# documentation. The MSCGEN_PATH tag allows you to specify the directory where
# the mscgen tool resides. If left empty the tool is assumed to be found in the
# default search path.
MSCGEN_PATH =
# You can include diagrams made with dia in doxygen documentation. Doxygen will
# then run dia to produce the diagram and insert it in the documentation. The
# DIA_PATH tag allows you to specify the directory where the dia binary resides.

2
docs/py_filter.sh Executable file
View File

@ -0,0 +1,2 @@
#!/bin/bash
python -m doxypypy.doxypypy -a -c $1

View File

@ -1,7 +1,17 @@
to compile the source code documentation, you need the following packages (naming according to Debian):
To compile the source code documentation in HTML format,
you need the following packages.
They are available from Linux distributions unless noted otherwise.
GNU make
doxygen
doxygen-gui (optional)
doxypy
python
doxypypy (pip)
graphviz
latex (optional)
java JRE
plantuml (download from plantuml.com)
export the location of plantuml.jar in the PLANTUML_JAR_PATH environment variable.
go to the `docs` directory and execute `make html`.
open `docs/html/index.html` in your browser.

View File

@ -22,7 +22,7 @@ Do not include the extension <code>.py</code> or a trailing slash.
Common args and project args are described below.
\subsection sec_common_args Common Arguments
\subsection sec_command_common Common Arguments
All common arguments are optional and default to more or less reasonable values if omitted.
They can be added to the command line in arbitrary order.
@ -34,7 +34,7 @@ The following table is ordered by importance.
| -h , --help | | Display a command line summary and exit. |
| -m , --mode | single (default), grid, swarm, genetic | Operation mode. |
| -d, --data-dir | file system path | Directory path for experimental data files (if required by project). Default: current working directory. |
| -o, --output-file | file system path | Base path and/or name for intermediate and output files. Default: pmsco_data |
| -o, --output-file | file system path | Base path and/or name for intermediate and output files. Default: pmsco0 |
| -t, --time-limit | decimal number | Wall time limit in hours. The optimizers try to finish before the limit. Default: 24.0. |
| -k, --keep-files | list of file categories | Output file categories to keep after the calculation. Multiple values can be specified and must be separated by spaces. By default, cluster and model (simulated data) of a limited number of best models are kept. See @ref sec_file_categories below. |
| --log-level | DEBUG, INFO, WARNING (default), ERROR, CRITICAL | Minimum level of messages that should be added to the log. |
@ -45,7 +45,7 @@ The following table is ordered by importance.
| --table-file | file system path | Name of the model table file in table scan mode. |
\subsubsection sec_file_categories File Categories
\subsubsection sec_command_files File Categories
The following category names can be used with the `--keep-files` option.
Multiple names can be specified and must be separated by spaces.
@ -60,7 +60,7 @@ Multiple names can be specified and must be separated by spaces.
| debug | debug files | delete |
| model | output files in ETPAI format: complete simulation (a_-1_-1_-1_-1) | keep |
| scan | output files in ETPAI format: scan (a_b_-1_-1_-1) | keep |
| symmetry | output files in ETPAI format: symmetry (a_b_c_-1_-1) | delete |
| domain | output files in ETPAI format: domain (a_b_c_-1_-1) | delete |
| emitter | output files in ETPAI format: emitter (a_b_c_d_-1) | delete |
| region | output files in ETPAI format: region (a_b_c_d_e) | delete |
| report| final report of results | keep always |
@ -79,7 +79,7 @@ you have to add the file categories that you want to keep, e.g.,
Do not specify `rfac` alone as this will effectively not return any file.
\subsection sec_project_args Project Arguments
\subsection sec_command_project_args Project Arguments
The following table lists a few recommended options that are handled by the project code.
Project options that are not listed here should use the long form to avoid conflicts in future versions.
@ -90,7 +90,7 @@ Project options that are not listed here should use the long form to avoid confl
| -s, --scans | project-dependent | Nick names of scans to use in calculation. The nick name selects the experimental data file and the initial state of the photoelectron. Multiple values can be specified and must be separated by spaces. |
\subsection sec_scanfile Experimental Scan Files
\subsection sec_command_scanfile Experimental Scan Files
The recommended way of specifying experimental scan files is using nick names (dictionary keys) and the @c --scans option.
A dictionary in the module code defines the corresponding file name, chemical species of the emitter and initial state of the photoelectron.
@ -99,7 +99,7 @@ This way, the file names and photoelectron parameters are versioned with the cod
whereas command line arguments may easily get forgotten in the records.
\subsection sec_project_example Argument Handling
\subsection sec_command_example Argument Handling
To handle command line arguments in a project module,
the module must define a <code>parse_project_args</code> and a <code>set_project_args</code> function.

View File

@ -105,12 +105,12 @@ is assigned to the project's cluster_generator attribute.
1. Implement a count_emitters method in your project class
if the project uses more than one emitter configurations.
It must have same method contract as pmsco.cluster.ClusterGenerator.count_emitters.
Specifically, it must return the number of emitter configurations of a given model, scan and symmetry.
Specifically, it must return the number of emitter configurations of a given model, scan and domain.
If there is only one configuration, the method does not need to be implemented.
2. Implement a create_cluster method in your project class.
It must have same method contract as pmsco.cluster.ClusterGenerator.create_cluster.
Specifically, it must return a cluster.Cluster object for the given model, scan, symmetry and emitter configuration.
Specifically, it must return a cluster.Cluster object for the given model, scan, domain and emitter configuration.
The emitter atoms must be marked according to the emitter configuration specified by the index argument.
Note that, depending on the index.emit argument, all emitter atoms must be marked
or only the ones of the corresponding emitter configuration.

View File

@ -1,32 +1,32 @@
/*! @page pag_concepts_symmetry Symmetry
/*! @page pag_concepts_domain Domain
\section sec_symmetry Symmetry and Domain Averaging
\section sec_domain Domain Averaging
A _symmetry_ under PMSCO is a discrete variant of a set of calculation parameters (including the atomic cluster)
A _domain_ under PMSCO is a discrete variant of a set of calculation parameters (including the atomic cluster)
that is derived from the same set of model parameters
and that contributes incoherently to the measured diffraction pattern.
A symmetry may be represented by a special symmetry parameter which is not subject to optimization.
A domain may be represented by special domain parameters that are not subject to optimization.
For instance, a real sample may have additional rotational domains that are not present in the cluster,
increasing the symmetry from three-fold to six-fold.
For instance, a real sample may have rotational domains that are not present in the cluster,
changing the symmetry from three-fold to six-fold.
Or, an adsorbate may be present in a number of different lateral configurations on the substrate.
In the first case, it may be sufficient to fold calculated data in the proper way to generate the same symmetry as in the measurement.
In the latter case, it may be necessary to execute a scattering calculation for each possible orientation or a representative number of possible orientations.
PMSCO provides the basic framework to spawn multiple calculations according to the number of symmetries (cf. \ref sec_tasks).
The actual data reduction from multiple symmetries to one measurement needs to be implemented on the project level.
PMSCO provides the basic framework to spawn multiple calculations according to the number of domains (cf. \ref sec_tasks).
The actual data reduction from multiple domain to one measurement needs to be implemented on the project level.
This section explains the necessary steps.
1. Your project needs to populate the pmsco.project.Project.symmetries list.
For each symmetry, add a dictionary of symmetry parameters, e.g. <code>{'angle_azi': 15.0}</code>.
There must be at least one symmetry in a project, otherwise no calculation is executed.
1. Your project needs to populate the pmsco.project.Project.domains list.
For each domain, add a dictionary of domain parameters, e.g. <code>{'angle_azi': 15.0}</code>.
At least one domain must be declared in a project, otherwise no calculation is executed.
2. The project may apply the symmetry of a task to the cluster and parameter file if necessary.
The pmsco.project.Project.create_cluster and pmsco.project.Project.create_params methods receive the index of the particular symmetry in addition to the model parameters.
3. The project combines the results of the calculations for the various symmetries into one dataset that can be compared to the measurement.
The default method implemented in pmsco.project.Project just adds up all calculations with equal weight.
If you need more control, you need to override the pmsco.project.Project.combine_symmetries method and implement your own algorithm.
2. The project may use the domain index of a task to build the cluster and parameter file as necessary.
The pmsco.project.Project.create_cluster and pmsco.project.Project.create_params methods receive the index of the particular domain in addition to the model parameters.
3. The project combines the results of the calculations for the various domains into one dataset that can be compared to the measurement.
The default method implemented in pmsco.project.Project just adds up all calculations with customizable weight.
It uses the special model parameters `wdom1`, `wdom2`, ... (if defined, default 1) to weight each domain.
If you need more control, override the pmsco.project.Project.combine_domains method and implement your own algorithm.
*/

View File

@ -12,7 +12,7 @@ mandated by the project but also efficient calculations in a multi-process envir
A concrete set of parameters is called @ref sec_task_model.
2. The sample was measured multiple times or under different conditions (initial states, photon energy, emission angle).
Each contiguous measured dataset is called a @ref sec_task_scan.
3. The measurement averages over multiple inequivalent domains, cf. @ref sec_task_symmetry.
3. The measurement averages over multiple inequivalent domains, cf. @ref sec_task_domain.
4. The measurement includes multiple geometrically inequivalent emitters, cf. @ref sec_task_emitter.
5. The calculation should be distributed over multiple processes that run in parallel to reduce the wall time, cf. @ref sec_task_region.
@ -24,7 +24,7 @@ as shown schematically in the following diagram.
class CalculationTask {
model
scan
symmetry
domain
emitter
region
..
@ -55,7 +55,7 @@ class Scan {
alphas
}
class Symmetry {
class Domain {
index
..
rotation
@ -75,13 +75,13 @@ class Region {
CalculationTask *-- Model
CalculationTask *-- Scan
CalculationTask *-- Symmetry
CalculationTask *-- Domain
CalculationTask *-- Emitter
CalculationTask *-- Region
class Project {
scans
symmetries
domains
model_handler
cluster_generator
}
@ -98,7 +98,7 @@ class ModelHandler {
Model ..> ModelHandler
Scan ..> Project
Symmetry ..> Project
Domain ..> Project
Emitter ..> ClusterGenerator
Region ..> Project
@ -141,29 +141,29 @@ PMSCO runs a separate calculation for each scan file and compares the combined r
This is sometimes called a _global fit_.
\subsection sec_task_symmetry Symmetry
\subsection sec_task_domain Domain
A _symmetry_ is a discrete variant of a set of calculation parameters (including the atomic cluster)
A _domain_ is a discrete variant of a set of calculation parameters (including the atomic cluster)
that is independent of the _model_ and contributes incoherently to the measured diffraction pattern.
For instance, for a system that includes two inequivalent structural domains,
two separate clusters have to be generated and calculated for each model.
The symmetry parameter is not subject to optimization.
The domain parameter is not subject to optimization.
However, if the branching ratio is unknown a priori, a model parameter can be introduced
to control the relative contribution of a particular symmetry to the diffraction pattern.
In that case, the @ref pmsco.project.Project.combine_symmetries method must be overridden.
to control the relative contribution of a particular domain to the diffraction pattern.
The basic @ref pmsco.project.Project.combine_domains method reads the special model parameters `wdom1`, `wdom2`, etc. to weight the individual domains.
A symmetry is identified by its index which is an index into the project's symmetries table (pmsco.project.Project.symmetries).
It is up to the user project to give a physical description of the symmetry, e.g. a rotation angle,
by assigning a meaningful value (e.g. a dictionary with key-value pairs) to the symmetries table.
A domain is identified by its index which is an index into the project's domains table (pmsco.project.Project.domains).
It is up to the user project to give a physical description of the domain, e.g. a rotation angle,
by assigning a meaningful value (e.g. a dictionary with key-value pairs) to the domains table.
The cluster generator can then read the value from the table rather than from constants in the code.
The figure shows two examples of symmetry parameters.
The corresponding symmetry table could be set up like this:
The figure shows two examples of domain parameters.
The corresponding domains table could be set up like this:
@code{.py}
project.add_symmetry = {'rotation': 0.0, 'registry': 0.0}
project.add_symmetry = {'rotation': 30.0, 'registry': 0.0}
project.add_domain({'rotation': 0.0, 'registry': 0.0})
project.add_domain({'rotation': 30.0, 'registry': 0.0})
@endcode
@ -173,9 +173,9 @@ The _emitter_ component of the calculation task selects a specific emitter confi
This is merely an index whose interpretation is up to the cluster generator.
The default emitter handler enumerates the emitter index from 1 to the emitter count reported by the cluster generator.
The emitter count and list of emitters may depend on model, scan and symmetry.
The emitter count and list of emitters may depend on model, scan and domain.
The cluster generator can tailor a cluster to the given model, scan, symmetry and emitter index.
The cluster generator can tailor a cluster to the given model, scan, domain and emitter index.
For example, in a large unit cell with many inequivalent emitters,
the generator might return a small sub-cluster around the actual emitter for better calculation performance
since the distant atoms of the unit cell do not contribute to the diffraction pattern.
@ -237,20 +237,20 @@ scan
object ScanHandler
object "Sym: CalculationTask" as Sym {
object "Domain: CalculationTask" as Domain {
index = (i,j,k,-1,-1)
model
scan
symmetry
domain
}
object "SymmetryHandler" as SymHandler
object "DomainHandler" as DomainHandler
object "Emitter: CalculationTask" as Emitter {
index = (i,j,k,l,-1)
model
scan
symmetry
domain
emitter
}
@ -260,7 +260,7 @@ object "Region: CalculationTask" as Region {
index = (i,j,k,l,m)
model
scan
symmetry
domain
emitter
region
}
@ -270,14 +270,14 @@ object RegionHandler
Root "1" o.. "1..*" Model
Model "1" o.. "1..*" Scan
Scan "1" o.. "1..*" Sym
Sym "1" o.. "1..*" Emitter
Scan "1" o.. "1..*" Domain
Domain "1" o.. "1..*" Emitter
Emitter "1" o.. "1..*" Region
(Root, Model) .. ModelHandler
(Model, Scan) .. ScanHandler
(Scan, Sym) .. SymHandler
(Sym, Emitter) .. EmitterHandler
(Scan, Domain) .. DomainHandler
(Domain, Emitter) .. EmitterHandler
(Emitter, Region) .. RegionHandler
@enduml
@ -293,7 +293,7 @@ and the tasks are passed back through the task handler stack.
In this phase, each level joins the datasets from the sub-tasks to the data requested by the parent task.
For example, at the lowest level, one result file is present for each region.
The region handler gathers all files that correspond to the same parent task
(i.e. have the same emitter, symmetry, scan and model attributes),
(i.e. have the same emitter, domain, scan and model attributes),
joins them to one file which includes all regions,
links the file to the parent task and passes the result to the next higher level.

View File

@ -8,28 +8,30 @@ The code for a PMSCO job consists of the following components.
skinparam componentStyle uml2
component "project" as project
component "PMSCO" as pmsco
component "project" as project
component "scattering code\n(calculator)" as calculator
interface "command line" as cli
interface "input files" as input
interface "output files" as output
interface "experimental data" as data
interface "results" as results
interface "output files" as output
cli --> pmsco
data -> project
project ..> pmsco
pmsco ..> project
pmsco ..> calculator
cli --> project
input -> calculator
calculator -> output
pmsco -> results
@enduml
The main entry point is the _PMSCO_ module.
It implements a task loop to carry out the structural optimization
and provides an interface between calculation programs and project-specific code.
It also provides common utility classes and functions for the handling project data.
The _project_ consists of program code, system and experimental parameters
The _project_ consists of program code and parameters
that are specific to a particular experiment and calculation job.
The project code reads experimental data, defines the parameter dictionary of the model,
and contains code to generate the cluster, parameter and phase files for the scattering code.
@ -40,10 +42,6 @@ which accepts detailed input files
(parameters, atomic coordinates, emitter specification, scattering phases)
and outputs an intensity distribution of photoelectrons versus energy and/or angle.
The _PMSCO core_ interfaces between the project and the calculator.
It carries out the structural optimization and manages the calculation tasks.
It generates and sends input files to the calculator and reads back the output.
\section sec_control_flow Control flow

View File

@ -10,7 +10,7 @@ digraph G {
create_params;
calc_modf;
calc_rfac;
comb_syms;
comb_doms;
comb_scans;
}
*/
@ -24,11 +24,11 @@ digraph G {
model_handler -> model_creator [constraint=false, label="optimize"];
}
subgraph cluster_symmetry {
label = "symmetry handler";
subgraph cluster_domain {
label = "domain handler";
rank = same;
sym_creator [label="expand models", group=creators];
sym_handler [label="combine symmetries", group=handlers];
dom_creator [label="expand models", group=creators];
dom_handler [label="combine domains", group=handlers];
}
subgraph cluster_scan {
@ -47,15 +47,15 @@ digraph G {
calculator [label="calculator (EDAC)", shape=box];
model_creator -> sym_creator [label="model", style=bold];
sym_creator -> scan_creator [label="models", style=bold];
model_creator -> dom_creator [label="model", style=bold];
dom_creator -> scan_creator [label="models", style=bold];
scan_creator -> calc_creator [label="models", style=bold];
calc_creator -> calculator [label="clusters,\rparameters", style=bold];
calculator -> calc_handler [label="output files", style=bold];
calc_handler -> scan_handler [label="raw data files", style=bold];
scan_handler -> sym_handler [label="combined scans", style=bold];
sym_handler -> model_handler [label="combined symmetries", style=bold];
scan_handler -> dom_handler [label="combined scans", style=bold];
dom_handler -> model_handler [label="combined domains", style=bold];
mode [shape=parallelogram];
mode -> model_creator [lhead="cluster_model"];
@ -76,8 +76,8 @@ digraph G {
calc_rfac [shape=cds, label="R-factor function"];
calc_rfac -> model_handler [style=dashed];
comb_syms [shape=cds, label="symmetry combination rule"];
comb_syms -> sym_handler [style=dashed];
comb_doms [shape=cds, label="domain combination rule"];
comb_doms -> dom_handler [style=dashed];
comb_scans [shape=cds, label="scan combination rule"];
comb_scans -> scan_handler [style=dashed];

View File

@ -2,10 +2,15 @@
\section sec_run Running PMSCO
To run PMSCO you need the PMSCO code and its dependencies (cf. @ref pag_install),
a code module that contains the project-specific code,
a customized code module that contains the project-specific code,
and one or several files containing the scan parameters and experimental data.
Please check the <code>projects</code> folder for examples of project modules.
For a detailed description of the command line, see @ref pag_command.
The run-time arguments can either be passed on the command line
(@ref pag_command - the older and less flexible way)
or in a JSON-formatted run-file
(@ref pag_runfile - the recommended new and flexible way).
For beginners, it's also possible to hard-code all project parameters in the custom project module.
\subsection sec_run_single Single Process
@ -14,40 +19,28 @@ Run PMSCO from the command prompt:
@code{.sh}
cd work-dir
python pmsco-dir project-dir/project.py [pmsco-arguments] [project-arguments]
python pmsco-dir -r run-file
@endcode
where <code>work-dir</code> is the destination directory for output files,
<code>pmsco-dir</code> is the directory containing the <code>__main__.py</code> file,
<code>project.py</code> is the specific project module,
and <code>project-dir</code> is the directory where the project file is located.
PMSCO is run in one process which handles all calculations sequentially.
<code>run-file</code> is a json-formatted configuration file that defines run-time parameters.
The format and content of the run-file is described in a separate section.
The command line arguments are divided into common arguments interpreted by the main pmsco code (pmsco.py),
and project-specific arguments interpreted by the project module.
In this form, PMSCO is run in one process which handles all calculations sequentially.
Example command line for a single EDAC calculation of the two-atom project:
@code{.sh}
cd work/twoatom
python ../../pmsco ../../projects/twoatom/twoatom.py -s ea -o twoatom-demo -m single
python ../../pmsco -r twoatom-hemi.json
@endcode
This command line executes the main pmsco module <code>pmsco.py</code>.
The main module loads the project file <code>twoatom.py</code> as a plug-in
and starts processing the common arguments.
The <code>twoatom.py</code> module contains only project-specific code
with several defined entry-points called from the main module.
The information which project to load is contained in the <code>twoatom-hemi.json</code> file,
along with all common and specific project arguments.
In the command line above, the <code>-o twoatom-demo</code> and <code>-m single</code> arguments
are interpreted by the pmsco module.
<code>-o</code> sets the base name of output files,
and <code>-m</code> selects the operation mode to a single calculation.
The scan argument is interpreted by the project module.
It refers to a dictionary entry that declares the scan file, the emitting atomic species, and the initial state.
In this example, the project looks for the <code>twoatom_energy_alpha.etpai</code> scan file in the project directory,
and calculates the modulation function for a N 1s initial state.
The kinetic energy and emission angles are contained in the scan file.
This example can be run for testing.
All necessary parameters and data files are included in the code repository.
\subsection sec_run_parallel Parallel Processes
@ -61,29 +54,45 @@ The slave processes will run the scattering calculations, while the master coord
and optimizes the model parameters (depending on the operation mode).
For optimum performance, the number of processes should not exceed the number of available processors.
To start a two-hour optimization job with multiple processes on an quad-core workstation with hyperthreading:
To start an optimization job with multiple processes on an quad-core workstation with hyperthreading:
@code{.sh}
cd work/my_project
mpiexec -np 8 pmsco-dir/pmsco project-dir/project.py -o my_job_0001 -t 2 -m swarm
mpiexec -np 8 --use-hwthread-cpus python pmsco-dir -r run-file
@endcode
The `--use-hwthread` option may be necessary on certain hyperthreading architectures.
\subsection sec_run_hpc High-Performance Cluster
The script @c bin/qpmsco.ra.sh takes care of submitting a PMSCO job to the slurm queue of the Ra cluster at PSI.
The script can be adapted to other machines running the slurm resource manager.
The script generates a job script based on @c pmsco.ra.template,
substituting the necessary environment and parameters,
and submits it to the queue.
PMSCO is ready to run with resource managers on cluster machines.
Code for submitting jobs to the slurm queue of the Ra cluster at PSI is included in the pmsco.schedule module
(see also the PEARL wiki pages in the PSI intranet).
The job parameters are entered in a separate section of the run file, cf. @pag_runfile for details.
Other machines can be supported by sub-classing pmsco.schedule.JobSchedule or pmsco.schedule.SlurmSchedule.
Execute @c bin/qpmsco.ra.sh without arguments to see a summary of the arguments.
If a schedule section is present and enabled in the run file,
the following command will submit a job to the cluster machine
rather than starting a calculation directly:
To submit a job to the PSI clusters (see also the PEARL-Wiki page MscCalcRa),
the analog command to the previous section would be:
@code{.sh}
bin/qpmsco.ra.sh my_job_0001 1 8 2 projects/my_project/project.py swarm
cd ~/pmsco
python pmsco -r run-file.json
@endcode
The command will copy the pmsco and project source trees as well as the run file and job script to a job directory
under the output directory specified in the project section of the run file.
The full path of the job directory is _output-dir/job-name.
The directory must be empty or not existing when you run the above command.
Be careful to specify correct project file paths.
The output and data directories should be specified as absolute paths.
The scheduling command will also load the project and scan files.
Many parameter errors can, thus, be caught and fixed before the job is submitted to the queue.
The run file also offers an option to stop just before submitting the job
so that you can inspect the job files and submit the job manually.
Be sure to consider the resource allocation policy of the cluster
before you decide on the number of processes.
Requesting less resources will prolong the run time but might increase the scheduling priority.

View File

@ -9,7 +9,7 @@ the public repository at https://gitlab.psi.ch/pearl/pmsco.
For their own developments, users should clone the repository.
Changes to common code should be submitted via pull requests.
The program code of PMSCO and its external programs is written in Python, C++ and Fortran.
The program code of PMSCO and its external programs is written in Python 3.6, C++ and Fortran.
The code will run in any recent Linux environment on a workstation or in a virtual machine.
Scientific Linux, CentOS7, [Ubuntu](https://www.ubuntu.com/)
and [Lubuntu](http://lubuntu.net/) (recommended for virtual machine) have been tested.
@ -18,6 +18,7 @@ or cluster with 20-50 available processor cores is recommended.
The program requires about 2 GB of RAM per process.
The recommended IDE is [PyCharm (community edition)](https://www.jetbrains.com/pycharm).
[Spyder](https://docs.spyder-ide.org/index.html) is a good alternative with a better focus on scientific data.
The documentation in [Doxygen](http://www.stack.nl/~dimitri/doxygen/index.html) format is part of the source code.
The Doxygen compiler can generate separate documentation in HTML or LaTeX.
@ -38,7 +39,7 @@ The code depends on the following libraries:
- SWIG
- BLAS
- LAPACK
- Python 2.7 or 3.6
- Python 3.6
- Numpy >= 1.13
- Python packages listed in the requirements.txt file
@ -50,12 +51,14 @@ and it's difficult to switch between different Python versions.
On the PSI cluster machines, the environment must be set using the module system and conda (on Ra).
Details are explained in the PEARL Wiki.
PMSCO runs under Python 2.7 or Python 3.6.
Since Python 2 is being deprecated, Python 3.6 is recommended.
Compatibility with Python 2.7 is currently maintained by using
the [future package](http://python-future.org/compatible_idioms.html)
but may be dropped at any time.
The following tools are required to compile the documentation:
- doxygen
- doxypypy
- graphviz
- Java
- [plantUML](https://plantuml.com)
- LaTeX (optional, generally not recommended)
\subsection sec_install_instructions Instructions
@ -71,7 +74,6 @@ sudo apt install \
binutils \
build-essential \
doxygen \
doxypy \
f2c \
g++ \
gcc \
@ -97,18 +99,20 @@ cd /usr/lib
sudo ln -s /usr/lib/libblas/libblas.so.3 libblas.so
@endcode
Install Miniconda according to their [instructions](https://conda.io/docs/user-guide/install/index.html),
Download and install [Miniconda](https://conda.io/),
then configure the Python environment:
@code{.sh}
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh
bash ~/miniconda.sh
conda create -q --yes -n pmsco python=3.6
source activate pmsco
conda activate pmsco
conda install -q --yes -n pmsco \
pip \
"numpy>=1.13" \
scipy \
ipython \
mpi4py \
matplotlib \
nose \
mock \
@ -116,21 +120,24 @@ conda install -q --yes -n pmsco \
statsmodels \
swig \
gitpython
pip install periodictable attrdict fasteners
pip install periodictable attrdict commentjson fasteners mpi4py doxypypy
@endcode
@note `mpi4pi` should be installed via pip, _not_ conda.
conda might install its own MPI libraries, which can cause a conflict with system libraries.
(cf. [mpi4py forum](https://groups.google.com/forum/#!topic/mpi4py/xpPKcOO-H4k))
\subsubsection sec_install_singularity Installation in Singularity container
A [Singularity](https://www.sylabs.io/guides/2.5/user-guide/index.html) container
A [Singularity](https://sylabs.io/singularity/) container
contains all OS and Python dependencies for running PMSCO.
Besides the Singularity executable, nothing else needs to be installed in the host system.
This may be the fastest way to get PMSCO running.
For installation of Singularity,
see their [user guide](https://www.sylabs.io/guides/2.5/user-guide/installation.html).
On newer Linux systems (e.g. Ubuntu 18.04), Singularity is available from the package manager.
Installation in a virtual machine on Windows or Mac are straightforward
thanks to the [Vagrant system](https://www.vagrantup.com/).
To get started with Singularity,
download it from [sylabs.io](https://www.sylabs.io/singularity/) and install it according to their instructions.
On Windows, Singularity can be installed in a virtual machine using the [Vagrant](https://www.vagrantup.com/)
script included under `extras/vagrant`.
After installing Singularity,
check out PMSCO as explained in the @ref sec_compile section:
@ -138,6 +145,7 @@ check out PMSCO as explained in the @ref sec_compile section:
@code{.sh}
cd ~
mkdir containers
cd containers
git clone git@git.psi.ch:pearl/pmsco.git pmsco
cd pmsco
git checkout master
@ -145,11 +153,14 @@ git checkout -b my_branch
@endcode
Then, either copy a pre-built container into `~/containers`,
or build one from a script provided by the PMSCO repository:
or build one from the definition file included under extras/singularity.
You may need to customize the definition file to match the host OS
or to install compatible OpenMPI libraries,
cf. cf. [Singularity user guide](https://sylabs.io/guides/3.7/user-guide/mpi.html).
@code{.sh}
cd ~/containers
sudo singularity build pmsco.simg ~/containers/pmsco/extras/singularity/singularity_python2
sudo singularity build pmsco.sif ~/containers/pmsco/extras/singularity/singularity_python3
@endcode
To work with PMSCO, start an interactive shell in the container and switch to the pmsco environment.
@ -157,8 +168,9 @@ Note that the PMSCO code is outside the container and can be edited with the usu
@code{.sh}
cd ~/containers
singularity shell pmsco.simg
source activate pmsco
singularity shell pmsco.sif
. /opt/miniconda/etc/profile.d/conda.sh
conda activate pmsco
cd ~/containers/pmsco
make all
nosetests -w tests/
@ -170,16 +182,17 @@ Or call PMSCO from outside:
cd ~/containers
mkdir output
cd output
singularity run ../pmsco.simg python ~/containers/pmsco/pmsco path/to/your-project.py arg1 arg2 ...
singularity run -e ../pmsco.sif ~/containers/pmsco/pmsco -r path/to/your-runfile
@endcode
For parallel processing, prepend `mpirun -np X` to the singularity command as needed.
Note that this requires "compatible" OpenMPI versions on the host and container to avoid runtime errors.
\subsubsection sec_install_extra Additional Applications
For working with the code and data, some other applications are recommended.
The PyCharm IDE can be installed from the Ubuntu software center.
The PyCharm IDE (community edition) can be installed from the Ubuntu software center.
The following commands install other useful helper applications:
@code{.sh}
@ -189,10 +202,24 @@ gitg \
meld
@endcode
To produce documentation in PDF format (not recommended on virtual machine), install LaTeX:
To compile the documentation install the following tools.
The basic documentation is in HTML format and can be opened in any internet browser.
If you have a working LaTeX installation, a PDF document can be produced as well.
It is not recommended to install LaTeX just for this documentation, however.
@code{.sh}
sudo apt-get install texlive-latex-recommended
sudo apt install \
doxygen \
graphviz \
default-jre
conda activate pmsco
conda install -q --yes -n pmsco doxypypy
wget -O plantuml.jar https://sourceforge.net/projects/plantuml/files/plantuml.jar/download
sudo mkdir /opt/plantuml/
sudo mv plantuml.jar /opt/plantuml/
echo "export PLANTUML_JAR_PATH=/opt/plantuml/plantuml.jar" | sudo tee /etc/profile.d/pmsco-env.sh
@endcode
@ -252,7 +279,7 @@ mkdir work
cd work
mkdir twoatom
cd twoatom/
nice python ~/pmsco/pmsco ~/pmsco/projects/twoatom/twoatom.py -s ea -o twoatom_energy_alpha -m single
nice python ~/pmsco/pmsco -r ~/pmsco/projects/twoatom/twoatom-energy.json
@endcode
Runtime warnings may appear because the twoatom project does not contain experimental data.

View File

@ -24,28 +24,27 @@ Other programs may be integrated as well.
- angle or energy scanned XPD.
- various scanning modes including energy, polar angle, azimuthal angle, analyser angle.
- averaging over multiple symmetries (domains or emitters).
- averaging over multiple domains and emitters.
- global optimization of multiple scans.
- structural optimization algorithms: particle swarm optimization, grid search, gradient search.
- structural optimization algorithms: genetic, particle swarm, grid search.
- calculation of the modulation function.
- calculation of the weighted R-factor.
- automatic parallel processing using OpenMPI.
\section sec_project Optimization Projects
\section sec_intro_project Optimization Projects
To set up a new optimization project, you need to:
- create a new directory under projects.
- create a new Python module in this directory, e.g., my_project.py.
- implement a sub-class of project.Project in my_project.py.
- override the create_cluster, create_params, and create_domain methods.
- optionally, override the combine_symmetries and combine_scans methods.
- override the create_cluster, create_params, and create_model_space methods.
- optionally, override the combine_domains and combine_scans methods.
- add a global function create_project to my_project.py.
- provide experimental data files (intensity or modulation function).
For details, see the documentation of the Project class,
and the example projects.
For details, see @ref pag_project, the documentation of the pmsco.project.Project class and the example projects.
\section sec_intro_start Getting Started
@ -54,8 +53,9 @@ and the example projects.
- @ref pag_concepts_tasks
- @ref pag_concepts_emitter
- @ref pag_install
- @ref pag_project
- @ref pag_run
- @ref pag_command
- @ref pag_opt
\section sec_license License Information
@ -70,6 +70,6 @@ These programs may not be used without an explicit agreement by the respective o
\author Matthias Muntwiler, <mailto:matthias.muntwiler@psi.ch>
\version This documentation is compiled from version $(REVISION).
\copyright 2015-2019 by [Paul Scherrer Institut](http://www.psi.ch)
\copyright 2015-2021 by [Paul Scherrer Institut](http://www.psi.ch)
\copyright Licensed under the [Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0)
*/

View File

@ -3,28 +3,34 @@
\subsection sec_opt_swarm Particle swarm
\subsection sec_opt_swarm Particle swarm optimization (PSO)
The particle swarm algorithm is adapted from
The particle swarm optimization (PSO) algorithm seeks to find a global optimum in a multi-dimensional model space
by employing the _swarm intelligence_ of a number of particles traversing space,
each at its own velocity and direction,
but adjusting its trajectory based on its own experience and the results of its peers.
The PSO algorithm is adapted from
D. A. Duncan et al., Surface Science 606, 278 (2012).
It is implemented in the @ref pmsco.optimizers.swarm module.
The general parameters of the genetic algorithm are specified in the @ref Project.optimizer_params dictionary.
The general parameters of the algorithm are specified in the @ref Project.optimizer_params dictionary.
Some of them can be changed on the command line.
| Parameter | Command line | Range | Description |
| --- | --- | --- | --- |
| pop_size | --pop-size | &ge; 1 | |
| pop_size | --pop-size | &ge; 1 | Recommended 20..50 |
| position_constrain_mode | | default bounce | Resolution of domain limit violations. |
| seed_file | --seed-file | a file path, default none | |
| seed_limit | --seed-limit | 0..pop_size | |
| rfac_limit | | 0..1, default 0.8 | Accept only seed values that have a lower R-factor. |
| recalc_seed | | True or False, default True | |
The domain parameters have the following meanings:
The model space attributes have the following meaning:
| Parameter | Description |
| --- | --- |
| start | Seed model. The start values are copied into particle 0 of the initial population. |
| start | Start value of particle 0 in first iteration. |
| min | Lower limit of the parameter range. |
| max | Upper limit of the parameter range. |
| step | Not used. |
@ -32,23 +38,23 @@ The domain parameters have the following meanings:
\subsubsection sec_opt_seed Seeding a population
By default, one particle is initialized with the start value declared in the parameter domain,
and the other are set to random values within the domain.
By default, one particle is initialized with the start value declared with the model space,
and the other ones are initialized at random positions in the model space.
You may initialize more particles of the population with specific values by providing a seed file.
The seed file must have a similar format as the result `.dat` files
with a header line specifying the column names and data rows containing the values for each particle.
A good practice is to use a previous `.dat` file and remove unwanted rows.
To continue an interrupted optimization,
the `.dat` file from the previous optimization can be used as is.
The `.dat` file from a previous optimization job can be used as is to continue the optimization,
also in a different optimization mode.
The seeding procedure can be tweaked by several optimizer parameters (see above).
PMSCO normally loads the first rows up to population size - 1 or up to the `seed_limit` parameter,
whichever is lower.
If an `_rfac` column is present, the file is first sorted by R-factor and only the best models are loaded.
Models that resulted in an R-factor above the `rfac_limit` parameter are always ignored.
Models that resulted in an R-factor above the `rfac_limit` parameter are ignored in any case.
During the optimization process, all models loaded from the seed file are normally re-calculated.
In the first iteration of the optimization run, the models loaded from the seed file are re-calculated by default.
This may waste CPU time if the calculation is run under the same conditions
and would result in exactly the same R-factor,
as is the case if the seed is used to continue a previous optimization, for example.
@ -58,25 +64,26 @@ and PMSCO will use the R-factor value from the seed file rather than calculating
\subsubsection sec_opt_patch Patching a running optimization
While an optimization process is running, the user can manually patch the population with arbitrary values,
While an optimization job is running, the user can manually patch the population with arbitrary values,
for instance, to kick the population out of a local optimum or to drive it to a less sampled parameter region.
To patch a running population, prepare a population file named `pmsco_patch.pop` and copy it to the work directory.
The file must have a similar format as the result `.dat` files
The patch file must have the same format as the result `.dat` files
with a header line specifying the column names and data rows containing the values.
It should contain as many rows as particles to be patched but not more than the size of the population.
The columns must include a `_particle` column which specifies the particle to patch
as well as the model parameters to be changed.
The columns must include a `_particle` column and the model parameters to be changed.
The `_particle` column specifies the index of the particle that is patched (ranging from 0 to population size - 1).
Parameters that should remain unaffected can be left out,
extra columns including `_gen`, `_rfac` etc. are ignored.
PMSCO checks the file for syntax errors and ignores it if errors are present.
Parameter values that lie outside the domain boundary are ignored.
Individual parameter values that lie outside the domain boundary are silently ignored.
Successful or failed patching is logged at warning level.
The patch file is re-applied whenever its time stamp has changed.
PMSCO keeps track of the time stamp of the file and re-applies the patch whenever the time stamp has changed.
\attention Do not edit the patch file in the working directory
to prevent it from being read in an unfinished state or multiple times.
\attention Since each change of time stamp may trigger patching,
do not edit the patch file in the working directory
to prevent it from being read in an unfinished state or multiple times!
\subsection sec_opt_genetic Genetic optimization
@ -103,7 +110,7 @@ Some of them can be changed on the command line.
| Parameter | Command line | Range | Description |
| --- | --- | --- | --- |
| pop_size | --pop-size | &ge; 1 | |
| pop_size | --pop-size | &ge; 1 | Recommended 10..40 |
| mating_factor | | 1..pop_size, default 4 | |
| strong_mutation_probability | | 0..1, default 0.01 | Probability that a parameter undergoes a strong mutation. |
| weak_mutation_probability | | 0..1, default 1 | Probability that a parameter undergoes a weak mutation. This parameters should be left at 1. Lower values tend to produce discrete parameter values. Weak mutations can be tuned by the step domain parameters. |
@ -113,7 +120,7 @@ Some of them can be changed on the command line.
| rfac_limit | | 0..1, default 0.8 | Accept only seed values that have a lower R-factor. |
| recalc_seed | | True or False, default True | |
The domain parameters have the following meanings:
The model space attributes have the following meaning:
| Parameter | Description |
| --- | --- |
@ -129,7 +136,11 @@ cf. sections @ref sec_opt_seed and @ref sec_opt_swarm.
\subsection sec_opt_grid Grid search
The grid search algorithm samples the parameter space at equidistant steps.
The order of calculations is randomized so that distant parts of the parameter space are sampled at an early stage.
It is implemented in the @ref pmsco.optimizers.grid module.
The model space attributes have the following meaning.
The order of calculations is random so that results from different parts of the model space become available early.
| Parameter | Description |
| --- | --- |
@ -149,15 +160,19 @@ The table scan calculates models from an explicit table of model parameters.
It can be used to recalculate models from a previous optimization run on other experimental data,
as an interface to external optimizers,
or as a simple input of manually edited model parameters.
It is implemented in the @ref pmsco.optimizers.table module.
The table can be stored in an external file that is specified on the command line,
or supplied in one of several forms by the custom project class.
The table can be left unchanged during the calculations,
or new models can be added on the go.
Duplicate models are ignored.
@attention Because it is not easily possible to know when and which models have been read from the table file, if you do modify the table file during processing, pay attention to the following hints:
1. The file on disk must not be locked for more than a second. Do not keep the file open unnecessarily.
2. _Append_ new models to the end of the table rather than overwriting previous ones. Otherwise, some models may be lost before they have been calculated.
@attention Because it is not easily possible to know when the table file is read,
if you do modify the table file while calculations are running,
1. Do not keep the file locked for longer than a second.
2. Append new models to the end of the table rather than overwriting previous ones.
3. Delete lines only if you're sure that they are not needed any more.
The general parameters of the table scan are specified in the @ref Project.optimizer_params dictionary.
Some of them can be changed on the command line or in the project class (depending on how the project class is implemented).
@ -167,7 +182,7 @@ Some of them can be changed on the command line or in the project class (dependi
| pop_size | --pop-size | &ge; 1 | Number of models in a generation (calculated in parallel). In table mode, this parameter is not so important and can be left at the default. It has nothing to do with table size. |
| table_file | --table-file | a file path, default none | |
The domain parameters have the following meanings.
The model space attributes have the following meaning.
Models that violate the parameter range are not calculated.
| Parameter | Description |

454
docs/src/project.dox Normal file
View File

@ -0,0 +1,454 @@
/*! @page pag_project Setting up a new project
\section sec_project Setting Up a New Project
This topic guides you through the setup of a new project.
Be sure to check out the examples in the projects folder
and the code documentation as well.
The basic steps are:
1. Create a new folder under `projects`.
2. In the new folder, create a Python module for the project (subsequently called _the project module_).
3. In the project module, define a cluster generator class which derives from pmsco.cluster.ClusterGenerator.
4. In the project module, define a project class which derives from pmsco.project.Project.
5. In the same folder as the project module, create a JSON run-file.
\subsection sec_project_module Project Module
A skeleton of the project module file (with some common imports) may look like this:
~~~~~~{.py}
import logging
import math
import numpy as np
import periodictable as pt
from pathlib import Path
import pmsco.cluster
import pmsco.data
import pmsco.dispatch
import pmsco.elements.bindingenergy
import pmsco.project
logger = logging.getLogger(__name__)
class MyClusterGenerator(pmsco.cluster.ClusterGenerator):
def create_cluster(self, model, index):
clu = pmsco.cluster.Cluster()
# ...
return clu
def count_emitters(self, model, index):
# ...
return 1
class MyProject(pmsco.project.Project):
def __init__(self):
super().__init__()
# ...
self.cluster_generator = MyClusterGenerator(self)
def create_model_space():
spa = pmsco.project.ModelSpace()
# ...
return spa
def create_params(self, model, index):
par = pmsco.project.CalculatorParams()
# ...
return par
~~~~~~
The main purpose of the `MyProject` class is to bundle the project-specific calculation parameters and code.
The purpose of the `MyClusterGenerator` class is to produce atomic clusters as a function of a number of model parameters.
For the project to be useful, some of the methods in the skeleton above need to be implemented.
The individual methods are discussed in the following.
Further descriptions can be found in the documentation of the code.
\subsection sec_project_cluster Cluster Generator
The cluster generator is a project-specific Python object that produces a cluster, i.e., a list of atomic coordinates,
based on a small number of model parameters whenever PMSCO requires it.
The most important member of a cluster generator is its `create_cluster` method.
At least this method must be implemented for a functional cluster generator.
A generic `count_emitters` method is implemented in the base class.
It needs to be overridden if you want to use parallel calculation of multiple emitters.
\subsubsection sec_project_cluster_create Cluster Definition
The `create_cluster` method takes the model parameters (a dictionary)
and the task index (a pmsco.dispatch.CalcID, cf. @ref pag_concepts_tasks) as arguments.
Given these arguments, it must create and fill a pmsco.cluster.Cluster object.
See pmsco.cluster.ClusterGenerator.create_cluster for details on the method contract.
As an example, have a look at the following simplified excerpt from the twoatom demo project.
~~~~~~{.py}
def create_cluster(self, model, index):
# access model parameters
# dAB - distance between atoms in Angstroms
# th - polar angle in degrees
# ph - azimuthal angle in degrees
r = model['dAB']
th = math.radians(model['th'])
ph = math.radians(model['ph'])
# prepare a cluster object
clu = pmsco.cluster.Cluster()
# the comment line is optional but can be useful
clu.comment = "{0} {1}".format(self.__class__, index)
# set the maximum radius of the cluster (outliers will be ignored)
clu.set_rmax(r * 2.0)
# calculate atomic vectors
dx = r * math.sin(th) * math.cos(ph)
dy = r * math.sin(th) * math.sin(ph)
dz = r * math.cos(th)
a_top = np.array((0.0, 0.0, 0.0))
a_bot = np.array((-dx, -dy, -dz))
# add an oxygen atom at a_top position and mark it as emitter
clu.add_atom('O', a_top, 1)
# add a copper atom at a_bot position
clu.add_atom('Cu', a_bot, 0)
# pass the created cluster to the calculator
return clu
~~~~~~
In this example, two atoms are added to the cluster.
The pmsco.cluster.Cluster class provides several methods to simplify the task,
such as adding layers or bulk regions, rotation, translation, trim, emitter selection, etc.
Please refer to the documentation of its code for details.
It may also be instructive to have a look at the demo projects.
The main purposes of the cluster object are to store an array of atoms and to read/write cluster files in a variety of formats.
For each atom, the following properties are stored:
- sequential atom index (1-based, maintained by cluster code)
- atom type (chemical element number)
- chemical element symbol from periodic table
- x coordinate of the atom position
- t coordinate of the atom position
- z coordinate of the atom position
- emitter flag (0 = scatterer, 1 = emitter, default 0)
- charge/ionicity (units of elementary charge, default 0)
- scatterer class (default 0)
All of these properties except the scatterer class can be set by the add methods of the cluster.
The scatterer class is used internally by the atomic scattering factor calculators.
Whether the charge/ionicity is used, depends on the particular calculators, EDAC does not use it, for instance.
Note: You do not need to take care how many emitters a calculator allows,
or whether the emitter needs to be at the origin or the first place of the array.
These technical aspects are handled by PMSCO code transparently.
\subsubsection sec_project_cluster_domains Domains
Domains refer to regions of inequivalent structure in the probing region.
This may include regions of different orientation, different lattice constant, or even different structure.
The cluster methods can read the selected domain from the `index.domain` argument.
This is an index into the pmsco.project.Project.domains list where each item is a dictionary
that holds additional, invariable structural parameters.
A common case are rotational domains.
In this case, the list of domains may look like `[{"zrot": 0.0}, {"zrot": 60.0}]`, for example,
and the `create_cluster` method would include additional code to rotate the cluster:
~~~~~~{.py}
def create_cluster(self, model, index):
# filling atoms here
# ...
dom = self.domains[index.domain]
try:
z_rot = dom['zrot']
except KeyError:
z_rot = 0.0
if z_rot:
clu.rotate_z(z_rot)
# selecting emitters
# ...
return clu
~~~~~~
Depending on the complexity of the system, it may, however, be necessary to write a specific sub-routine for each domain.
The pmsco.project.Project class includes generic code to add intensities of domains incoherently (cf. pmsco.project.Project.combine_domains).
If the model space contains parameters 'wdom0', 'wdom1', etc.,
these parameters are interpreted at weights of domain 0, 1, etc.
One domain must have a fixed weight to avoid correlated parameters.
Typically, 'wdom0' is left undefined and defaults to 1.
\subsubsection sec_project_cluster_emitters Emitter Configurations
If your project has a large cluster and/or many emitters, have a look at @ref pag_concepts_emitter.
In this case, you should override the `count_emitters` method and return the number of emitter configurations.
In the simplest case, this is the number of inequivalent emitters, and the implementation would be:
~~~~~~{.py}
def count_emitters(self, model, index):
index = index._replace(emit=-1)
clu = self.create_cluster(model, index)
return clu.get_emitter_count()
~~~~~~
Next, modify the `create_cluster` method to check the emitter index (`index.emit`).
If it is -1, the method must return the full cluster with all inequivalent emitters marked.
If it is positive, only the corresponding emitter must be marked.
The code could be similar to this example:
~~~~~~{.py}
def create_cluster(self, model, index):
# filling atoms here
# ...
# select all possible emitters (atoms of a specific element) in a cylindrical volume
# idx_emit is an array of atom numbers (0-based atom index)
idx_emit = clu.find_index_cylinder(origin, r_xy, r_z, self.project.scans[index.scan].emitter)
# if a specific emitter should be marked, restrict the array index.
if index.emit >= 0:
idx_emit = idx_emit[index.emit]
# mark the selected emitters
# if index.emit was < 0, all emitters are marked
clu.data['e'][idx_emit] = 1
return clu
~~~~~~
Now, the individual emitter configurations will be calculated in separate tasks
which can be run in parallel in a multi-process environment.
Note that the processing time of EDAC scales linearly with the number of emitters.
Thus, parallel execution is beneficial.
Advanced programmers may exploit more of the flexibility of emitter configurations, cf. @ref pag_concepts_emitter.
\subsection sec_project_project Project Class
Most commonly, a project class overrides the `__init__`, `create_model_space` and `create_params` methods.
Most other inherited methods can be overridden optionally,
for instance `validate`, `setup`, `calc_modulation`, `rfactor`,
as well as the combine methods `combine_rfactors`, `combine_domains`, `combine_emitters`, etc.
Int his introduction, we focus on the most basic three methods.
\subsubsection sec_project_project_init Initialization and Defaults
In the `__init__` method, you define and initialize (with default values) additional project properties.
You may also redefine properties of the base class.
The following code is just an example to give you some ideas.
~~~~~~{.py}
class MyProject(pmsco.project.Project):
def __init__(self):
# call the inherited method first
super().__init__()
# re-define an inherited property
self.directories["data"] = Path("/home/pmsco/data")
# define a scan dictionary
self.scan_dict = {}
# fill the scan dictionary
self.build_scan_dict()
# create the cluster generator
self.cluster_generator = MyClusterGenerator(self)
# declare the list of domains (at least one is required)
self.domains = [{"zrot": 0.}]
def build_scan_dict(self):
self.scan_dict["empty"] = {"filename": "{pmsco}/projects/common/empty-hemiscan.etpi",
"emitter": "Si", "initial_state": "2p3/2"}
self.scan_dict["Si2p"] = {"filename": "{data}/xpd-Si2p.etpis",
"emitter": "Si", "initial_state": "2p3/2"}
~~~~~~
The scan dictionary can come in handy if you want to select scans by a shortcut on the command line or in a run file.
Note that most of the properties can be assigned from a run file.
This happens after the `__init__` method.
The values set by `__init__` serve as default values.
\subsubsection sec_project_project_space Model Space
The model space defines the keys and value ranges of the model parameters.
There are three ways to declare the model space in order of priority:
1. Declare the model space in the run-file.
2. Assign a ModelSpace to the self.model_space property directly in the `__init__` method.
3. Implement the `create_model_space` method.
We begin the third way:
~~~~~~{.py}
# under class MyProject(pmsco.project.Project):
def create_model_space(self):
# create an empty model space
spa = pmsco.project.ModelSpace()
# add parameters
spa.add_param('dAB', 2.10, 2.00, 2.25, 0.05)
spa.add_param('th', 15.00, 0.00, 30.00, 1.00)
spa.add_param('ph', 90.00)
spa.add_param('V0', 21.96, 15.00, 25.00, 1.00)
spa.add_param('Zsurf', 1.50)
spa.add_param('wdom1', 0.5, 0.10, 10.00, 0.10)
# return the model space
return spa
~~~~~~
This code declares six model parameters: `dAB`, `th`, `ph`, `V0`, `Zsurf` and `wdom1`.
Three of them are structural parameters (used by the cluster generator above),
two are used by the `create_params` method (see below),
and `wdom1` is used in pmsco.project.Project.combine_domains while summing up contributions from different domains.
The values in the arguments list correspond to the start value (initial guess),
the lower and upper boundaries of the value range,
and the step size for optimizers that require it.
If just one value is given, like for `ph` and `Zsurf`, the parameter is held constant during the optimization.
The equivalent declaration in the run-file would look like (parameters after `th` omitted):
~~~~~~{.py}
{
"project": {
// ...
"model_space": {
"dAB": {
"start": 2.109,
"min": 2.0,
"max": 2.25,
"step": 0.05
},
"th": {
"start": 15.0,
"min": 0.0,
"max": 30.0,
"step": 1.0
},
// ...
}
}
}
~~~~~~
\subsubsection sec_project_project_params Calculation Parameters
Non-structural parameters that are needed for the input files of the calculators are passed
in a pmsco.project.CalculatorParams object.
This object should be created and filled in the `create_params` method of the project class.
The following example is from the twoatoms demo project:
~~~~~~{.py}
# under class MyProject(pmsco.project.Project):
def create_params(self, model, index):
params = pmsco.project.CalculatorParams()
# meta data
params.title = "two-atom demo"
params.comment = "{0} {1}".format(self.__class__, index)
# initial state and binding energy
initial_state = self.scans[index.scan].initial_state
params.initial_state = initial_state
emitter = self.scans[index.scan].emitter
params.binding_energy = pt.elements.symbol(emitter).binding_energy[initial_state]
# experimental setup
params.polarization = "H"
params.polar_incidence_angle = 60.0
params.azimuthal_incidence_angle = 0.0
params.experiment_temperature = 300.0
# material parameters
params.z_surface = model['Zsurf']
params.work_function = 4.5
params.inner_potential = model['V0']
params.debye_temperature = 356.0
# multiple-scattering parameters (EDAC)
params.emitters = []
params.lmax = 15
params.dmax = 5.0
params.orders = [25]
return params
~~~~~~
Most of the code is generic and can be copied to other projects.
Only the experimental and material parameters need to be adjusted.
Other properties can be changed as needed, see the documentation of pmsco.project.CalculatorParams for details.
\subsection sec_project_args Passing Runtime Parameters
Runtime parameters can be passed in one of three ways:
1. hard-coded in the project module,
2. on the command line, or
3. in a JSON run-file.
In the first way, all parameters are hard-coded in the `create_project` function of the project module.
This is the simplest way for a quick start to a small project.
However, as the project code grows, it's easy to loose track of revisions.
In programming it is usually best practice to separate code and data.
The command line is another option for passing parameters to a process.
It requires extra code for parsing the command line and is not very flexible.
It is difficult to pass complex data types.
Using the command line is no longer recommended and may become deprecated in a future version.
The recommended way of passing parameters is via run-files.
Run-files allow for complete separation of code and data in a generic and flexible way.
For example, run-files can be stored along with the results.
However, the semantics of the run-file may look intimidating at first.
\subsubsection sec_project_args_runfile Setting Up a Run-File
The usage and format of run-files is described in detail under @ref pag_runfile.
\subsubsection sec_project_args_code Hard-Coded Arguments
Hard-coded parameters are usually set in a `create_module` function of the project module.
At the end of the module, this function can easily be found.
The function has two purposes: to create the project object and to set parameters.
The parameters can be any attributes of the project class and its ancestors.
See the parent pmsco.project.Project class for a list of common attributes.
The `create_project` function may look like in the following example.
It must return a project object, i.e. an object instance of a class that inherits from pmsco.project.Project.
~~~~~~{.py}
def create_project():
project = MyProject()
project.optimizer_params["pop_size"] = 20
project_dir = Path(__file__).parent
scan_file = Path(project_dir, "hbnni_e156_int.etpi")
project.add_scan(filename=scan_file, emitter="N", initial_state="1s")
project.add_domain({"zrot": 0.0})
project.add_domain({"zrot": 60.0})
return project
~~~~~~
To have PMSCO call this function,
pass the file path of the containing module as the first command line argument of PMSCO, cf. @ref pag_command.
PMSCO calls this function in absence of a run-file.
\subsubsection sec_project_args_cmd Command Line
Since it is not recommended to pass calculation parameters on the command line,
this mechanism is not described in detail here.
It is, however, still available.
If you really need to use it,
have a look at the code of the pmsco.pmsco.main function
and how it calls the `create_project`, `parse_project_args` and `set_project_args` of the project module.
*/

333
docs/src/runfile.dox Normal file
View File

@ -0,0 +1,333 @@
/*! @page pag_runfile Run File
\section sec_runfile Run File
This section describes the format of a run-file.
Run-files are a new way of passing arguments to a PMSCO process which avoids cluttering up the command line.
It is more flexible than the command line
because run-files can assign a value to any property of the project object in an abstract way.
Moreover, there is no necessity for the project code to parse the command line.
\subsection sec_runfile_how How It Works
Run-files are text files in [JSON](https://en.wikipedia.org/wiki/JSON) format
which shares most syntax elements with Python.
JSON files contain nested dictionaries, lists, strings and numbers.
In PMSCO, run-files contain a dictionary of parameters for the project object
which is the main container for calculation parameters, model objects and links to data files.
An abstract run-file parser reads the run-file,
constructs the specified project object based on the custom project class
and assigns the attributes of the project object.
It's important to note that the parser does not recognize specific data types or classes.
All specific data handling is done by the instantiated objects, mainly the project class.
The parser can handle the following situations:
- Strings, numbers as well as dictionaries and lists of simple objects can be assigned directly to project attributes.
- If the project class defines an attribute as a _property_,
the class can execute custom code to import or validate data.
- The parser can instantiate an object from a class in the namespace of the project module
and assign its properties.
\subsection sec_runfile_general General File Format
Run-files must adhere to the [JSON](https://en.wikipedia.org/wiki/JSON) format,
which shares most syntax elements with Python.
Specifically, a JSON file can declare dictionaries, lists and simple objects
such as strings, numbers and `null`.
As one extension to plain JSON, PMSCO ignores line comments starting with a hash `#` or double-slash `//`.
This can be used to temporarily hide a parameter from the parser.
For example run-files, have a look at the twoatom demo project.
\subsection sec_runfile_project Project Specification
The following minimum run-file demonstrates how to specify the project at the top level:
~~~~~~{.py}
{
"project": {
"__module__": "projects.twoatom.twoatom",
"__class__": "TwoatomProject",
"mode": "single",
"output_file": "twoatom0001"
}
}
~~~~~~
Here, the `project` keyword denotes the dictionary that is used to construct the project object.
Within the project dictionary, the `__module__` key selects the Python module file that contains the project code,
and `__class__` refers to the name of the actual project class.
Further dictionary items correspond to attributes of the project class.
The module name is the same as would be used in a Python import statement.
It must be findable on the Python path.
PMSCO ensures that the directory containing the `pmsco` and `projects` sub-directories is on the Python path.
The class name must be in the namespace of the loaded module.
As PMSCO starts, it imports the specified module,
constructs an object of the specified project class,
and assigns any further items to project attributes.
In the example above, `twoatom0001` is assigned to the `output_file` property.
Any attributes not specified in the run-file will remain at their default values
that were set byt the `__init__` method of the project class.
Note that parameter names must start with an alphabetic character, else they are ignored.
This provides another way to temporarily ignore an item from the file besides line comments.
Also note that PMSCO does not spell-check parameter names.
The parameter values are just written to the corresponding object attribute.
If a name is misspelled, the value will be written under the wrong name and missed by the code eventually.
PMSCO carries out only some most important checks on the given parameter values.
Incorrect values may lead to improper operation or exceptions later in the calculations.
\subsection sec_runfile_common Common Arguments
The following table lists some important parameters controlling the calculations.
They are declared in the pmsco.projects.Project class.
| Key | Values | Description |
| --- | --- | --- |
| mode | `single` (default), `grid`, `swarm`, `genetic`, `table`, `test`, `validate` | Operation mode. `validate` can be used to check the syntax of the run-file, the process exits before starting calculations. |
| directories | dictionary | This dictionary lists common file paths used in the project. It contains keys such as `home`, `project`, `output` (see documentation of Project class in pmsco.project). Enclosed in curly braces, the keys can be used as placeholders in filenames. |
| output_dir | path | Shortcut for directories["output"] |
| data_dir | path | Shortcut for directories["data"] |
| job_name | string, must be a valid file name | Base name for all produced output files. It is recommended to set a unique name for each calculation run. Do not include a path. The path can be set in _output_dir_. |
| cluster_generator | dictionary | Class name and attributes of the cluster generator. See below. |
| atomic_scattering_factory | string<br>Default: InternalAtomicCalculator from pmsco.calculators.calculator | Class name of the atomic scattering calculator. This name must be in the namespace of the project module. |
| multiple_scattering_factory | string<br>Default: EdacCalculator from pmsco.calculators.edac | Class name of the multiple scattering calculator. This name must be in the namespace of the project module. |
| model_space | dictionary | See @ref sec_runfile_space below. |
| domains | list of dictionaries | See @ref sec_runfile_domains below. |
| scans | list of dictionaries | See @ref sec_runfile_scans below. |
| optimizer_params | dictionary | See @ref sec_runfile_optimizer below. |
The following table lists some common control parameters and metadata
that affect the behaviour of the program but do not affect the calculation results.
The job metadata is used to identify and describe a job in the results database if requested.
| Key | Values | Description |
| --- | --- | --- |
| job_tags | list of strings | User-specified job tags (metadata). |
| description | string | Description of the calculation job (metadata) |
| time_limit | decimal number<br>Default: 24. | Wall time limit in hours. The optimizers try to finish before the limit. This cannot be guaranteed, however. |
| keep_files | list of file categories | Output file categories to keep after the calculation. Multiple values can be specified and must be separated by spaces. By default, cluster and model (simulated data) of a limited number of best models are kept. See @ref sec_runfile_files below. |
| keep_best | integer number<br>Default: 10 | number of best models for which result files should be kept. |
| keep_level | integer number<br>Default: 1 | numeric task level down to which files are kept. 1 = scan level, 2 = domain level, etc. |
| log_level | DEBUG, INFO, WARNING, ERROR, CRITICAL | Minimum level of messages that should be added to the log. Empty string turns off logging. |
| log_file | file system path<br>Default: job_name + ".log". | Name of the main log file. Under MPI, the rank of the process is inserted before the extension. The log name is created in the working directory. |
\subsection sec_runfile_space Model Space
The `model_space` parameter is a dictionary of model parameters.
The key is the name of the parameter as used by the cluster and input-formatting code,
the value is a dictionary holding the `start`, `min`, `max`, `step` values to be used by the optimizer.
~~~~~~{.py}
{
"project": {
// ...
"model_space": {
"dAB": {
"start": 2.109,
"min": 2.0,
"max": 2.25,
"step": 0.05
},
"pAB": {
"start": 15.0,
"min": 0.0,
"max": 30.0,
"step": 1.0
},
// ...
}
}
}
~~~~~~
\subsection sec_runfile_domains Domains
Domains is a list of dictionaries.
Each dictionary holds keys describing the domain to the cluster and input-formatting code.
The meaning of these keys is up to the project.
~~~~~~{.py}
{
"project": {
// ...
"domains": [
{"surface": "Te", "doping": null, "zrot": 0.0},
{"surface": "Te", "doping": null, "zrot": 60.0}
],
}
}
~~~~~~
\subsection sec_runfile_scans Experimental Scan Files
The pmsco.project.Scan objects used in the calculation cannot be instantiated from the run-file directly.
Instead, the scans object is a list of scan creators/loaders which specify what to do to create a Scan object.
The pmsco.project module defines three scan creators: ScanLoader, ScanCreator and ScanKey.
The following code block shows an example of each of the three:
~~~~~~{.py}
{
"project": {
// ...
"scans": [
{
"__class__": "pmsco.project.ScanCreator",
"filename": "twoatom_energy_alpha.etpai",
"emitter": "N",
"initial_state": "1s",
"positions": {
"e": "np.arange(10, 400, 5)",
"t": "0",
"p": "0",
"a": "np.linspace(-30, 30, 31)"
}
},
{
"__class__": "pmsco.project.ScanLoader",
"filename": "{project}/twoatom_hemi_250e.etpi",
"emitter": "N",
"initial_state": "1s",
"is_modf": false
},
{
"__class__": "pmsco_project.ScanKey",
"key": "Ge3s113tp"
}
]
}
}
~~~~~~
The class name must be specified as it would be called in the custom project module.
`pmsco.project` must, thus, be imported in the custom project module.
The *ScanCreator* object creates a scan using Numpy array constructors in `positions`.
In the example above, a two-dimensional rectangular energy-alpha scan grid is created.
The values of the positions axes are passed to Python's `eval` function
and must return a one-dimensional Numpy `ndarray`.
The `emitter` and `initial_state` keys define the probed core level.
The *ScanLoader* object loads a data file, specified under `filename`.
The filename can include a placeholder which is replaced by the corresponding item from Project.directories.
Note that some of the directories (including `project`) are pre-set by PMSCO.
It is recommended to add a `data` key under `directories` in the run-file
if the data files are outside of the PMSCO directory tree.
The `is_modf` key indicates whether the file contains a modulation function (`true`) or intensity (`false`).
In the latter case, the modulation function is calculated after loading.
The *ScanKey* is the shortest scan specification in the run-file.
It is a shortcut to a complete scan description in `scan_dict` dictionary in the project object.
The `scan_dict` must be set up in the `__init__` method of the project class.
The `key` item specifies which key of `scan_dict` should be used to create the Scan object.
Each item of `scan_dict` holds a dictionary
that in turn holds the attributes for either a `ScanCreator` or a `ScanLoader`.
If it contains a `positions` key, it represents a `ScanCreator`, else a `ScanLoader`.
\subsection sec_runfile_optimizer Optimizer Parameters
The `optimizer_params` is a dictionary holding one or more of the following items.
| Key | Values | Description |
| --- | --- | --- |
| pop-size | integer<br>The default value is the greater of 4 or the number of parallel calculation processes. | Population size (number of particles) in swarm and genetic optimization mode. |
| seed-file | file system path | Name of the population seed file. Population data of previous optimizations can be used to seed a new optimization. The file must have the same structure as the .pop or .dat files. See @ref pmsco.project.Project.seed_file. |
| table-file | file system path | Name of the model table file in table scan mode. |
\subsubsection sec_runfile_files File Categories
The following category names can be used with the `keep_files` option.
Multiple names can be specified as a list.
| Category | Description | Default Action |
| --- | --- | --- |
| all | shortcut to include all categories | |
| input | raw input files for calculator, including cluster and phase files in custom format | delete |
| output | raw output files from calculator | delete |
| atomic | atomic scattering and emission files in portable format | delete |
| cluster | cluster files in portable XYZ format for report | keep |
| debug | debug files | delete |
| model | output files in ETPAI format: complete simulation (a_-1_-1_-1_-1) | keep |
| scan | output files in ETPAI format: scan (a_b_-1_-1_-1) | keep |
| domain | output files in ETPAI format: domain (a_b_c_-1_-1) | delete |
| emitter | output files in ETPAI format: emitter (a_b_c_d_-1) | delete |
| region | output files in ETPAI format: region (a_b_c_d_e) | delete |
| report| final report of results | keep always |
| population | final state of particle population | keep |
| rfac | files related to models which give bad r-factors, see warning below | delete |
\note
The `report` category is always kept and cannot be turned off.
The `model` category is always kept in single calculation mode.
\warning
If you want to specify `rfac` with the `keep_files` option,
you have to add the file categories that you want to keep, e.g.,
`"keep_files": ["rfac", "cluster", "model", "scan", "population"]`
(to return the default categories for all calculated models).
Do not specify `rfac` alone as this will effectively not return any file.
\subsection sec_runfile_schedule Job Scheduling
To submit a job to a resource manager such as Slurm, add a `schedule` section to the run file
(section ordering is not important):
~~~~~~{.py}
{
"schedule": {
"__module__": "pmsco.schedule",
"__class__": "PsiRaSchedule",
"nodes": 1,
"tasks_per_node": 24,
"walltime": "2:00",
"manual_run": true,
"enabled": true
},
"project": {
"__module__": "projects.twoatom.twoatom",
"__class__": "TwoatomProject",
"mode": "single",
"output_file": "{home}/pmsco/twoatom0001",
...
}
}
~~~~~~
In the same way as for the project, the `__module__` and `__class__` keys select the class that handles the job submission.
In this example, it is pmsco.schedule.PsiRaSchedule which is tied to the Ra cluster at PSI.
For other machines, you can sub-class one of the classes in the pmsco.schedule module and include it in your project module.
The parameters of pmsco.schedule.PsiRaSchedule are as follows.
Some of them are also used in other schedule classes or may have different types or ranges.
| Key | Values | Description |
| --- | --- | --- |
| nodes | integer: 1..2 | Number of compute nodes (main boards on Ra). The maximum number available for PEARL is 2. |
| tasks_per_node | integer: 1..24, 32 | Number of tasks (CPU cores on Ra) per node. Jobs with less than 24 tasks are assigned to the shared partition. |
| wall_time | string: [days-]hours[:minutes[:seconds]] <br> dict: with any combination of days, hours, minutes, seconds | Maximum run time (wall time) of the job. |
| manual | bool | Manual submission (true) or automatic submission (false). Manual submission allows you to inspect the job files before submission. |
| enabled | bool | Enable scheduling (true). Otherwise, the calculation is started directly (false).
@note The calculation job may run in a different working directory than the current one.
It is important to specify absolute data and output directories in the run file (project/directories section).
*/

View File

@ -38,15 +38,15 @@ custom_scan [label="scan\nconfiguration", shape=note];
{rank=same; custom_scan; create_scan; combine_scan;}
custom_scan -> create_scan [lhead=cluster_scan];
subgraph cluster_symmetry {
label="symmetry handler";
subgraph cluster_domain {
label="domain handler";
rank=same;
create_symmetry [label="define\nsymmetry\ntasks"];
combine_symmetry [label="gather\nsymmetry\nresults"];
create_model_space [label="define\ndomain\ntasks"];
combine_domain [label="gather\ndomain\nresults"];
}
custom_symmetry [label="symmetry\ndefinition", shape=cds];
{rank=same; create_symmetry; combine_symmetry; custom_symmetry;}
custom_symmetry -> combine_symmetry [lhead=cluster_symmetry];
custom_domain [label="domain\ndefinition", shape=cds];
{rank=same; create_model_space; combine_domain; custom_domain;}
custom_domain -> combine_domain [lhead=cluster_domain];
subgraph cluster_emitter {
label="emitter handler";
@ -80,11 +80,11 @@ create_cluster -> edac;
create_model -> create_scan [label="level 1 tasks"];
evaluate_model -> combine_scan [label="level 1 results", dir=back];
create_scan -> create_symmetry [label="level 2 tasks"];
combine_scan -> combine_symmetry [label="level 2 results", dir=back];
create_scan -> create_model_space [label="level 2 tasks"];
combine_scan -> combine_domain [label="level 2 results", dir=back];
create_symmetry -> create_emitter [label="level 3 tasks"];
combine_symmetry -> combine_emitter [label="level 3 results", dir=back];
create_model_space -> create_emitter [label="level 3 tasks"];
combine_domain -> combine_emitter [label="level 3 results", dir=back];
create_emitter -> create_region [label="level 4 tasks"];
combine_emitter -> combine_region [label="level 4 results", dir=back];

View File

@ -28,7 +28,7 @@ remove_task_file()
class CalcID {
model
scan
sym
domain
emit
region
}

View File

@ -43,15 +43,15 @@ parent = 2, -1, -1, -1, -1
model = {'d': 7}
}
Scan11 o.. Sym111
Scan11 o.. Dom111
object Sym111 {
object Dom111 {
id = 1, 1, 1, -1, -1
parent = 1, 1, -1, -1, -1
model = {'d': 5}
}
Sym111 o.. Emitter1111
Dom111 o.. Emitter1111
object Emitter1111 {
id = 1, 1, 1, 1, -1
@ -90,18 +90,18 @@ scan
object ScanHandler
object "Sym: CalculationTask" as Sym {
object "Domain: CalculationTask" as Domain {
model
scan
symmetry
domain
}
object "SymmetryHandler" as SymHandler
object "DomainHandler" as DomainHandler
object "Emitter: CalculationTask" as Emitter {
model
scan
symmetry
domain
emitter
}
@ -110,7 +110,7 @@ object EmitterHandler
object "Region: CalculationTask" as Region {
model
scan
symmetry
domain
emitter
region
}
@ -120,14 +120,14 @@ object RegionHandler
Root "1" o.. "1..*" Model
Model "1" o.. "1..*" Scan
Scan "1" o.. "1..*" Sym
Sym "1" o.. "1..*" Emitter
Scan "1" o.. "1..*" Domain
Domain "1" o.. "1..*" Emitter
Emitter "1" o.. "1..*" Region
(Root, Model) .. ModelHandler
(Model, Scan) .. ScanHandler
(Scan, Sym) .. SymHandler
(Sym, Emitter) .. EmitterHandler
(Scan, Domain) .. DomainHandler
(Domain, Emitter) .. EmitterHandler
(Emitter, Region) .. RegionHandler
@enduml

View File

@ -4,7 +4,7 @@
class CalculationTask {
model
scan
symmetry
domain
emitter
region
..
@ -35,7 +35,7 @@ class Scan {
alphas
}
class Symmetry {
class Domain {
index
..
rotation
@ -55,13 +55,13 @@ class Region {
CalculationTask *-- Model
CalculationTask *-- Scan
CalculationTask *-- Symmetry
CalculationTask *-- Domain
CalculationTask *-- Emitter
CalculationTask *-- Region
class Project {
scans
symmetries
domains
model_handler
cluster_generator
}
@ -78,7 +78,7 @@ class ModelHandler {
Model ..> ModelHandler
Scan ..> Project
Symmetry ..> Project
Domain ..> Project
Emitter ..> ClusterGenerator
Region ..> Project

View File

@ -9,14 +9,6 @@ name
code
}
class Scan << (T,orchid) >> {
id
..
job_id
..
name
}
class Job << (T,orchid) >> {
id
..
@ -30,6 +22,22 @@ datetime
description
}
class Tag << (T,orchid) >> {
id
..
..
key
}
class JobTag << (T,orchid) >> {
id
..
tag_id
job_id
..
value
}
class Model << (T,orchid) >> {
id
..
@ -46,7 +54,7 @@ id
model_id
..
scan
sym
domain
emit
region
rfac
@ -69,8 +77,9 @@ value
}
Project "1" *-- "*" Job
Job "1" *-- "*" JobTag
Tag "1" *-- "*" JobTag
Job "1" *-- "*" Model
Job "1" *-- "*" Scan
Param "1" *-- "*" ParamValue
Model "1" *-- "*" ParamValue
Model "1" *-- "*" Result

View File

@ -20,7 +20,7 @@ repeat
partition "generate tasks" {
:define model tasks;
:define scan tasks;
:define symmetry tasks;
:define domain tasks;
:define emitter tasks;
:define region tasks;
}
@ -34,7 +34,7 @@ end fork
partition "collect results" {
:gather region results;
:gather emitter results;
:gather symmetry results;
:gather domain results;
:gather scan results;
:gather model results;
}

View File

@ -5,10 +5,10 @@ package pmsco {
mode
code
scans
symmetries
domains
{abstract} create_cluster()
{abstract} create_params()
{abstract} create_domain()
{abstract} create_model_space()
}
}
@ -18,7 +18,7 @@ package projects {
__init__()
create_cluster()
create_params()
create_domain()
create_model_space()
}
}

View File

@ -4,13 +4,13 @@ abstract class Project {
mode : str = "single"
code : str = "edac"
scans : Scan [1..*]
symmetries : dict [1..*]
domains : dict [1..*]
cluster_generator : ClusterGenerator
handler_classes
files : FileTracker
{abstract} create_cluster() : Cluster
{abstract} create_params() : Params
{abstract} create_domain() : Domain
{abstract} create_params() : CalculatorParams
{abstract} create_model_space() : ModelSpace
}
class Scan {
@ -28,7 +28,7 @@ class Scan {
import_scan_file()
}
class Domain {
class ModelSpace {
start : dict
min : dict
max : dict
@ -37,7 +37,7 @@ class Domain {
get_param(name)
}
class Params {
class CalculatorParams {
title
comment
cluster_file

View File

@ -25,7 +25,7 @@ stop
|pmsco|
start
:define task (model, scan, symmetry, emitter, region);
:define task (model, scan, domain, emitter, region);
|project|
:create cluster;
:create parameters;

View File

@ -2,21 +2,19 @@
skinparam componentStyle uml2
component "project" as project
component "PMSCO" as pmsco
component "project" as project
component "scattering code\n(calculator)" as calculator
interface "command line" as cli
interface "input files" as input
interface "output files" as output
interface "experimental data" as data
interface "results" as results
interface "output files" as output
cli --> pmsco
data -> project
project ..> pmsco
pmsco ..> project
pmsco ..> calculator
cli --> project
input -> calculator
calculator -> output
pmsco -> results

View File

@ -5,16 +5,16 @@ package pmsco {
mode
code
scans
symmetries
domains
cluster_generator
handler_classes
__
{abstract} create_cluster()
{abstract} create_params()
{abstract} create_domain()
{abstract} create_model_space()
..
combine_scans()
combine_symmetries()
combine_domains()
combine_emitters()
calc_modulation()
calc_rfactor()
@ -34,9 +34,9 @@ package projects {
setup()
..
create_params()
create_domain()
create_model_space()
..
combine_symmetries()
combine_domains()
}
class UserClusterGenerator {

View File

@ -1,118 +0,0 @@
BootStrap: debootstrap
OSVersion: bionic
MirrorURL: http://ch.archive.ubuntu.com/ubuntu/
%help
a singularity container for PMSCO.
git clone requires an ssh key for git.psi.ch.
try agent forwarding (-A option to ssh).
#%setup
# executed on the host system outside of the container before %post
#
# this will be inside the container
# touch ${SINGULARITY_ROOTFS}/tacos.txt
# this will be on the host
# touch avocados.txt
#%files
# files are copied before %post
#
# this copies to root
# avocados.txt
# this copies to /opt
# avocados.txt /opt
#
# this does not work
# ~/.ssh/known_hosts /etc/ssh/ssh_known_hosts
# ~/.ssh/id_rsa /etc/ssh/id_rsa
%labels
Maintainer Matthias Muntwiler
Maintainer_Email matthias.muntwiler@psi.ch
Python_Version 2.7
%environment
export PATH="/usr/local/miniconda3/bin:$PATH"
export PYTHON_VERSION=2.7
export SINGULAR_BRANCH="singular"
export LC_ALL=C
%post
export PYTHON_VERSION=2.7
export LC_ALL=C
sed -i 's/$/ universe/' /etc/apt/sources.list
apt-get update
apt-get -y install \
binutils \
build-essential \
doxygen \
doxypy \
f2c \
g++ \
gcc \
gfortran \
git \
graphviz \
libblas-dev \
liblapack-dev \
libopenmpi-dev \
make \
nano \
openmpi-bin \
openmpi-common \
sqlite3 \
wget
apt-get clean
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh
bash ~/miniconda.sh -b -p /usr/local/miniconda3
export PATH="/usr/local/miniconda3/bin:$PATH"
conda create -q --yes -n pmsco python=${PYTHON_VERSION}
. /usr/local/miniconda3/bin/activate pmsco
conda install -q --yes -n pmsco \
pip \
"numpy>=1.13" \
scipy \
ipython \
mpi4py \
matplotlib \
nose \
mock \
future \
statsmodels \
swig
conda clean --all -y
/usr/local/miniconda3/envs/pmsco/bin/pip install periodictable attrdict fasteners
#%test
# test the image after build
%runscript
# executes command from command line
. /usr/local/miniconda3/bin/activate pmsco
exec echo "$@"
%apprun install
. /usr/local/miniconda3/bin/activate pmsco
cd ~
git clone https://git.psi.ch/pearl/pmsco.git pmsco
cd pmsco
git checkout develop
git checkout -b ${SINGULAR_BRANCH}
make all
nosetests
%apprun python
. /usr/local/miniconda3/bin/activate pmsco
exec python "${@}"
%apprun conda
. /usr/local/miniconda3/bin/activate pmsco
exec conda "${@}"

View File

@ -3,10 +3,11 @@ OSVersion: bionic
MirrorURL: http://ch.archive.ubuntu.com/ubuntu/
%help
a singularity container for PMSCO.
A singularity container for PMSCO.
git clone requires an ssh key for git.psi.ch.
try agent forwarding (-A option to ssh).
singularity run -e pmsco.sif path/to/pmsco -r path/to/your-runfile
path/to/pmsco must point to the directory that contains the __main__.py file.
#%setup
# executed on the host system outside of the container before %post
@ -34,22 +35,25 @@ try agent forwarding (-A option to ssh).
Python_Version 3
%environment
export PATH="/usr/local/miniconda3/bin:$PATH"
export PYTHON_VERSION=3
export SINGULAR_BRANCH="singular"
export LC_ALL=C
export PYTHON_VERSION=3
export CONDA_ROOT=/opt/miniconda
export PLANTUML_JAR_PATH=/opt/plantuml/plantuml.jar
export SINGULAR_BRANCH="singular"
%post
export PYTHON_VERSION=3
export LC_ALL=C
export PYTHON_VERSION=3
export CONDA_ROOT=/opt/miniconda
export PLANTUML_ROOT=/opt/plantuml
sed -i 's/$/ universe/' /etc/apt/sources.list
apt-get update
apt-get -y install \
binutils \
build-essential \
default-jre \
doxygen \
doxypy \
f2c \
g++ \
gcc \
@ -67,51 +71,51 @@ try agent forwarding (-A option to ssh).
apt-get clean
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh
bash ~/miniconda.sh -b -p /usr/local/miniconda3
export PATH="/usr/local/miniconda3/bin:$PATH"
bash ~/miniconda.sh -b -p ${CONDA_ROOT}
. ${CONDA_ROOT}/bin/activate
conda create -q --yes -n pmsco python=${PYTHON_VERSION}
. /usr/local/miniconda3/bin/activate pmsco
conda activate pmsco
conda install -q --yes -n pmsco \
pip \
"numpy>=1.13" \
scipy \
ipython \
mpi4py \
matplotlib \
nose \
mock \
future \
statsmodels \
swig
swig \
gitpython
conda clean --all -y
/usr/local/miniconda3/envs/pmsco/bin/pip install periodictable attrdict fasteners
pip install periodictable attrdict commentjson fasteners mpi4py doxypypy
mkdir ${PLANTUML_ROOT}
wget -O ${PLANTUML_ROOT}/plantuml.jar https://sourceforge.net/projects/plantuml/files/plantuml.jar/download
#%test
# test the image after build
%runscript
# executes command from command line
source /usr/local/miniconda3/bin/activate pmsco
exec echo "$@"
. ${CONDA_ROOT}/etc/profile.d/conda.sh
conda activate pmsco
exec python "$@"
%apprun install
source /usr/local/miniconda3/bin/activate pmsco
. ${CONDA_ROOT}/etc/profile.d/conda.sh
conda activate pmsco
cd ~
git clone https://git.psi.ch/pearl/pmsco.git pmsco
cd pmsco
git checkout develop
git checkout master
git checkout -b ${SINGULAR_BRANCH}
make all
nosetests -w tests/
%apprun compile
. ${CONDA_ROOT}/etc/profile.d/conda.sh
conda activate pmsco
make all
nosetests
%apprun python
source /usr/local/miniconda3/bin/activate pmsco
exec python "${@}"
%apprun conda
source /usr/local/miniconda3/bin/activate pmsco
exec conda "${@}"

View File

@ -12,8 +12,8 @@ Vagrant.configure("2") do |config|
# Every Vagrant development environment requires a box. You can search for
# boxes at https://vagrantcloud.com/search.
config.vm.box = "singularityware/singularity-2.4"
config.vm.box_version = "2.4"
config.vm.box = "sylabs/singularity-3.7-ubuntu-bionic64"
config.vm.box_version = "3.7"
# Disable automatic box update checking. If you disable this, then
# boxes will only be checked for updates when the user runs

View File

@ -40,9 +40,9 @@ SHELL=/bin/sh
PMSCO_DIR = pmsco
DOCS_DIR = docs
all: edac loess docs
all: edac loess phagen docs
bin: edac loess
bin: edac loess phagen
edac loess msc mufpot phagen:
$(MAKE) -C $(PMSCO_DIR)

View File

@ -8,16 +8,13 @@ python pmsco [pmsco-arguments]
@endverbatim
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from pathlib import Path
import sys
import os.path
file_dir = os.path.dirname(__file__) or '.'
root_dir = os.path.join(file_dir, '..')
root_dir = os.path.abspath(root_dir)
sys.path[0] = root_dir
pmsco_root = Path(__file__).resolve().parent.parent
if str(pmsco_root) not in sys.path:
sys.path.insert(0, str(pmsco_root))
if __name__ == '__main__':
import pmsco.pmsco

View File

@ -42,7 +42,7 @@ class Calculator(object):
or <code>output_file + '.etpai'</code> depending on scan mode.
all other intermediate files are deleted unless keep_temp_files is True.
@param params: a pmsco.project.Params object with all necessary values except cluster and output files set.
@param params: a pmsco.project.CalculatorParams object with all necessary values except cluster and output files set.
@param cluster: a pmsco.cluster.Cluster(format=FMT_EDAC) object with all atom positions set.

View File

@ -49,7 +49,7 @@ class EdacCalculator(calculator.Calculator):
if alpha is defined, theta is implicitly set to normal emission! (to be generalized)
@param params: a pmsco.project.Params object with all necessary values except cluster and output files set.
@param params: a pmsco.project.CalculatorParams object with all necessary values except cluster and output files set.
@param scan: a pmsco.project.Scan() object describing the experimental scanning scheme.
@ -173,7 +173,7 @@ class EdacCalculator(calculator.Calculator):
f.write(" ".join(format(order, "d") for order in params.orders) + "\n")
f.write("emission angle window {0:F}\n".format(params.angular_resolution / 2.0))
# scattering factor output (see project.Params.phase_output_classes)
# scattering factor output (see project.CalculatorParams.phase_output_classes)
if params.phase_output_classes is not None:
fn = "{0}.clu".format(params.output_file)
f.write("cluster output l(A) {fn}\n".format(fn=fn))
@ -197,7 +197,7 @@ class EdacCalculator(calculator.Calculator):
"""
run EDAC with the given parameters and cluster.
@param params: a pmsco.project.Params object with all necessary values except cluster and output files set.
@param params: a pmsco.project.CalculatorParams object with all necessary values except cluster and output files set.
@param cluster: a pmsco.cluster.Cluster(format=FMT_EDAC) object with all atom positions set.

View File

@ -62,7 +62,7 @@ class MscCalculator(calculator.Calculator):
"""
run the MSC program with the given parameters and cluster.
@param params: a project.Params() object with all necessary values except cluster and output files set.
@param params: a project.CalculatorParams() object with all necessary values except cluster and output files set.
@param cluster: a cluster.Cluster(format=FMT_MSC) object with all atom positions set.

View File

@ -13,8 +13,9 @@ SHELL=/bin/sh
.PHONY: all clean phagen
FC?=gfortran
FCOPTS?=-std=legacy
F2PY?=f2py
F2PYOPTS?=
F2PYOPTS?=--f77flags=-std=legacy --f90flags=-std=legacy
CC?=gcc
CCOPTS?=
SWIG?=swig
@ -28,7 +29,7 @@ PYTHON_EXT_SUFFIX ?= $(shell ${PYTHON_CONFIG} --extension-suffix)
all: phagen
phagen: phagen.exe phagen$(EXT_SUFFIX)
phagen: phagen.exe phagen$(PYTHON_EXT_SUFFIX)
phagen.exe: phagen_scf.f msxas3.inc msxasc3.inc
$(FC) $(FCOPTS) -o phagen.exe phagen_scf.f
@ -36,7 +37,7 @@ phagen.exe: phagen_scf.f msxas3.inc msxasc3.inc
phagen.pyf: | phagen_scf.f
$(F2PY) -h phagen.pyf -m phagen phagen_scf.f only: libmain
phagen$(EXT_SUFFIX): phagen_scf.f phagen.pyf msxas3.inc msxasc3.inc
phagen$(PYTHON_EXT_SUFFIX): phagen_scf.f phagen.pyf msxas3.inc msxasc3.inc
$(F2PY) -c $(F2PYOPTS) -m phagen phagen.pyf phagen_scf.f
clean:

View File

@ -61,7 +61,7 @@ class PhagenCalculator(AtomicCalculator):
because PHAGEN generates a lot of files with hard-coded names,
the function creates a temporary directory for PHAGEN and deletes it before returning.
@param params: pmsco.project.Params object.
@param params: pmsco.project.CalculatorParams object.
the phase_files attribute is updated with the paths of the scattering files.
@param cluster: pmsco.cluster.Cluster object.
@ -76,6 +76,8 @@ class PhagenCalculator(AtomicCalculator):
@return (None, dict) where dict is a list of output files with their category.
the category is "atomic" for all output files.
"""
assert cluster.get_emitter_count() == 1, "PHAGEN cannot handle more than one emitter at a time"
transl = Translator()
transl.params.set_params(params)
transl.params.set_cluster(cluster)
@ -132,6 +134,14 @@ class PhagenCalculator(AtomicCalculator):
except IOError:
logger.error("error loading phagen cluster file {fi}".format(fi=clufile))
try:
listfile = outfile + ".list"
report_listfile = os.path.join(prev_wd, output_file + ".phagen.list")
shutil.copy(listfile, report_listfile)
files[report_listfile] = "log"
except IOError:
logger.error("error loading phagen list file {fi}".format(fi=listfile))
finally:
os.chdir(prev_wd)

View File

@ -19,6 +19,7 @@ from __future__ import print_function
import numpy as np
from pmsco.cluster import Cluster
from pmsco.compat import open
## rydberg energy in electron volts
@ -72,7 +73,7 @@ class TranslationParams(object):
"""
set the translation parameters.
@param params: a pmsco.project.Params object or
@param params: a pmsco.project.CalculatorParams object or
a dictionary containing some or all public fields of this class.
@return: None
"""
@ -125,6 +126,44 @@ class Translator(object):
6. call write_edac_scattering to produce the EDAC scattering matrix files.
7. call write_edac_emission to produce the EDAC emission matrix file.
"""
## @var params
#
# project parameters needed for translation.
#
# fill the attributes of this object before using any translator methods.
## @var scattering
#
# t-matrix storage
#
# the t-matrix is stored in a flat, one-dimensional numpy structured array consisting of the following fields:
# @arg e (float) energy (eV)
# @arg a (int) atom index (1-based)
# @arg l (int) angular momentum quantum number l
# @arg t (complex) scattering matrix element, t = exp(-i * delta) * sin delta
#
# @note PHAGEN uses the convention t = exp(-i * delta) * sin delta,
# whereas EDAC uses t = exp(i * delta) * sin delta (complex conjugate).
# this object stores the t-matrix according to the PHAGEN convention.
# the conversion to the EDAC convention occurs in write_edac_scattering_file().
## @var emission
#
# radial matrix element storage
#
# the radial matrix elemnts are stored in a flat, one-dimensional numpy structured array
# consisting of the following fields:
# @arg e (float) energy (eV)
# @arg dw (complex) matrix element for the transition to l-1
# @arg up (complex) matrix element for the transition to l+1
## @var cluster
#
# cluster object for PHAGEN
#
# this object is created by translate_cluster().
def __init__(self):
"""
initialize the object instance.
@ -134,18 +173,33 @@ class Translator(object):
self.scattering = np.empty(0, dtype=dt)
dt = [('e', 'f4'), ('dw', 'c16'), ('up', 'c16')]
self.emission = np.empty(0, dtype=dt)
self.cluster = None
def translate_cluster(self):
"""
translate the cluster into a form suitable for PHAGEN.
specifically, move the (first and hopefully only) emitter to the first atom position.
the method copies the cluster from self.params into a new object
and stores it under self.cluster.
@return: None
"""
self.cluster = Cluster()
self.cluster.copy_from(self.params.cluster)
ems = self.cluster.get_emitters(['i'])
self.cluster.move_to_first(idx=ems[0][0]-1)
def write_cluster(self, f):
"""
write the cluster section of the PHAGEN input file.
requires a valid pmsco.cluster.Cluster in self.params.cluster.
@param f: file or output stream (an object with a write method)
@return: None
"""
for atom in self.params.cluster.data:
for atom in self.cluster.data:
d = {k: atom[k] for k in atom.dtype.names}
f.write("{s} {t} {x} {y} {z}\n".format(**d))
f.write("-1 -1 0. 0. 0.\n")
@ -163,7 +217,7 @@ class Translator(object):
@return: None
"""
data = self.params.cluster.data
data = self.cluster.data
elements = np.unique(data['t'])
for element in elements:
idx = np.where(data['t'] == element)
@ -181,29 +235,34 @@ class Translator(object):
@return: None
"""
phagen_params = {}
self.translate_cluster()
phagen_params['absorber'] = 1
phagen_params['emin'] = self.params.kinetic_energies.min() / ERYDBERG
phagen_params['emax'] = self.params.kinetic_energies.max() / ERYDBERG
if self.params.kinetic_energies.shape[0] > 1:
phagen_params['delta'] = (phagen_params['emax'] - phagen_params['emin']) / \
(self.params.kinetic_energies.shape[0] - 1)
if phagen_params['delta'] < 0.0001:
else:
phagen_params['delta'] = 0.1
phagen_params['edge'] = state_to_edge(self.params.initial_state) # possibly not used
phagen_params['edge'] = state_to_edge(self.params.initial_state)
phagen_params['edge1'] = 'm4' # auger not supported
phagen_params['edge2'] = 'm4' # auger not supported
phagen_params['cip'] = self.params.binding_energy / ERYDBERG
if phagen_params['cip'] < 0.001:
raise ValueError("binding energy parameter is zero.")
if np.sum(np.abs(self.params.cluster.data['q']) >= 0.001) > 0:
if np.sum(np.abs(self.cluster.data['q'])) > 0.:
phagen_params['ionzst'] = 'ionic'
else:
phagen_params['ionzst'] = 'neutral'
if hasattr(f, "write"):
if hasattr(f, "write") and callable(f.write):
f.write("&job\n")
f.write("calctype='xpd',\n")
f.write("coor='angs',\n")
f.write("cip={cip},\n".format(**phagen_params))
f.write("absorber={absorber},\n".format(**phagen_params))
f.write("edge='{edge}',\n".format(**phagen_params))
f.write("edge1='{edge1}',\n".format(**phagen_params))
f.write("edge2='{edge1}',\n".format(**phagen_params))
@ -254,13 +313,18 @@ class Translator(object):
@arg l angular momentum quantum number l
@arg t complex scattering matrix element
@note PHAGEN uses the convention t = exp(-i * delta) * sin delta,
whereas EDAC uses t = exp(i * delta) * sin delta (complex conjugate).
this class stores the t-matrix according to the PHAGEN convention.
the conversion to the EDAC convention occurs in write_edac_scattering_file().
@param f: file or path (any file-like or path-like object that can be passed to numpy.genfromtxt).
@return: None
"""
dt = [('e', 'f4'), ('x1', 'f4'), ('x2', 'f4'), ('na', 'i4'), ('nl', 'i4'),
('tr', 'f8'), ('ti', 'f8'), ('ph', 'f4')]
data = np.genfromtxt(f, dtype=dt)
data = np.atleast_1d(np.genfromtxt(f, dtype=dt))
self.scattering = np.resize(self.scattering, data.shape)
scat = self.scattering
@ -308,7 +372,7 @@ class Translator(object):
@return: None
"""
if hasattr(f, "write"):
if hasattr(f, "write") and callable(f.write):
energies = np.unique(scat['e'])
ne = energies.shape[0]
lmax = scat['l'].max()
@ -323,7 +387,7 @@ class Translator(object):
if ne > 1:
f.write("{0:.3f} ".format(energy))
for item in energy_scat:
f.write(" {0:.6f} {1:.6f}".format(item['t'].real, item['t'].imag))
f.write(" {0:.6f} {1:.6f}".format(item['t'].real, -item['t'].imag))
for i in range(len(energy_scat), lmax + 1):
f.write(" 0 0")
f.write("\n")
@ -341,7 +405,7 @@ class Translator(object):
@return: None
"""
if hasattr(f, "write"):
if hasattr(f, "write") and callable(f.write):
energies = np.unique(scat['e'])
ne = energies.shape[0]
lmax = scat['l'].max()
@ -356,7 +420,8 @@ class Translator(object):
if ne > 1:
f.write("{0:.3f} ".format(energy))
for item in energy_scat:
f.write(" {0:.6f}".format(np.angle(item['t'])))
pha = np.sign(item['t'].real) * np.arcsin(np.sqrt(np.abs(item['t'].imag)))
f.write(" {0:.6f}".format(pha))
for i in range(len(energy_scat), lmax + 1):
f.write(" 0")
f.write("\n")
@ -373,7 +438,7 @@ class Translator(object):
@return: None
"""
dt = [('ar', 'f8'), ('ai', 'f8'), ('br', 'f8'), ('bi', 'f8')]
data = np.genfromtxt(f, dtype=dt)
data = np.atleast_1d(np.genfromtxt(f, dtype=dt))
self.emission = np.resize(self.emission, data.shape)
emission = self.emission
@ -390,7 +455,7 @@ class Translator(object):
@return: None
"""
if hasattr(f, "write"):
if hasattr(f, "write") and callable(f.write):
l0 = self.params.l_init
energies = self.params.kinetic_energies
emission = self.emission

View File

@ -17,22 +17,20 @@ pip install --user periodictable
@author Matthias Muntwiler
@copyright (c) 2015-19 by Paul Scherrer Institut @n
@copyright (c) 2015-21 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import periodictable as pt
import sys
import pmsco.config as config
## default file format identifier
FMT_DEFAULT = 0
## MSC file format identifier
@ -54,14 +52,14 @@ if sys.version_info[0] >= 3:
else:
_SYMBOL_TYPE = 'S2'
## numpy.array datatype of Cluster.data array
DTYPE_CLUSTER_INTERNAL = [('i', 'i4'), ('t', 'i4'), ('s', _SYMBOL_TYPE), ('x', 'f4'), ('y', 'f4'), ('z', 'f4'),
('e', 'u1'), ('q', 'f4'), ('c', 'i4')]
## file format of internal Cluster.data array
## numpy.array datatype of internal Cluster.data array
DTYPE_CLUSTER_INTERNAL = [('i', 'i4'), ('t', 'i4'), ('s', _SYMBOL_TYPE), ('c', 'i4'),
('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('e', 'u1'), ('q', 'f4')]
## string formatting of native file format
FMT_CLUSTER_INTERNAL = ["%5u", "%2u", "%s", "%5u", "%7.3f", "%7.3f", "%7.3f", "%1u", "%7.3f"]
## field (column) names of internal Cluster.data array
## field (column) names of native file format
FIELDS_CLUSTER_INTERNAL = ['i', 't', 's', 'c', 'x', 'y', 'z', 'e', 'q']
## column names for export
## column names of native file format
NAMES_CLUSTER_INTERNAL = {'i': 'index', 't': 'element', 's': 'symbol', 'c': 'class', 'x': 'x', 'y': 'y', 'z': 'z',
'e': 'emitter', 'q': 'charge'}
@ -178,12 +176,12 @@ class Cluster(object):
# @arg @c 'i' (int) atom index (1-based)
# @arg @c 't' (int) atom type (chemical element number)
# @arg @c 's' (string) chemical element symbol
# @arg @c 'c' (int) scatterer class
# @arg @c 'x' (float32) x coordinate of the atom position
# @arg @c 'y' (float32) t coordinate of the atom position
# @arg @c 'z' (float32) z coordinate of the atom position
# @arg @c 'e' (uint8) 1 = emitter, 0 = regular atom
# @arg @c 'q' (float32) charge/ionicity
# @arg @c 'c' (int) scatterer class
## @var comment (str)
# one-line comment that can be included in some cluster files
@ -227,13 +225,13 @@ class Cluster(object):
"""
self.rmax = r
def build_element(self, index, element_number, x, y, z, emitter, charge=0., scatterer=0):
def build_element(self, index, element, x, y, z, emitter, charge=0., scatterer_class=0):
"""
build a tuple in the format of the internal data array.
@param index: (int) index
@param element_number: (int) chemical element number
@param element: chemical element number (int) or symbol (str)
@param x, y, z: (float) atom coordinates in the cluster
@ -241,17 +239,23 @@ class Cluster(object):
@param charge: (float) ionicity. default = 0
@param scatterer: (int) scatterer class. default = 0.
@param scatterer_class: (int) scatterer class. default = 0.
"""
try:
element_number = int(element)
symbol = pt.elements[element_number].symbol
element = (index, element_number, symbol, x, y, z, int(emitter), charge, scatterer)
except ValueError:
symbol = element
element_number = pt.elements.symbol(symbol.strip()).number
element = (index, element_number, symbol, scatterer_class, x, y, z, int(emitter), charge)
return element
def add_atom(self, atomtype, v_pos, is_emitter=False, charge=0.):
"""
add a single atom to the cluster.
@param atomtype: (int) chemical element number
@param atomtype: chemical element number (int) or symbol (str)
@param v_pos: (numpy.ndarray, shape = (3)) position vector
@ -274,7 +278,7 @@ class Cluster(object):
self.rmax (maximum distance from the origin).
all atoms are non-emitters.
@param atomtype: (int) chemical element number
@param atomtype: chemical element number (int) or symbol (str)
@param v_pos: (numpy.ndarray, shape = (3))
position vector of the first atom (basis vector)
@ -284,17 +288,18 @@ class Cluster(object):
"""
r_great = max(self.rmax, np.linalg.norm(v_pos))
n0 = self.data.shape[0] + 1
n1 = max(int(r_great / np.linalg.norm(v_lat1)) + 1, 3) * 2
n2 = max(int(r_great / np.linalg.norm(v_lat2)) + 1, 3) * 2
nn = 0
buf = np.empty((2 * n1 + 1) * (2 * n2 + 1), dtype=self.dtype)
for i1 in range(-n1, n1 + 1):
for i2 in range(-n2, n2 + 1):
v = v_pos + v_lat1 * i1 + v_lat2 * i2
if np.linalg.norm(v) <= self.rmax:
buf[nn] = self.build_element(nn + n0, atomtype, v[0], v[1], v[2], 0)
nn += 1
buf = np.resize(buf, nn)
n1 = max(int(r_great / np.linalg.norm(v_lat1)) + 1, 4) * 3
n2 = max(int(r_great / np.linalg.norm(v_lat2)) + 1, 4) * 3
idx = np.mgrid[-n1:n1+1, -n2:n2+1]
idx = idx.reshape(idx.shape[0], -1)
lat = np.array([v_lat1, v_lat2])
v = v_pos + np.matmul(idx.T, lat)
rsq = np.sum(np.square(v), axis=-1)
b1 = rsq <= self.rmax**2
sel = b1.nonzero()[0]
buf = np.empty((len(sel)), dtype=self.dtype)
for nn, ii in enumerate(sel):
buf[nn] = self.build_element(nn + n0, atomtype, v[ii, 0], v[ii, 1], v[ii, 2], 0)
self.data = np.append(self.data, buf)
def add_bulk(self, atomtype, v_pos, v_lat1, v_lat2, v_lat3, z_surf=0.0):
@ -306,7 +311,7 @@ class Cluster(object):
and z_surf (position of the surface).
all atoms are non-emitters.
@param atomtype: (int) chemical element number
@param atomtype: chemical element number (int) or symbol (str)
@param v_pos: (numpy.ndarray, shape = (3))
position vector of the first atom (basis vector)
@ -322,16 +327,18 @@ class Cluster(object):
n1 = max(int(r_great / np.linalg.norm(v_lat1)) + 1, 4) * 3
n2 = max(int(r_great / np.linalg.norm(v_lat2)) + 1, 4) * 3
n3 = max(int(r_great / np.linalg.norm(v_lat3)) + 1, 4) * 3
nn = 0
buf = np.empty((2 * n1 + 1) * (2 * n2 + 1) * (n3 + 1), dtype=self.dtype)
for i1 in range(-n1, n1 + 1):
for i2 in range(-n2, n2 + 1):
for i3 in range(-n3, n3 + 1):
v = v_pos + v_lat1 * i1 + v_lat2 * i2 + v_lat3 * i3
if np.linalg.norm(v) <= self.rmax and v[2] <= z_surf:
buf[nn] = self.build_element(nn + n0, atomtype, v[0], v[1], v[2], 0)
nn += 1
buf = np.resize(buf, nn)
idx = np.mgrid[-n1:n1+1, -n2:n2+1, -n3:n3+1]
idx = idx.reshape(idx.shape[0], -1)
lat = np.array([v_lat1, v_lat2, v_lat3])
v = v_pos + np.matmul(idx.T, lat)
rsq = np.sum(np.square(v), axis=-1)
b1 = rsq <= self.rmax**2
b2 = v[:, 2] <= z_surf
ba = np.all([b1, b2], axis=0)
sel = ba.nonzero()[0]
buf = np.empty((len(sel)), dtype=self.dtype)
for nn, ii in enumerate(sel):
buf[nn] = self.build_element(nn + n0, atomtype, v[ii, 0], v[ii, 1], v[ii, 2], 0)
self.data = np.append(self.data, buf)
def add_cluster(self, cluster, check_rmax=False, check_unique=False, tol=0.001):
@ -426,15 +433,47 @@ class Cluster(object):
idx = np.where(b_all)
self.data['z'][idx] += z_shift
return idx
return idx[0]
def translate(self, vector, element=0):
def get_center(self, element=None):
"""
get the geometric center of the cluster or a class of atoms.
@param element: chemical element number (int) or symbol (str)
if atoms of a specific element should be considered only.
by default (element == None or 0 or ""),
all atoms are included in the calculation.
@return: (numpy.ndarray) 3-dimensional vector.
"""
if element:
try:
sel = self.data['t'] == int(element)
except ValueError:
sel = self.data['s'] == element
else:
sel = np.ones_like(self.data['t'])
idx = np.where(sel)
center = np.zeros(3)
center[0] = np.mean(self.data['x'][idx])
center[1] = np.mean(self.data['y'][idx])
center[2] = np.mean(self.data['z'][idx])
return center
def translate(self, vector, element=None):
"""
translate the cluster or all atoms of a specified element.
translation shifts each selected atom by the given vector.
@param vector: (numpy.ndarray) 3-dimensional displacement vector.
@param element: (int) chemical element number if atoms of a specific element should be affected.
by default (element = 0), all atoms are moved.
@param element: chemical element number (int) or symbol (str)
if atoms of a specific element should be affected only.
by default (element == None or 0 or ""),
all atoms are translated.
@return: (numpy.ndarray) indices of the atoms that have been shifted.
"""
if element:
@ -449,7 +488,7 @@ class Cluster(object):
self.data['y'][idx] += vector[1]
self.data['z'][idx] += vector[2]
return idx
return idx[0]
def matrix_transform(self, matrix):
"""
@ -461,47 +500,49 @@ class Cluster(object):
@return: None
"""
for atom in self.data:
v = np.matrix([atom['x'], atom['y'], atom['z']])
w = matrix * v.transpose()
atom['x'] = float(w[0])
atom['y'] = float(w[1])
atom['z'] = float(w[2])
pos = np.empty((3, self.data.shape[0]), np.float32)
pos[0, :] = self.data['x']
pos[1, :] = self.data['y']
pos[2, :] = self.data['z']
pos = np.matmul(matrix, pos)
self.data['x'] = pos[0, :]
self.data['y'] = pos[1, :]
self.data['z'] = pos[2, :]
def rotate_x(self, angle):
"""
rotate cluster about the surface normal axis
rotate cluster about the x-axis
@param angle (float) in degrees
"""
angle = math.radians(angle)
s = math.sin(angle)
c = math.cos(angle)
matrix = np.matrix([[1, 0, 0], [0, c, -s], [0, s, c]])
matrix = np.array([[1, 0, 0], [0, c, -s], [0, s, c]])
self.matrix_transform(matrix)
def rotate_y(self, angle):
"""
rotate cluster about the surface normal axis
rotate cluster about the y-axis
@param angle (float) in degrees
"""
angle = math.radians(angle)
s = math.sin(angle)
c = math.cos(angle)
matrix = np.matrix([[c, 0, s], [0, 1, 0], [-s, 0, c]])
matrix = np.array([[c, 0, s], [0, 1, 0], [-s, 0, c]])
self.matrix_transform(matrix)
def rotate_z(self, angle):
"""
rotate cluster about the surface normal axis
rotate cluster about the z-axis (surface normal)
@param angle (float) in degrees
"""
angle = math.radians(angle)
s = math.sin(angle)
c = math.cos(angle)
matrix = np.matrix([[c, -s, 0], [s, c, 0], [0, 0, 1]])
matrix = np.array([[c, -s, 0], [s, c, 0], [0, 0, 1]])
self.matrix_transform(matrix)
def find_positions(self, pos, tol=0.001):
@ -794,6 +835,53 @@ class Cluster(object):
idx = self.data['e'] != 0
return np.sum(idx)
def calc_scattering_angles(self, index_emitter, radius):
"""
calculate forward-scattering angles of the cluster atoms
for each atom within a given radius of the emitter,
the connecting vector between emitter and scatterer is calculated
and returned in cartesian and polar coordinates.
@param index_emitter: atom index of the emitter.
all angles are calculated with respect to this atom.
@param radius: include only atoms within this radius of the emitter.
@note back-scattering angles can be obtained by inverting the angle on the unit sphere:
th' = 180 - th, ph' = -ph.
@return dictionary with results.
each item is a numpy.ndarray of shape (N, M)
where N is the number of scatterers
and M = 3 for dict['xyz'] and M = 1 otherwise.
@arg dict['index']: atom index into the cluster array.
@arg dict['xyz']: connecting vector between the emitter and the atom in cartesian coordinates.
@arg dict['dist']: distance between the emitter and the atom.
@arg dict['polar']: polar angle with respect to the z-axis.
@arg dict['azimuth']: azimuthal angle with respect to the x-axis.
"""
# position of emitter atom
em = self.data[index_emitter]
em = np.asarray((em['x'], em['y'], em['z']))
# relative positions of scattering atoms
xyz = self.get_positions()
xyz -= em
dist = np.linalg.norm(xyz, axis=1)
sel1 = dist <= radius
sel2 = dist > 0.
idx = np.where(np.all([sel1, sel2], axis=0))
xyz = xyz[idx]
dist = dist[idx]
# angles
v1 = np.asarray([0, 0, 1])
v2 = np.transpose(xyz / dist.reshape((dist.shape[0], 1)))
th = np.degrees(np.arccos(np.clip(np.dot(v1, v2), -1., 1.)))
ph = np.degrees(np.arctan2(v2[1], v2[0]))
return {'index': idx[0], 'xyz': xyz, 'dist': dist, 'polar': th, 'azimuth': ph}
def load_from_file(self, f, fmt=FMT_DEFAULT):
"""
load a cluster from a file created by the scattering program.
@ -848,7 +936,7 @@ class Cluster(object):
else:
raise ValueError("unknown file format {}".format(fmt))
data = np.genfromtxt(f, dtype=dtype, skip_header=sh)
data = np.atleast_1d(np.genfromtxt(f, dtype=dtype, skip_header=sh))
if fmt == FMT_PHAGEN_IN and data['t'][-1] < 1:
data = data[:-1]
@ -920,7 +1008,7 @@ class Cluster(object):
or left at the default value 0 in which case PMSCO sets the correct values.
if the scattering factors are loaded from existing files,
the atom class corresponds to the key of the pmsco.project.Params.phase_files dictionary.
the atom class corresponds to the key of the pmsco.project.CalculatorParams.phase_files dictionary.
in this case the meaning of the class value is up to the project,
and the class must be set either by the cluster generator
or the project's after_atomic_scattering hook.
@ -956,7 +1044,7 @@ class Cluster(object):
the other cluster must contain the same atoms (same coordinates) in a possibly random order.
the atoms of this and the other cluster are matched up by sorting them by coordinate.
atomic scattering calculators often change the order of atoms in a cluster based on symmetry,
atomic scattering calculators often change the order of atoms in a cluster based on domain,
and return atom classes versus atomic coordinates.
this method allows to import the atom classes into the original cluster.
@ -1049,7 +1137,7 @@ class Cluster(object):
np.savetxt(f, data, fmt=file_format, header=header, comments="")
class ClusterGenerator(object):
class ClusterGenerator(config.ConfigurableObject):
"""
cluster generator class.
@ -1067,13 +1155,14 @@ class ClusterGenerator(object):
@param project: reference to the project object.
cluster generators may need to look up project parameters.
"""
super().__init__()
self.project = project
def count_emitters(self, model, index):
"""
return the number of emitter configurations for a particular model, scan and symmetry.
return the number of emitter configurations for a particular model, scan and domain.
the number of emitter configurations may depend on the model parameters, scan index and symmetry index.
the number of emitter configurations may depend on the model parameters, scan index and domain index.
by default, the method returns 1, which means that there is only one emitter configuration.
emitter configurations are mainly a way to distribute the calculations to multiple processes
@ -1100,9 +1189,9 @@ class ClusterGenerator(object):
@param index (named tuple CalcID) calculation index.
the method should consider only the following attributes:
@arg @c scan scan index (index into Project.scans)
@arg @c sym symmetry index (index into Project.symmetries)
@arg @c emit emitter index must be -1.
@arg scan scan index (index into Project.scans)
@arg domain domain index (index into Project.domains)
@arg emit emitter index must be -1.
@return number of emitter configurations.
this implementation returns the default value of 1.
@ -1114,23 +1203,23 @@ class ClusterGenerator(object):
create a Cluster object given the model parameters and calculation index.
the generated cluster will typically depend on the model parameters.
depending on the project, it may also depend on the scan index, symmetry index and emitter index.
depending on the project, it may also depend on the scan index, domain index and emitter index.
the scan index can be used to generate a different cluster for different scan geometry,
e.g., if some atoms can be excluded due to a longer mean free path.
if this is not the case for the specific project, the scan index can be ignored.
the symmetry index may select a particular domain that has a different atomic arrangement.
in this case, depending on the value of index.sym, the function must generate a cluster corresponding
to the particular domain/symmetry.
the method can ignore the symmetry index if the project defines only one symmetry,
or if the symmetry does not correspond to a different atomic structure.
the domain index may select a particular domain that has a different atomic arrangement.
in this case, depending on the value of index.domain, the function must generate a cluster corresponding
to the particular domain.
the method can ignore the domain index if the project defines only one domain,
or if the domain does not correspond to a different atomic structure.
the emitter index selects a particular emitter configuration.
depending on the value of the emitter index, the method must react differently:
1. if the value is -1, return the full cluster and mark all inequivalent emitter atoms.
emitters which are reproduced by a symmetry expansion in combine_emitters() should not be marked.
emitters which are reproduced by a domain expansion in combine_emitters() should not be marked.
the full diffraction scan will be calculated in one calculation.
2. if the value is greater or equal to zero, generate the cluster with the emitter configuration
@ -1152,9 +1241,9 @@ class ClusterGenerator(object):
@param index (named tuple CalcID) calculation index.
the method should consider only the following attributes:
@arg @c scan scan index (index into Project.scans)
@arg @c sym symmetry index (index into Project.symmetries)
@arg @c emit emitter index.
@arg scan scan index (index into Project.scans)
@arg domain domain index (index into Project.domains)
@arg emit emitter index.
if -1, generate the full cluster and mark all emitters.
if greater or equal to zero, the value is a zero-based index of the emitter configuration.
@ -1174,7 +1263,7 @@ class LegacyClusterGenerator(ClusterGenerator):
"""
def __init__(self, project):
super(LegacyClusterGenerator, self).__init__(project)
super().__init__(project)
def count_emitters(self, model, index):
"""

120
pmsco/config.py Normal file
View File

@ -0,0 +1,120 @@
"""
@package pmsco.config
infrastructure for configurable objects
@author Matthias Muntwiler
@copyright (c) 2021 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
import collections.abc
import functools
import inspect
import logging
from pathlib import Path
logger = logging.getLogger(__name__)
def resolve_path(path, dirs):
"""
resolve a file path by replacing placeholders
placeholders are enclosed in curly braces.
values for all possible placeholders are provided in a dictionary.
@param path: str, Path or other path-like.
example: '{work}/test/testfile.dat'.
@param dirs: dictionary mapping placeholders to project paths.
the paths can be str, Path or other path-like
example: {'work': '/home/user/work'}
@return: pathlib.Path object
"""
return Path(*(p.format(**dirs) for p in Path(path).parts))
class ConfigurableObject(object):
"""
Parent class for objects that can be configured by a run file
the run file is a JSON file that contains object data in a nested dictionary structure.
in the dictionary structure the keys are property or attribute names of the object to be initialized.
keys starting with a non-alphabetic character (except for some special keys like __class__) are ignored.
these can be used as comments, or they protect private attributes.
the values can be numeric values, strings, lists or dictionaries.
simple values are simply assigned using setattr.
this may call a property setter if defined.
lists are iterated. each item is appended to the attribute.
the attribute must implement an append method in this case.
if an item is a dictionary and contains the special key '__class__',
an object of that class is instantiated and recursively initialized with the dictionary elements.
this requires that the class can be found in the module scope passed to the parser methods,
and that the class inherits from this class.
cases that can't be covered easily using this mechanism
should be implemented in a property setter.
value-checking should also be done in a property setter (or the append method in sequence-like objects).
"""
def __init__(self):
pass
def set_properties(self, module, data_dict, project):
"""
set properties of this class.
@param module: module reference that should be used to resolve class names.
this is usually the project module.
@param data_dict: dictionary of properties to set.
see the class description for details.
@param project: reference to the project object.
@return: None
"""
for key in data_dict:
if key[0].isalpha():
self.set_property(module, key, data_dict[key], project)
def set_property(self, module, key, value, project):
obj = self.parse_object(module, value, project)
if hasattr(self, key):
if obj is not None:
if isinstance(obj, collections.abc.MutableSequence):
attr = getattr(self, key)
for item in obj:
attr.append(item)
elif isinstance(obj, collections.abc.Mapping):
d = getattr(self, key)
if d is not None and isinstance(d, collections.abc.MutableMapping):
d.update(obj)
else:
setattr(self, key, obj)
else:
setattr(self, key, obj)
else:
setattr(self, key, obj)
else:
logger.warning(f"class {self.__class__.__name__} does not have attribute {key}.")
def parse_object(self, module, value, project):
if isinstance(value, collections.abc.MutableMapping) and "__class__" in value:
cn = value["__class__"].split('.')
c = functools.reduce(getattr, cn, module)
s = inspect.signature(c)
if 'project' in s.parameters:
o = c(project=project)
else:
o = c()
o.set_properties(module, value, project)
elif isinstance(value, collections.abc.MutableSequence):
o = [self.parse_object(module, i, project) for i in value]
else:
o = value
return o

View File

@ -117,7 +117,7 @@ def load_plt(filename, int_column=-1):
data[i]['p'] = phi
data[i]['i'] = selected intensity column
"""
data = np.genfromtxt(filename, usecols=(0, 2, 3, int_column), dtype=DTYPE_ETPI)
data = np.atleast_1d(np.genfromtxt(filename, usecols=(0, 2, 3, int_column), dtype=DTYPE_ETPI))
sort_data(data)
return data
@ -189,7 +189,7 @@ def load_edac_pd(filename, int_column=-1, energy=0.0, theta=0.0, phi=0.0, fixed_
logger.warning("unexpected EDAC output file column name")
break
cols = tuple(cols)
raw = np.genfromtxt(filename, usecols=cols, dtype=dtype, skip_header=2)
raw = np.atleast_1d(np.genfromtxt(filename, usecols=cols, dtype=dtype, skip_header=2))
if fixed_cluster:
etpi = np.empty(raw.shape, dtype=DTYPE_ETPAI)

View File

@ -29,6 +29,7 @@ import sqlite3
import fasteners
import numpy as np
import pmsco.dispatch as dispatch
from pmsco.helpers import BraceMessage as BMsg
logger = logging.getLogger(__name__)
@ -60,7 +61,7 @@ DB_SPECIAL_PARAMS = {"job_id": "_db_job",
"result_id": "_db_result",
"model": "_model",
"scan": "_scan",
"sym": "_sym",
"domain": "_domain",
"emit": "_emit",
"region": "_region",
"gen": "_gen",
@ -77,7 +78,7 @@ DB_SPECIAL_NUMPY_TYPES = {"job_id": "i8",
"result_id": "i8",
"model": "i8",
"scan": "i8",
"sym": "i8",
"domain": "i8",
"emit": "i8",
"region": "i8",
"gen": "i8",
@ -259,7 +260,7 @@ class ResultsDatabase(object):
sql_select_model = """select id, job_id, model, gen, particle
from Models where id=:id"""
sql_select_model_model = """select id, job_id, model, gen, particle
from Models where model=:model"""
from Models where job_id=:job_id and model=:model"""
sql_select_model_job = """select id, job_id, model, gen, particle
from Models where job_id=:job_id"""
sql_delete_model = """delete from Models where model_id = :model_id"""
@ -268,7 +269,7 @@ class ResultsDatabase(object):
`id` INTEGER PRIMARY KEY,
`model_id` INTEGER,
`scan` integer,
`sym` integer,
`domain` integer,
`emit` integer,
`region` integer,
`rfac` REAL,
@ -276,22 +277,29 @@ class ResultsDatabase(object):
)"""
sql_index_results_tasks = """create index if not exists
`index_results_tasks` ON `Results`
(`model_id`, `scan`,`sym`,`emit`,`region`)"""
(`model_id`, `scan`,`domain`,`emit`,`region`)"""
sql_drop_index_results_tasks = "drop index if exists index_results_tasks"
sql_index_results_models = """create index if not exists
`index_results_models` ON `Results`
(`id`, `model_id`)"""
sql_drop_index_results_models = "drop index if exists index_results_models"
sql_insert_result = """insert into Results(model_id, scan, sym, emit, region, rfac)
values (:model_id, :scan, :sym, :emit, :region, :rfac)"""
sql_insert_result = """insert into Results(model_id, scan, domain, emit, region, rfac)
values (:model_id, :scan, :domain, :emit, :region, :rfac)"""
sql_update_result = """update Results
set rfac=:rfac
where id=:result_id"""
sql_select_result = """select id, model_id, scan, sym, emit, region, rfac
sql_select_result = """select id, model_id, scan, domain, emit, region, rfac
from Results where id=:id"""
sql_select_result_index = """select id, model_id, scan, sym, emit, region, rfac
from Results where model_id=:model_id and scan=:scan and sym=:sym and emit=:emit and region=:region"""
sql_select_result_index = """select id, model_id, scan, domain, emit, region, rfac
from Results where model_id=:model_id and scan=:scan and domain=:domain and emit=:emit and region=:region"""
sql_delete_result = """delete from Results where id = :result_id"""
sql_view_results_models = """create view if not exists `ViewResultsModels` as
select project_id, job_id, model_id, Results.id as result_id, rfac, model, scan, domain, emit, region
from Models
join Results on Results.model_id = Models.id
join Jobs on Jobs.id = Models.job_id
order by project_id, job_id, rfac, model, scan, domain, emit, region
"""
sql_create_params = """CREATE TABLE IF NOT EXISTS `Params` (
`id` INTEGER PRIMARY KEY,
@ -422,16 +430,6 @@ class ResultsDatabase(object):
# @var _lock_filename (str).
# path and name of the lock file or an empty string if no locking is used.
# @var _lock (obj).
# context manager which provides a locking mechanism for the database.
#
# this is either a fasteners.InterprocessLock or _DummyLock.
# InterprocessLock allows to serialize access to the database by means of a lock file.
# _DummyLock is used with an in-memory database which does not require locking.
#
# @note InterprocessLock is re-usable but not re-entrant.
# Be careful not to nest contexts when calling other methods from within this class!
def __init__(self):
self._conn = None
self._db_filename = ""
@ -440,7 +438,6 @@ class ResultsDatabase(object):
self._model_params = {}
self._tags = {}
self._lock_filename = ""
self._lock = None
def connect(self, db_filename, lock_filename=""):
"""
@ -469,14 +466,10 @@ class ResultsDatabase(object):
self._lock_filename = ""
else:
self._lock_filename = db_filename + ".lock"
if self._lock_filename:
self._lock = fasteners.InterProcessLock(self._lock_filename)
else:
self._lock = _DummyLock()
self._conn = sqlite3.connect(self._db_filename)
self._conn.row_factory = sqlite3.Row
with self._lock:
with self.lock():
self._conn.execute("PRAGMA foreign_keys = 1")
self._conn.commit()
c = self._conn.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='Models'")
@ -496,7 +489,6 @@ class ResultsDatabase(object):
if self._conn is not None:
self._conn.close()
self._conn = None
self._lock = None
def check_connection(self):
"""
@ -511,9 +503,25 @@ class ResultsDatabase(object):
@raise AssertionError if the connection is not valid.
"""
assert self._lock is not None, "database not connected"
assert self._conn is not None, "database not connected"
def lock(self):
"""
create a file-lock context manager for the database.
this is either a fasteners.InterProcessLock object on self._lock_filename
or a _DummyLock object if the database is in memory.
InterprocessLock allows to serialize access to the database by means of a lock file.
this is necessary if multiple pmsco instances require access to the same database.
_DummyLock is used with an in-memory database which does not require locking.
the lock object can be used as context-manager in a with statement.
"""
if self._lock_filename:
return fasteners.InterProcessLock(self._lock_filename)
else:
return _DummyLock()
def create_schema(self):
"""
create the database schema (tables and indices).
@ -525,7 +533,7 @@ class ResultsDatabase(object):
@return: None
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
self._conn.execute(self.sql_create_projects)
self._conn.execute(self.sql_create_jobs)
self._conn.execute(self.sql_create_models)
@ -539,19 +547,23 @@ class ResultsDatabase(object):
self._conn.execute(self.sql_index_paramvalues)
self._conn.execute(self.sql_index_jobtags)
self._conn.execute(self.sql_index_models)
self._conn.execute(self.sql_view_results_models)
def register_project(self, name, code):
"""
register a project with the database.
@param name: name of the project. alphanumeric characters only. no spaces or special characters!
if a project of the same name exists in the database,
the id of the existing entry is returned.
the existing entry is not modified.
@param code: name of the pmsco module that defines the project.
@return: id value of the project in the database.
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
c = self._conn.execute(self.sql_select_project_name, {'name': name})
v = c.fetchone()
if v:
@ -574,7 +586,7 @@ class ResultsDatabase(object):
@return None
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
param_dict = {'project_id': project_id}
self._conn.execute(self.sql_delete_project, param_dict)
@ -585,7 +597,11 @@ class ResultsDatabase(object):
@param project_id: identifier of the project. see register_project().
@param name: name of the job. up to the user, must be unique within a project.
@param name: name of the job. alphanumeric characters only. no spaces or special characters!
must be unique within a project.
if a job of the same name and same project exists in the database,
the id of the existing entry is returned.
the existing entry is not modified.
@param mode: optimization mode string (should be same as command line argument).
@ -600,7 +616,7 @@ class ResultsDatabase(object):
@return: id value of the job in the database.
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
c = self._conn.execute(self.sql_select_job_name, {'project_id': project_id, 'name': name})
v = c.fetchone()
if v:
@ -630,7 +646,7 @@ class ResultsDatabase(object):
@return None
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
param_dict = {'job_id': job_id}
self._conn.execute(self.sql_delete_job, param_dict)
@ -669,7 +685,7 @@ class ResultsDatabase(object):
@return: id value of the job in the database
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
job_id = self._query_job_name(job_name, project_id=project_id)
return job_id
@ -686,7 +702,7 @@ class ResultsDatabase(object):
@return: id value of the parameter in the database.
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
return self._register_param(key)
def _register_param(self, key):
@ -721,7 +737,7 @@ class ResultsDatabase(object):
@return: None
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
for key in model_params:
if key[0] != '_':
self._register_param(key)
@ -762,7 +778,7 @@ class ResultsDatabase(object):
params = {}
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
c = self._conn.execute(sql, args)
for row in c:
params[row['key']] = row['param_id']
@ -790,7 +806,7 @@ class ResultsDatabase(object):
@return: id value of the tag in the database.
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
return self._register_tag(key)
def _register_tag(self, key):
@ -825,7 +841,7 @@ class ResultsDatabase(object):
@return: None
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
for key in tags:
self._register_tag(key)
@ -865,7 +881,7 @@ class ResultsDatabase(object):
tags = {}
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
c = self._conn.execute(sql, args)
for row in c:
tags[row['key']] = row['tag_id']
@ -889,7 +905,7 @@ class ResultsDatabase(object):
tags = {}
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
c = self._conn.execute(sql, args)
for row in c:
tags[row['key']] = row['value']
@ -912,7 +928,7 @@ class ResultsDatabase(object):
@return: None
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
for key, value in tags.items():
try:
tag_id = self._tags[key]
@ -965,7 +981,7 @@ class ResultsDatabase(object):
params = self.query_project_params(project_id, job_id)
params.update(self._model_params)
param_names = sorted(params, key=lambda s: s.lower())
with self._lock, self._conn:
with self.lock(), self._conn:
if job_id:
view_name = "ViewModelsJob{0}".format(job_id)
else:
@ -1009,7 +1025,7 @@ class ResultsDatabase(object):
@raise KeyError if a parameter hasn't been registered.
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
# insert model record
model_dict = {'job_id': self.job_id, 'gen': None, 'particle': None}
model_dict.update(special_params(model_params))
@ -1036,7 +1052,7 @@ class ResultsDatabase(object):
@return None
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
param_dict = {'model_id': model_id}
self._conn.execute(self.sql_delete_model, param_dict)
@ -1048,7 +1064,7 @@ class ResultsDatabase(object):
@return: dict
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
c = self._conn.execute(self.sql_select_paramvalue_model, {'model_id': model_id})
d = {}
for row in c:
@ -1084,7 +1100,7 @@ class ResultsDatabase(object):
@param filter: list of filter expressions.
each expression is a relational expression of the form <code>field operator value</code>,
where field is a unique field name of the Projects, Jobs, Models or Results table, e.g.
`job_id`, `model`, `rfac`, `scan`, `sym`, etc.
`job_id`, `model`, `rfac`, `scan`, `domain`, etc.
operator is one of the relational operators in SQL syntax.
value is a numeric or string constant, the latter including single or double quotes.
if the list is empty, no filtering is applied.
@ -1102,7 +1118,7 @@ class ResultsDatabase(object):
"""
self.check_connection()
filter += [" project_id = {0} ".format(self.project_id)]
with self._lock, self._conn:
with self.lock(), self._conn:
sql = "select distinct Models.id as model_id, model "
sql += "from Models "
sql += "join Results on Models.id = Results.model_id "
@ -1147,7 +1163,7 @@ class ResultsDatabase(object):
@param filter: list of filter expressions.
each expression is a relational expression of the form <code>field operator value</code>,
where field is a unique field name of the Projects, Jobs, Models or Results table, e.g.
`job_id`, `model`, `rfac`, `scan`, `sym`, etc.
`job_id`, `model`, `rfac`, `scan`, `domain`, etc.
operator is one of the relational operators in SQL syntax.
value is a numeric or string constant, the latter including single or double quotes.
if the list is empty, no filtering is applied.
@ -1161,9 +1177,9 @@ class ResultsDatabase(object):
"""
self.check_connection()
filter += [" project_id = {0} ".format(self.project_id)]
with self._lock, self._conn:
with self.lock(), self._conn:
sql = "select Results.id as result_id, model_id, job_id, "
sql += "model, scan, sym, emit, region, rfac, gen, particle "
sql += "model, scan, domain, emit, region, rfac, gen, particle "
sql += "from Models "
sql += "join Results on Models.id = Results.model_id "
sql += "join Jobs on Models.job_id = Jobs.id "
@ -1172,7 +1188,7 @@ class ResultsDatabase(object):
sql += "where "
sql += " and ".join(filter)
sql += " "
sql += "order by rfac, job_id, model, scan, sym, emit, region "
sql += "order by rfac, job_id, model, scan, domain, emit, region "
if limit:
sql += "limit {0} ".format(limit)
c = self._conn.execute(sql)
@ -1240,7 +1256,7 @@ class ResultsDatabase(object):
level_name = dispatch.CALC_LEVELS[4]
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
sql = "select Models.id from Models "
sql += "join Results on Models.id = Results.model_id "
sql += "join Jobs on Models.job_id = Jobs.id "
@ -1250,7 +1266,7 @@ class ResultsDatabase(object):
sql += "and Models.job_id in ({0}) ".format(",".join(map(str, job_ids)))
sql += "group by Models.job_id "
sql += "having min(rfac) "
sql += "order by rfac, job_id, model, scan, sym, emit, region "
sql += "order by rfac, job_id, model, scan, domain, emit, region "
c = self._conn.execute(sql)
models = [row['id'] for row in c]
@ -1261,7 +1277,7 @@ class ResultsDatabase(object):
query the task index used in a calculation job.
this query neglects the model index
and returns the unique tuples (-1, scan, sym, emit, region).
and returns the unique tuples (-1, scan, domain, emit, region).
@param job_id: (int) id of the associated Jobs entry.
if 0, self.job_id is used.
@ -1273,8 +1289,8 @@ class ResultsDatabase(object):
job_id = self.job_id
self.check_connection()
with self._lock, self._conn:
sql = "select scan, sym, emit, region "
with self.lock(), self._conn:
sql = "select scan, domain, emit, region "
sql += "from Models "
sql += "join Results on Models.id = Results.model_id "
sql += "join Jobs on Models.job_id = Jobs.id "
@ -1323,7 +1339,7 @@ class ResultsDatabase(object):
sql += "join Results on Models.id = Results.model_id "
sql += "where Models.job_id = :job_id "
sql += "and scan = :scan "
sql += "and sym = :sym "
sql += "and domain = :domain "
sql += "and emit = :emit "
sql += "and region = :region "
sql += "order by rfac "
@ -1334,7 +1350,7 @@ class ResultsDatabase(object):
tasks = self.query_tasks(job_id)
models = set([])
with self._lock, self._conn:
with self.lock(), self._conn:
for task in tasks:
if task.numeric_level <= level:
d = task._asdict()
@ -1360,7 +1376,7 @@ class ResultsDatabase(object):
@param index: (pmsco.dispatch.CalcID or dict)
calculation index.
in case of dict, the keys must be the attribute names of CalcID prefixed with an underscore, i.e.,
'_model', '_scan', '_sym', '_emit', '_region'.
'_model', '_scan', '_domain', '_emit', '_region'.
extra values in the dictionary are ignored.
undefined indices must be -1.
@ -1377,11 +1393,13 @@ class ResultsDatabase(object):
job_id = self.job_id
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
model_id = self._insert_result_model(job_id, index, result)
result_id = self._insert_result_data(model_id, index, result)
self._insert_result_paramvalues(model_id, result)
logger.debug(BMsg("database insert result: job {}, model {}, result {}", job_id, model_id, result_id))
return result_id
def _insert_result_model(self, job_id, index, result):
@ -1402,7 +1420,7 @@ class ResultsDatabase(object):
@param index: (pmsco.dispatch.CalcID or dict)
calculation index.
in case of dict, the keys must be the attribute names of CalcID prefixed with an underscore, i.e.,
'_model', '_scan', '_sym', '_emit', '_region'.
'_model', '_scan', '_domain', '_emit', '_region'.
extra values in the dictionary are ignored.
undefined indices must be -1.
@ -1448,7 +1466,7 @@ class ResultsDatabase(object):
@param index: (pmsco.dispatch.CalcID or dict)
calculation index.
in case of dict, the keys must be the attribute names of CalcID prefixed with an underscore, i.e.,
'_model', '_scan', '_sym', '_emit', '_region'.
'_model', '_scan', '_domain', '_emit', '_region'.
extra values in the dictionary are ignored.
undefined indices must be -1.
@param result: (dict) dictionary containing the parameter values and the '_rfac' result.
@ -1525,7 +1543,7 @@ class ResultsDatabase(object):
if not job_id:
job_id = self.job_id
data = np.genfromtxt(filename, names=True)
data = np.atleast_1d(np.genfromtxt(filename, names=True))
self.register_params(data.dtype.names)
try:
unique_models, unique_index = np.unique(data['_model'], True)
@ -1552,7 +1570,7 @@ class ResultsDatabase(object):
model = unique_models[0]
result_entry = {'model_id': model_ids[model],
'scan': -1,
'sym': -1,
'domain': -1,
'emit': -1,
'region': -1,
'rfac': None}
@ -1571,7 +1589,7 @@ class ResultsDatabase(object):
'value': value}
yield param_entry
with self._lock, self._conn:
with self.lock(), self._conn:
c = self._conn.execute(self.sql_select_model_job, {'job_id': job_id})
v = c.fetchone()
if v:

View File

@ -4,16 +4,13 @@ calculation dispatcher.
@author Matthias Muntwiler
@copyright (c) 2015 by Paul Scherrer Institut @n
@copyright (c) 2015-21 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import os.path
import datetime
@ -21,8 +18,20 @@ import signal
import collections
import copy
import logging
from attrdict import AttrDict
try:
from mpi4py import MPI
mpi_comm = MPI.COMM_WORLD
mpi_size = mpi_comm.Get_size()
mpi_rank = mpi_comm.Get_rank()
except ImportError:
MPI = None
mpi_comm = None
mpi_size = 1
mpi_rank = 0
from pmsco.helpers import BraceMessage as BMsg
logger = logging.getLogger(__name__)
@ -53,7 +62,7 @@ TAG_ERROR_ABORTING = 4
## levels of calculation tasks
#
CALC_LEVELS = ('model', 'scan', 'sym', 'emit', 'region')
CALC_LEVELS = ('model', 'scan', 'domain', 'emit', 'region')
## intermediate sub-class of CalcID
#
@ -159,13 +168,13 @@ class CalculationTask(object):
@arg @c id.model structure number or iteration (handled by the mode module)
@arg @c id.scan scan number (handled by the project)
@arg @c id.sym symmetry number (handled by the project)
@arg @c id.domain domain number (handled by the project)
@arg @c id.emit emitter number (handled by the project)
@arg @c id.region region number (handled by the region handler)
specified members must be greater or equal to zero.
-1 is the wildcard which is used in parent tasks,
where, e.g., no specific symmetry is chosen.
where, e.g., no specific domain is chosen.
the root task has the ID (-1, -1, -1, -1, -1).
"""
@ -311,7 +320,8 @@ class CalculationTask(object):
format input or output file name including calculation index.
@param overrides optional keyword arguments override object fields.
the following keywords are handled: @c root, @c model, @c scan, @c sym, @c emit, @c region, @c ext.
the following keywords are handled:
`root`, `model`, `scan`, `domain`, `emit`, `region`, `ext`.
@return a string consisting of the concatenation of the base name, the ID, and the extension.
"""
@ -322,7 +332,7 @@ class CalculationTask(object):
for key in overrides.keys():
parts[key] = overrides[key]
filename = "{root}_{model}_{scan}_{sym}_{emit}_{region}{ext}".format(**parts)
filename = "{root}_{model}_{scan}_{domain}_{emit}_{region}{ext}".format(**parts)
return filename
def copy(self):
@ -462,7 +472,7 @@ class CachedCalculationMethod(object):
def wrapped_func(inst, model, index):
# note: _replace returns a new instance of the namedtuple
index = index._replace(emit=-1, region=-1)
cache_index = (id(inst), index.model, index.scan, index.sym)
cache_index = (id(inst), index.model, index.scan, index.domain)
try:
result = self._cache[cache_index]
except KeyError:
@ -518,8 +528,7 @@ class MscoProcess(object):
#
# the default is 2 days after start.
def __init__(self, comm):
self._comm = comm
def __init__(self):
self._project = None
self._atomic_scattering = None
self._multiple_scattering = None
@ -565,6 +574,8 @@ class MscoProcess(object):
"""
clean up after all calculations.
this method must be called after run() has finished.
@return: None
"""
pass
@ -693,7 +704,7 @@ class MscoProcess(object):
parameters generation is delegated to the project's create_params method.
@param task: CalculationTask with all attributes set for the calculation.
@return: pmsco.project.Params object for the calculator.
@return: pmsco.project.CalculatorParams object for the calculator.
"""
par = self._project.create_params(task.model, task.id)
@ -711,7 +722,7 @@ class MscoProcess(object):
@param task: CalculationTask with all attributes set for the calculation.
@param par: pmsco.project.Params object for the calculator.
@param par: pmsco.project.CalculatorParams object for the calculator.
its phase_files attribute is updated with the created scattering files.
the radial matrix elements are not changed (but may be in a future version).
@ -740,7 +751,7 @@ class MscoProcess(object):
calculate the multiple scattering intensity.
@param task: CalculationTask with all attributes set for the calculation.
@param par: pmsco.project.Params object for the calculator.
@param par: pmsco.project.CalculatorParams object for the calculator.
@param clu: pmsco.cluster.Cluster object for the calculator.
@return: None
"""
@ -820,16 +831,16 @@ class MscoMaster(MscoProcess):
## @var task_handlers
# (AttrDict) dictionary of task handler objects
#
# the keys are the task levels 'model', 'scan', 'sym', 'emit' and 'region'.
# the keys are the task levels 'model', 'scan', 'domain', 'emit' and 'region'.
# the values are handlers.TaskHandler objects.
# the objects can be accessed in attribute or dictionary notation.
def __init__(self, comm):
super(MscoMaster, self).__init__(comm)
def __init__(self):
super().__init__()
self._pending_tasks = collections.OrderedDict()
self._running_tasks = collections.OrderedDict()
self._complete_tasks = collections.OrderedDict()
self._slaves = self._comm.Get_size() - 1
self._slaves = mpi_size - 1
self._idle_ranks = []
self.max_calculations = 1000000
self._calculations = 0
@ -854,12 +865,18 @@ class MscoMaster(MscoProcess):
the method notifies the handlers of the number of available slave processes (slots).
some of the tasks handlers adjust their branching according to the number of slots.
this mechanism may be used to balance the load between the task levels.
however, the current implementation is very coarse in this respect.
it advertises all slots to the model handler but a reduced number to the remaining handlers
depending on the operation mode.
the region handler receives a maximum of 4 slots except in single calculation mode.
in single calculation mode, all slots can be used by all handlers.
this mechanism may be used to adjust the priorities of the task levels,
i.e., whether one slot handles all calculations of one model
so that all models of a generation finish around the same time,
or whether a model is finished completely before the next one is calculated
so that a result is returned as soon as possible.
the current algorithm tries to pass as many slots as available
down to the lowest level (region) in order to minimize wall time.
the lowest level is restricted to the minimum number of splits
only if the intermediate levels create a lot of branches,
in which case splitting scans would not offer a performance benefit.
"""
super(MscoMaster, self).setup(project)
@ -868,8 +885,8 @@ class MscoMaster(MscoProcess):
self._idle_ranks = list(range(1, self._running_slaves + 1))
self._root_task = CalculationTask()
self._root_task.file_root = project.output_file
self._root_task.model = project.create_domain().start
self._root_task.file_root = str(project.output_file)
self._root_task.model = project.model_space.start
for level in self.task_levels:
self.task_handlers[level] = project.handler_classes[level]()
@ -877,14 +894,22 @@ class MscoMaster(MscoProcess):
self.task_handlers.model.datetime_limit = self.datetime_limit
slaves_adj = max(self._slaves, 1)
self.task_handlers.model.setup(project, slaves_adj)
if project.mode != "single":
slaves_adj = max(slaves_adj / 2, 1)
self.task_handlers.scan.setup(project, slaves_adj)
self.task_handlers.sym.setup(project, slaves_adj)
self.task_handlers.emit.setup(project, slaves_adj)
if project.mode != "single":
n_models = self.task_handlers.model.setup(project, slaves_adj)
if n_models > 1:
slaves_adj = max(int(slaves_adj / 2), 1)
n_scans = self.task_handlers.scan.setup(project, slaves_adj)
if n_scans > 1:
slaves_adj = max(int(slaves_adj / 2), 1)
n_doms = self.task_handlers.domain.setup(project, slaves_adj)
if n_doms > 1:
slaves_adj = max(int(slaves_adj / 2), 1)
n_emits = self.task_handlers.emit.setup(project, slaves_adj)
if n_emits > 1:
slaves_adj = max(int(slaves_adj / 2), 1)
n_extra = max(n_scans, n_doms, n_emits)
if n_extra > slaves_adj * 2:
slaves_adj = min(slaves_adj, 4)
logger.debug(BMsg("{regions} slots available for region handler", regions=slaves_adj))
self.task_handlers.region.setup(project, slaves_adj)
project.setup(self.task_handlers)
@ -911,6 +936,7 @@ class MscoMaster(MscoProcess):
else:
self._dispatch_tasks()
self._receive_result()
self._cleanup_tasks()
self._check_finish()
logger.debug("master exiting main loop")
@ -918,12 +944,32 @@ class MscoMaster(MscoProcess):
self._save_report()
def cleanup(self):
"""
clean up after all calculations.
this method must be called after run() has finished.
in the master process, this calls cleanup() of each task handler and of the project.
@return: None
"""
logger.debug("master entering cleanup")
for level in reversed(self.task_levels):
self.task_handlers[level].cleanup()
self._project.cleanup()
super(MscoMaster, self).cleanup()
def _cleanup_tasks(self):
"""
periodic clean-up in the main loop.
once per iteration of the main loop, this method cleans up unnecessary files.
this is done by the project's cleanup_files() method.
@return: None
"""
self._project.cleanup_files()
def _dispatch_results(self):
"""
pass results through the post-processing modules.
@ -993,7 +1039,7 @@ class MscoMaster(MscoProcess):
else:
logger.debug("assigning task %s to rank %u", str(task.id), rank)
self._running_tasks[task.id] = task
self._comm.send(task.get_mpi_message(), dest=rank, tag=TAG_NEW_TASK)
mpi_comm.send(task.get_mpi_message(), dest=rank, tag=TAG_NEW_TASK)
self._calculations += 1
else:
if not self._finishing:
@ -1015,7 +1061,7 @@ class MscoMaster(MscoProcess):
while self._idle_ranks:
rank = self._idle_ranks.pop()
logger.debug("send finish tag to rank %u", rank)
self._comm.send(None, dest=rank, tag=TAG_FINISH)
mpi_comm.send(None, dest=rank, tag=TAG_FINISH)
self._running_slaves -= 1
def _receive_result(self):
@ -1025,7 +1071,7 @@ class MscoMaster(MscoProcess):
if self._running_slaves > 0:
logger.debug("waiting for calculation result")
s = MPI.Status()
data = self._comm.recv(source=MPI.ANY_SOURCE, tag=MPI.ANY_TAG, status=s)
data = mpi_comm.recv(source=MPI.ANY_SOURCE, tag=MPI.ANY_TAG, status=s)
if s.tag == TAG_NEW_RESULT:
task_id = self._accept_task_done(data)
@ -1122,9 +1168,9 @@ class MscoMaster(MscoProcess):
scan_tasks = self.task_handlers.scan.create_tasks(task)
for scan_task in scan_tasks:
sym_tasks = self.task_handlers.sym.create_tasks(scan_task)
for sym_task in sym_tasks:
emitter_tasks = self.task_handlers.emit.create_tasks(sym_task)
dom_tasks = self.task_handlers.domain.create_tasks(scan_task)
for dom_task in dom_tasks:
emitter_tasks = self.task_handlers.emit.create_tasks(dom_task)
for emitter_task in emitter_tasks:
region_tasks = self.task_handlers.region.create_tasks(emitter_task)
for region_task in region_tasks:
@ -1145,8 +1191,8 @@ class MscoSlave(MscoProcess):
#
# typically, a task is aborted when an exception is encountered.
def __init__(self, comm):
super(MscoSlave, self).__init__(comm)
def __init__(self):
super().__init__()
self._errors = 0
self._max_errors = 5
@ -1159,7 +1205,7 @@ class MscoSlave(MscoProcess):
self._running = True
while self._running:
logger.debug("waiting for message")
data = self._comm.recv(source=0, tag=MPI.ANY_TAG, status=s)
data = mpi_comm.recv(source=0, tag=MPI.ANY_TAG, status=s)
if s.tag == TAG_NEW_TASK:
logger.debug("received new task")
self.accept_task(data)
@ -1189,17 +1235,17 @@ class MscoSlave(MscoProcess):
logger.exception(BMsg("unhandled exception in calculation task {0}", task.id))
self._errors += 1
if self._errors <= self._max_errors:
self._comm.send(data, dest=0, tag=TAG_INVALID_RESULT)
mpi_comm.send(data, dest=0, tag=TAG_INVALID_RESULT)
else:
logger.error("too many exceptions, aborting")
self._running = False
self._comm.send(data, dest=0, tag=TAG_ERROR_ABORTING)
mpi_comm.send(data, dest=0, tag=TAG_ERROR_ABORTING)
else:
logger.debug(BMsg("sending result of task {0} to master", result.id))
self._comm.send(result.get_mpi_message(), dest=0, tag=TAG_NEW_RESULT)
mpi_comm.send(result.get_mpi_message(), dest=0, tag=TAG_NEW_RESULT)
def run_master(mpi_comm, project):
def run_master(project):
"""
initialize and run the master calculation loop.
@ -1211,25 +1257,25 @@ def run_master(mpi_comm, project):
if an unhandled exception occurs, this function aborts the MPI communicator, killing all MPI processes.
the caller will not have a chance to handle the exception.
@param mpi_comm: MPI communicator (mpi4py.MPI.COMM_WORLD).
@param project: project instance (sub-class of project.Project).
"""
try:
master = MscoMaster(mpi_comm)
master = MscoMaster()
master.setup(project)
master.run()
master.cleanup()
except (SystemExit, KeyboardInterrupt):
if mpi_comm:
mpi_comm.Abort()
raise
except Exception:
logger.exception("unhandled exception in master calculation loop.")
if mpi_comm:
mpi_comm.Abort()
raise
def run_slave(mpi_comm, project):
def run_slave(project):
"""
initialize and run the slave calculation loop.
@ -1242,12 +1288,10 @@ def run_slave(mpi_comm, project):
unless it is a SystemExit or KeyboardInterrupt (where we expect that the master also receives the signal),
the MPI communicator is aborted, killing all MPI processes.
@param mpi_comm: MPI communicator (mpi4py.MPI.COMM_WORLD).
@param project: project instance (sub-class of project.Project).
"""
try:
slave = MscoSlave(mpi_comm)
slave = MscoSlave()
slave.setup(project)
slave.run()
slave.cleanup()
@ -1255,6 +1299,7 @@ def run_slave(mpi_comm, project):
raise
except Exception:
logger.exception("unhandled exception in slave calculation loop.")
if mpi_comm:
mpi_comm.Abort()
raise
@ -1267,12 +1312,9 @@ def run_calculations(project):
@param project: project instance (sub-class of project.Project).
"""
mpi_comm = MPI.COMM_WORLD
mpi_rank = mpi_comm.Get_rank()
if mpi_rank == 0:
logger.debug("MPI rank %u setting up master loop", mpi_rank)
run_master(mpi_comm, project)
run_master(project)
else:
logger.debug("MPI rank %u setting up slave loop", mpi_rank)
run_slave(mpi_comm, project)
run_slave(project)

View File

@ -1,7 +0,0 @@
/* EDAC interface for other programs */
%module edac
%{
extern int run_script(char *scriptfile);
%}
extern int run_script(char *scriptfile);

View File

@ -0,0 +1,41 @@
"""
@package pmsco.elements
extended properties of the elements
this package extends the element table of the `periodictable` package
(https://periodictable.readthedocs.io/en/latest/index.html)
by additional attributes like the electron binding energies.
the package requires the periodictable package (https://pypi.python.org/pypi/periodictable).
@author Matthias Muntwiler
@copyright (c) 2020 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
import periodictable.core
def _load_binding_energy():
"""
delayed loading of the binding energy table.
"""
from . import bindingenergy
bindingenergy.init(periodictable.core.default_table())
def _load_photoionization():
"""
delayed loading of the binding energy table.
"""
from . import photoionization
photoionization.init(periodictable.core.default_table())
periodictable.core.delayed_load(['binding_energy'], _load_binding_energy)
periodictable.core.delayed_load(['photoionization'], _load_photoionization)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,212 @@
"""
@package pmsco.elements.bindingenergy
electron binding energies of the elements
extends the element table of the `periodictable` package
(https://periodictable.readthedocs.io/en/latest/index.html)
by the electron binding energies.
the binding energies are compiled from Gwyn Williams' web page
(https://userweb.jlab.org/~gwyn/ebindene.html).
please refer to the original web page or the x-ray data booklet
for original sources, definitions and remarks.
binding energies of gases are replaced by respective values of a common compound
from the 'handbook of x-ray photoelectron spectroscopy' (physical electronics, inc., 1995).
usage
-----
this module requires the periodictable package (https://pypi.python.org/pypi/periodictable).
~~~~~~{.py}
import periodictable as pt
import pmsco.elements.bindingenergy
# read any periodictable's element interfaces, e.g.
print(pt.gold.binding_energy['4f7/2'])
print(pt.elements.symbol('Au').binding_energy['4f7/2'])
print(pt.elements.name('gold').binding_energy['4f7/2'])
print(pt.elements[79].binding_energy['4f7/2'])
~~~~~~
note that attributes are writable.
you may assign refined values in your instance of the database.
the query_binding_energy() function queries all terms with a particular binding energy.
@author Matthias Muntwiler
@copyright (c) 2020 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
import json
import numpy as np
import os
import periodictable as pt
from pmsco.compat import open
index_energy = np.zeros(0)
index_number = np.zeros(0)
index_term = []
default_data_path = os.path.join(os.path.dirname(__file__), "bindingenergy.json")
def load_data(data_path=None):
"""
load binding energy data from json file
the data file must be in the same format as generated by save_data.
@param file path of the data file. default: "bindingenergy.json" next to this module file
@return dictionary
"""
if data_path is None:
data_path = default_data_path
with open(data_path) as fp:
data = json.load(fp)
return data
def save_data(data_path=None):
"""
save binding energy data to json file
@param file path of the data file. default: "bindingenergy.json" next to this module file
@return None
"""
if data_path is None:
data_path = default_data_path
data = {}
for element in pt.elements:
element_data = {}
for term, energy in element.binding_energy.items():
element_data[term] = energy
if element_data:
data[element.number] = element_data
with open(data_path, 'w', 'utf8') as fp:
json.dump(data, fp, sort_keys=True, indent='\t')
def init(table, reload=False):
if 'binding_energy' in table.properties and not reload:
return
table.properties.append('binding_energy')
pt.core.Element.binding_energy = {}
pt.core.Element.binding_energy_units = "eV"
data = load_data()
for el_key, el_data in data.items():
try:
el = table[int(el_key)]
except ValueError:
el = table.symbol(el_key)
el.binding_energy = el_data
def build_index():
"""
build an index for query_binding_energy().
the index is kept in global variables of the module.
@return None
"""
global index_energy
global index_number
global index_term
n = 0
for element in pt.elements:
n += len(element.binding_energy)
index_energy = np.zeros(n)
index_number = np.zeros(n)
index_term = []
for element in pt.elements:
for term, energy in element.binding_energy.items():
index_term.append(term)
i = len(index_term) - 1
index_energy[i] = energy
index_number[i] = element.number
def query_binding_energy(energy, tol=1.0):
"""
search the periodic table for a specific binding energy and return all matching terms.
@param energy: binding energy in eV.
@param tol: tolerance in eV.
@return: list of dictionaries containing element and term specification.
the list is ordered arbitrarily.
each dictionary contains the following keys:
@arg 'number': element number
@arg 'symbol': element symbol
@arg 'term': spectroscopic term
@arg 'energy': actual binding energy
"""
if len(index_energy) == 0:
build_index()
sel = np.abs(index_energy - energy) < tol
idx = np.where(sel)
result = []
for i in idx[0]:
el_num = int(index_number[i])
d = {'number': el_num,
'symbol': pt.elements[el_num].symbol,
'term': index_term[i],
'energy': index_energy[i]}
result.append(d)
return result
def export_flat_text(f):
"""
export the binding energies to a flat general text file.
the file has four space-separated columns `number`, `symbol`, `term`, `energy`.
column names are included in the first row.
@param f: file path or open file object
@return: None
"""
if hasattr(f, "write") and callable(f.write):
f.write("number symbol term energy\n")
for element in pt.elements:
for term, energy in element.binding_energy.items():
f.write(f"{element.number} {element.symbol} {term} {energy}\n")
else:
with open(f, "w") as fi:
export_flat_text(fi)
def import_flat_text(f):
"""
import binding energies from a flat general text file.
data is in space-separated columns.
the first row contains column names.
at least the columns `number`, `term`, `energy` must be present.
the function updates existing entries and appends entries of non-existing terms.
existing terms that are not listed in the file remain unchanged.
@param f: file path or open file object
@return: None
"""
data = np.atleast_1d(np.genfromtxt(f, names=True, dtype=None, encoding="utf8"))
for d in data:
pt.elements[d['number']].binding_energy[d['term']] = d['energy']

Binary file not shown.

View File

@ -0,0 +1,248 @@
"""
@package pmsco.elements.photoionization
photoionization cross-sections of the elements
extends the element table of the `periodictable` package
(https://periodictable.readthedocs.io/en/latest/index.html)
by a table of photoionization cross-sections.
the data is available from (https://vuo.elettra.eu/services/elements/)
or (https://figshare.com/articles/dataset/Digitisation_of_Yeh_and_Lindau_Photoionisation_Cross_Section_Tabulated_Data/12389750).
both sources are based on the original atomic data tables by Yeh and Lindau (1985).
the Elettra data includes interpolation at finer steps,
whereas the Kalha data contains only the original data points by Yeh and Lindau
plus an additional point at 8 keV.
the tables go up to 1500 eV photon energy and do not resolve spin-orbit splitting.
usage
-----
this module requires python 3.6, numpy and the periodictable package (https://pypi.python.org/pypi/periodictable).
~~~~~~{.py}
import numpy as np
import periodictable as pt
import pmsco.elements.photoionization
# read any periodictable's element interfaces as follows.
# eph and cs are numpy arrays of identical shape that hold the photon energies and cross sections.
eph, cs = pt.gold.photoionization.cross_section['4f']
eph, cs = pt.elements.symbol('Au').photoionization.cross_section['4f']
eph, cs = pt.elements.name('gold').photoionization.cross_section['4f']
eph, cs = pt.elements[79].photoionization.cross_section['4f']
# interpolate for specific photon energy
print(np.interp(photon_energy, eph, cs)
~~~~~~
the data is loaded from the cross-sections.dat file which is a python-pickled data file.
to switch between data sources, use one of the load functions defined here
and dump the data to the cross-sections.dat file.
@author Matthias Muntwiler
@copyright (c) 2020 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
import numpy as np
from pathlib import Path
import periodictable as pt
import pickle
import urllib.request
import urllib.error
from . import bindingenergy
def load_kalha_data():
"""
load all cross-sections from csv-files by Kalha et al.
the files must be placed in the 'kalha' directory next to this file.
@return: cross-section data in a nested dictionary, cf. load_pickled_data().
"""
data = {}
p = Path(Path(__file__).parent, "kalha")
for entry in p.glob('*_*.csv'):
if entry.is_file():
try:
element = int(entry.stem.split('_')[0])
except ValueError:
pass
else:
data[element] = load_kalha_file(entry)
return data
def load_kalha_file(path):
"""
load the cross-sections of an element from a csv-file by Kalha et al.
@param path: file path
@return: (dict) dictionary of 'nl' terms.
the data items are tuples (photon_energy, cross_sections) of 1-dimensional numpy arrays.
"""
a = np.genfromtxt(path, delimiter=',', names=True)
b = ~np.isnan(a['Photon_Energy__eV'])
a = a[b]
eph = a['Photon_Energy__eV'].copy()
data = {}
for n in range(1, 8):
for l in 'spdf':
col = f"{n}{l}"
try:
data[col] = (eph, a[col].copy())
except ValueError:
pass
return data
def load_kalha_configuration(path):
"""
load the electron configuration from a csv-file by Kalha et al.
@param path: file path
@return: (dict) dictionary of 'nl' terms mapping to number of electrons in the sub-shell.
"""
p = Path(path)
subshells = []
electrons = []
config = {}
with p.open() as f:
for l in f.readlines():
s = l.split(',')
k_eph = "Photon Energy"
k_el = "#electrons"
if s[0][0:len(k_eph)] == k_eph:
subshells = s[1:]
elif s[0][0:len(k_el)] == k_el:
electrons = s[1:]
for i, sh in enumerate(subshells):
if sh:
config[sh] = electrons[i]
return config
def load_elettra_file(symbol, nl):
"""
download the cross sections of one level from the Elettra webelements web site.
@param symbol: (str) element symbol
@param nl: (str) nl term, e.g. '2p' (no spin-orbit)
@return: (photon_energy, cross_section) tuple of 1-dimensional numpy arrays.
"""
url = f"https://vuo.elettra.eu/services/elements/data/{symbol.lower()}{nl}.txt"
try:
data = urllib.request.urlopen(url)
except urllib.error.HTTPError:
eph = None
cs = None
else:
a = np.genfromtxt(data)
try:
eph = a[:, 0]
cs = a[:, 1]
except IndexError:
eph = None
cs = None
return eph, cs
def load_elettra_data():
"""
download the cross sections from the Elettra webelements web site.
@return: cross-section data in a nested dictionary, cf. load_pickled_data().
"""
data = {}
for element in pt.elements:
element_data = {}
for nlj in element.binding_energy:
nl = nlj[0:2]
eb = element.binding_energy[nlj]
if nl not in element_data and eb <= 2000:
eph, cs = load_elettra_file(element.symbol, nl)
if eph is not None and cs is not None:
element_data[nl] = (eph, cs)
if len(element_data):
data[element.symbol] = element_data
return data
def save_pickled_data(path, data):
"""
save a cross section data dictionary to a python-pickled file.
@param path: file path
@param data: cross-section data in a nested dictionary, cf. load_pickled_data().
@return: None
"""
with open(path, "wb") as f:
pickle.dump(data, f)
def load_pickled_data(path):
"""
load the cross section data from a python-pickled file.
the file can be generated by the save_pickled_data() function.
@param path: file path
@return: cross-section data in a nested dictionary.
the first-level keys are element symbols.
the second-level keys are 'nl' terms (e.g. '2p').
note that the Yeh and Lindau tables do not resolve spin-orbit splitting.
the data items are (photon_energy, cross_sections) tuples
of 1-dimensional numpy arrays holding the data table.
cross section values are given in Mb.
"""
with open(path, "rb") as f:
data = pickle.load(f)
return data
class Photoionization(object):
def __init__(self):
self.cross_section = {}
self.cross_section_units = "Mb"
def init(table, reload=False):
"""
loads cross section data into the periodic table.
this function is called by the periodictable to load the data on demand.
@param table:
@param reload:
@return:
"""
if 'photoionization' in table.properties and not reload:
return
table.properties.append('photoionization')
# default value
pt.core.Element.photoionization = Photoionization()
p = Path(Path(__file__).parent, "cross-sections.dat")
data = load_pickled_data(p)
for el_key, el_data in data.items():
try:
el = table[int(el_key)]
except ValueError:
el = table.symbol(el_key)
pi = Photoionization()
pi.cross_section = el_data
pi.cross_section_units = "Mb"
el.photoionization = pi

208
pmsco/elements/spectrum.py Normal file
View File

@ -0,0 +1,208 @@
"""
@package pmsco.elements.spectrum
photoelectron spectrum simulator
this module calculates the basic structure of a photoelectron spectrum.
it calculates positions and approximate amplitude of elastic peaks
based on photon energy, binding energy, photoionization cross section, and stoichiometry.
escape depth, photon flux, analyser transmission are not accounted for.
usage
-----
this module requires python 3.6, numpy, matplotlib and
the periodictable package (https://pypi.python.org/pypi/periodictable).
~~~~~~{.py}
import numpy as np
import periodictable as pt
import pmsco.elements.spectrum as spec
# for working with the data
labels, energy, intensity = spec.build_spectrum(800., {"Ti": 1, "O": 2})
# for plotting
spec.plot_spectrum(800., {"Ti": 1, "O": 2})
~~~~~~
@author Matthias Muntwiler
@copyright (c) 2020 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from matplotlib import pyplot as plt
import numpy as np
import periodictable as pt
from . import bindingenergy
from . import photoionization
def get_element(number_or_symbol):
"""
return the given Element object of the periodic table.
@param number_or_symbol: atomic number (int) or chemical symbol (str).
@return: Element object.
"""
try:
el = pt.elements[number_or_symbol]
except KeyError:
el = pt.elements.symbol(number_or_symbol)
return el
def get_binding_energy(photon_energy, element, nlj):
"""
look up the binding energy of a core level and check whether it is smaller than the photon energy.
@param photon_energy: photon energy in eV.
@param element: Element object of the periodic table.
@param nlj: (str) spectroscopic term, e.g. '4f7/2'.
@return: (float) binding energy or numpy.nan.
"""
try:
eb = element.binding_energy[nlj]
except KeyError:
return np.nan
if eb < photon_energy:
return eb
else:
return np.nan
def get_cross_section(photon_energy, element, nlj):
"""
look up the photoionization cross section.
since the Yeh/Lindau tables do not resolve the spin-orbit splitting,
this function applies the normal relative weights of a full sub-shell.
the result is a linear interpolation between tabulated values.
@param photon_energy: photon energy in eV.
@param element: Element object of the periodic table.
@param nlj: (str) spectroscopic term, e.g. '4f7/2'.
@return: (float) cross section in Mb.
"""
nl = nlj[0:2]
if not hasattr(element, "photoionization"):
element = get_element(element)
try:
pet, cst = element.photoionization.cross_section[nl]
except KeyError:
return np.nan
# weights of spin-orbit peaks
d_wso = {"p1/2": 1./3.,
"p3/2": 2./3.,
"d3/2": 2./5.,
"d5/2": 3./5.,
"f5/2": 3./7.,
"f7/2": 4./7.}
wso = d_wso.get(nlj[1:], 1.)
cst = cst * wso
# todo: consider spline
return np.interp(photon_energy, pet, cst)
def build_spectrum(photon_energy, elements, binding_energy=False, work_function=4.5):
"""
calculate the positions and amplitudes of core-level photoemission lines.
the function looks up the binding energies and cross sections of all photoemission lines in the energy range
given by the photon energy and returns an array of expected spectral lines.
@param photon_energy: (numeric) photon energy in eV.
@param elements: list or dictionary of elements.
elements are identified by their atomic number (int) or chemical symbol (str).
if a dictionary is given, the (float) values are stoichiometric weights of the elements.
@param binding_energy: (bool) return binding energies (True) rather than kinetic energies (False, default).
@param work_function: (float) work function of the instrument in eV.
@return: tuple (labels, positions, intensities) of 1-dimensional numpy arrays representing the spectrum.
labels are in the format {Symbol}{n}{l}{j}.
"""
ekin = []
ebind = []
intens = []
labels = []
for element in elements:
el = get_element(element)
for n in range(1, 8):
for l in "spdf":
for j in ['', '1/2', '3/2', '5/2', '7/2']:
nlj = f"{n}{l}{j}"
eb = get_binding_energy(photon_energy, el, nlj)
cs = get_cross_section(photon_energy, el, nlj)
try:
cs = cs * elements[element]
except (KeyError, TypeError):
pass
if not np.isnan(eb) and not np.isnan(cs):
ekin.append(photon_energy - eb - work_function)
ebind.append(eb)
intens.append(cs)
labels.append(f"{el.symbol}{nlj}")
ebind = np.array(ebind)
ekin = np.array(ekin)
intens = np.array(intens)
labels = np.array(labels)
if binding_energy:
return labels, ebind, intens
else:
return labels, ekin, intens
def plot_spectrum(photon_energy, elements, binding_energy=False, work_function=4.5, show_labels=True):
"""
plot a simple spectrum representation of a material.
the function looks up the binding energies and cross sections of all photoemission lines in the energy range
given by the photon energy and returns an array of expected spectral lines.
the spectrum is plotted using matplotlib.pyplot.stem.
@param photon_energy: (numeric) photon energy in eV.
@param elements: list or dictionary of elements.
elements are identified by their atomic number (int) or chemical symbol (str).
if a dictionary is given, the (float) values are stoichiometric weights of the elements.
@param binding_energy: (bool) return binding energies (True) rather than kinetic energies (False, default).
@param work_function: (float) work function of the instrument in eV.
@param show_labels: (bool) show peak labels (True, default) or not (False).
@return: (figure, axes)
"""
labels, energy, intensity = build_spectrum(photon_energy, elements, binding_energy=binding_energy,
work_function=work_function)
fig, ax = plt.subplots()
ax.stem(energy, intensity, basefmt=' ', use_line_collection=True)
if show_labels:
for sxy in zip(labels, energy, intensity):
ax.annotate(sxy[0], xy=(sxy[1], sxy[2]), textcoords='data')
ax.grid()
if binding_energy:
ax.set_xlabel('binding energy')
else:
ax.set_xlabel('kinetic energy')
ax.set_ylabel('intensity')
ax.set_title(elements)
return fig, ax
def plot_cross_section(el, nlj):
energy = np.arange(100, 1500, 140)
cs = get_cross_section(energy, el, nlj)
fig, ax = plt.subplots()
ax.set_yscale("log")
ax.plot(energy, cs)

View File

@ -27,20 +27,20 @@ logger = logging.getLogger(__name__)
#
# each string of this set marks a category of files.
#
# @arg @c 'input' : raw input files for calculator, including cluster and atomic files in custom format
# @arg @c 'output' : raw output files from calculator
# @arg @c 'atomic' : atomic scattering (phase, emission) files in portable format
# @arg @c 'cluster' : cluster files in portable XYZ format for report
# @arg @c 'log' : log files
# @arg @c 'debug' : debug files
# @arg @c 'model': output files in ETPAI format: complete simulation (a_-1_-1_-1_-1)
# @arg @c 'scan' : output files in ETPAI format: scan (a_b_-1_-1_-1)
# @arg @c 'symmetry' : output files in ETPAI format: symmetry (a_b_c_-1_-1)
# @arg @c 'emitter' : output files in ETPAI format: emitter (a_b_c_d_-1)
# @arg @c 'region' : output files in ETPAI format: region (a_b_c_d_e)
# @arg @c 'report': final report of results
# @arg @c 'population': final state of particle population
# @arg @c 'rfac': files related to models which give bad r-factors (dynamic category, see below).
# @arg 'input' : raw input files for calculator, including cluster and atomic files in custom format
# @arg 'output' : raw output files from calculator
# @arg 'atomic' : atomic scattering (phase, emission) files in portable format
# @arg 'cluster' : cluster files in portable XYZ format for report
# @arg 'log' : log files
# @arg 'debug' : debug files
# @arg 'model': output files in ETPAI format: complete simulation (a_-1_-1_-1_-1)
# @arg 'scan' : output files in ETPAI format: scan (a_b_-1_-1_-1)
# @arg 'domain' : output files in ETPAI format: domain (a_b_c_-1_-1)
# @arg 'emitter' : output files in ETPAI format: emitter (a_b_c_d_-1)
# @arg 'region' : output files in ETPAI format: region (a_b_c_d_e)
# @arg 'report': final report of results
# @arg 'population': final state of particle population
# @arg 'rfac': files related to models which give bad r-factors (dynamic category, see below).
#
# @note @c 'rfac' is a dynamic category not connected to a particular file or content type.
# no file should be marked @c 'rfac'.
@ -48,7 +48,7 @@ logger = logging.getLogger(__name__)
# if so, all files related to bad models are deleted, regardless of their static category.
#
FILE_CATEGORIES = {'cluster', 'atomic', 'input', 'output',
'report', 'region', 'emitter', 'scan', 'symmetry', 'model',
'report', 'region', 'emitter', 'scan', 'domain', 'model',
'log', 'debug', 'population', 'rfac'}
## @var FILE_CATEGORIES_TO_KEEP
@ -242,37 +242,52 @@ class FileTracker(object):
else:
self._complete_models.discard(model)
def delete_files(self, categories=None):
def delete_files(self, categories=None, incomplete_models=False):
"""
delete the files matching the list of categories.
delete all files matching a set of categories.
@version this method does not act on the 'rfac' category.
this function deletes all files that are tagged with one of the given categories.
tags are set by the code sections that create the files.
for a list of common categories, see FILE_CATEGORIES.
the categories can be given as an argument or taken from the categories_to_delete property.
files are deleted regardless of R-factor.
be sure to specify only categories that you don't need in the output at all.
by default, only files of complete models (cf. set_model_complete()) are deleted
to avoid interference with running calculations.
to clean up after calculations, the incomplete_models argument can override this.
@note this method does not act on the special 'rfac' category (see delete_bad_rfac()).
@param categories: set of file categories to delete.
defaults to self.categories_to_delete.
if the argument is None, it defaults to the categories_to_delete property.
@param incomplete_models: (bool) delete files of incomplete models as well.
by default (False), incomplete models are not deleted.
@return: None
"""
if categories is None:
categories = self.categories_to_delete
for cat in categories:
self.delete_category(cat)
self.delete_category(cat, incomplete_models=incomplete_models)
def delete_bad_rfac(self, keep=0, force_delete=False):
"""
delete the files of all models except a specified number of good models.
delete all files of all models except for a specified number of best ranking models.
the method first determines which models to keep.
models with R factor values of 0.0, without a specified R-factor, and
the specified number of best ranking non-zero models are kept.
the files belonging to the keeper models are kept, all others are deleted,
regardless of category.
files of incomplete models are also kept.
in addition, incomplete models, models with R factor = 0.0,
and those without a specified R-factor are kept.
all other files are deleted.
the method does not consider the file category.
the files are deleted from the list and the file system.
files are deleted only if 'rfac' is specified in self.categories_to_delete
or if force_delete is set to True.
the method executes only if 'rfac' is specified in self.categories_to_delete
or if force_delete is True.
otherwise the method does nothing.
@param keep: number of files to keep.
@ -330,17 +345,31 @@ class FileTracker(object):
return len(del_models)
def delete_category(self, category):
def delete_category(self, category, incomplete_models=False):
"""
delete all files of a specified category from the list and the file system.
only files of complete models (cf. set_model_complete()) are deleted, but regardless of R-factor.
this function deletes all files that are tagged with the given category.
tags are set by the code sections that create the files.
for a list of common categories, see FILE_CATEGORIES.
files are deleted regardless of R-factor.
be sure to specify only categories that you don't need in the output at all.
by default, only files of complete models (cf. set_model_complete()) are deleted
to avoid interference with running calculations.
to clean up after calculations, the incomplete_models argument can override this.
@param category: (str) category.
should be one of FILE_CATEGORIES. otherwise, the function has no effect.
@param incomplete_models: (bool) delete files of incomplete models as well.
by default (False), incomplete models are not deleted.
@return: None
"""
del_names = {name for (name, cat) in self._file_category.items() if cat == category}
if not incomplete_models:
del_names &= {name for (name, model) in self._file_model.items() if model in self._complete_models}
for name in del_names:
self.delete_file(name)
@ -375,3 +404,33 @@ class FileTracker(object):
logger.warning("file system error deleting file {0}".format(path))
else:
logger.debug("delete file {0} ({1}, model {2})".format(path, cat, model))
def list_files_other_models(prefix, models):
"""
list input/output files except those of the given models.
this can be used to clean up all files except those belonging to the given models.
to delete the listed files:
for f in files:
os.remove(f)
@param prefix: file name prefix up to the first underscore.
only files starting with this prefix are listed.
@param models: sequence or set of model numbers that should not be listed.
@return: set of file names
"""
file_names = set([])
for entry in os.scandir():
if entry.is_file:
elements = entry.name.split('_')
try:
if len(elements) == 6 and elements[0] == prefix and int(elements[1]) not in models:
file_names.add(entry.name)
except (IndexError, ValueError):
pass
return file_names

View File

@ -0,0 +1,443 @@
"""
@package pmsco.graphics.population
graphics rendering module for population dynamics.
the main function is render_genetic_chart().
this module is experimental.
interface and implementation are subject to change.
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2021 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
import logging
import numpy as np
import os
from pmsco.database import regular_params, special_params
logger = logging.getLogger(__name__)
try:
from matplotlib.figure import Figure
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
# from matplotlib.backends.backend_pdf import FigureCanvasPdf
# from matplotlib.backends.backend_svg import FigureCanvasSVG
except ImportError:
Figure = None
FigureCanvas = None
logger.warning("error importing matplotlib. graphics rendering disabled.")
def _default_range(pos):
"""
determine a default range from actual values.
@param pos: (numpy.ndarray) 1-dimensional structured array of parameter values.
@return: range_min, range_max are dictionaries of the minimum and maximum values of each parameter.
"""
names = regular_params(pos.dtype.names)
range_min = {}
range_max = {}
for name in names:
range_min[name] = pos[name].min()
range_max[name] = pos[name].max()
return range_min, range_max
def _prune_constant_params(pnames, range_min, range_max):
"""
remove constant parameters from the list and range
@param pnames: (list)
@param range_min: (dict)
@param range_max: (dict)
@return:
"""
del_names = [name for name in pnames if range_max[name] <= range_min[name]]
for name in del_names:
pnames.remove(name)
del range_min[name]
del range_max[name]
def render_genetic_chart(output_file, input_data_or_file, model_space=None, generations=None, title=None, cmap=None,
canvas=None):
"""
produce a genetic chart from a given population.
a genetic chart is a pseudo-colour representation of the coordinates of each individual in the model space.
the axes are the particle number and the model parameter.
the colour is mapped from the relative position of a parameter value within the parameter range.
the chart should illustrate the diversity in the population.
converged parameters will show similar colours.
by comparing charts of different generations, the effect of the optimization algorithm can be examined.
though the chart type is designed for the genetic algorithm, it may be useful for other algorithms as well.
the function requires input in one of the following forms:
- a result (.dat) file or numpy structured array.
the array must contain regular parameters, as well as the _particle and _gen columns.
the function generates one chart per generation unless the generation argument is specified.
- a population (.pop) file or numpy structured array.
the array must contain regular parameters, as well as the _particle columns.
- a pmsco.optimizers.population.Population object with valid data.
the graphics file format can be changed by providing a specific canvas. default is PNG.
this function requires the matplotlib module.
if it is not available, the function raises an error.
@param output_file: path and base name of the output file without extension.
a generation index and the file extension according to the file format are appended.
@param input_data_or_file: a numpy structured ndarray of a population or result list from an optimization run.
alternatively, the file path of a result file (.dat) or population file (.pop) can be given.
file can be any object that numpy.genfromtxt() can handle.
@param model_space: model space can be a pmsco.project.ModelSpace object,
any object that contains the same min and max attributes as pmsco.project.ModelSpace,
or a dictionary with to keys 'min' and 'max' that provides the corresponding ModelSpace dictionaries.
by default, the model space boundaries are derived from the input data.
if a model_space is specified, only the parameters listed in it are plotted.
@param generations: (int or sequence) generation index or list of indices.
this index is used in the output file name and for filtering input data by generation.
if the input data does not contain the generation, no filtering is applied.
by default, no filtering is applied, and one graph for each generation is produced.
@param title: (str) title of the chart.
the title is a {}-style format string, where {base} is the output file name and {gen} is the generation.
default: derived from file name.
@param cmap: (str) name of colour map supported by matplotlib.
default is 'jet'.
other good-looking options are 'PiYG', 'RdBu', 'RdYlGn', 'coolwarm'.
@param canvas: a FigureCanvas class reference from a matplotlib backend.
if None, the default FigureCanvasAgg is used which produces a bitmap file in PNG format.
some other options are:
matplotlib.backends.backend_pdf.FigureCanvasPdf or
matplotlib.backends.backend_svg.FigureCanvasSVG.
@return (str) path and name of the generated graphics file.
empty string if an error occurred.
@raise TypeError if matplotlib is not available.
"""
try:
pos = np.copy(input_data_or_file.pos)
range_min = input_data_or_file.model_min
range_max = input_data_or_file.model_max
generations = [input_data_or_file.generation]
except AttributeError:
try:
pos = np.atleast_1d(np.genfromtxt(input_data_or_file, names=True))
except TypeError:
pos = np.copy(input_data_or_file)
range_min, range_max = _default_range(pos)
pnames = regular_params(pos.dtype.names)
if model_space is not None:
try:
# a ModelSpace-like object
range_min = model_space.min
range_max = model_space.max
except AttributeError:
# a dictionary-like object
range_min = model_space['min']
range_max = model_space['max']
try:
pnames = range_min.keys()
except AttributeError:
pnames = range_min.dtype.names
pnames = list(pnames)
_prune_constant_params(pnames, range_min, range_max)
if generations is None:
try:
generations = np.unique(pos['_gen'])
except ValueError:
pass
files = []
path, base = os.path.split(output_file)
if generations is not None and len(generations):
if title is None:
title = "{base} gen {gen}"
for generation in generations:
idx = np.where(pos['_gen'] == generation)
gpos = pos[idx]
gtitle = title.format(base=base, gen=int(generation))
out_filename = "{base}-{gen}".format(base=os.fspath(output_file), gen=int(generation))
out_filename = _render_genetic_chart_2(out_filename, gpos, pnames, range_min, range_max,
gtitle, cmap, canvas)
files.append(out_filename)
else:
if title is None:
title = "{base}"
gtitle = title.format(base=base, gen="")
out_filename = "{base}".format(base=os.fspath(output_file))
out_filename = _render_genetic_chart_2(out_filename, pos, pnames, range_min, range_max, gtitle, cmap, canvas)
files.append(out_filename)
return files
def _render_genetic_chart_2(out_filename, pos, pnames, range_min, range_max, title, cmap, canvas):
"""
internal part of render_genetic_chart()
this function calculates the relative position in the model space,
sorts the positions array by particle index,
and calls plot_genetic_chart().
@param out_filename:
@param pos:
@param pnames:
@param range_max:
@param range_min:
@param cmap:
@param canvas:
@return: out_filename
"""
spos = np.sort(pos, order='_particle')
rpos2d = np.zeros((spos.shape[0], len(pnames)))
for index, pname in enumerate(pnames):
rpos2d[:, index] = (spos[pname] - range_min[pname]) / (range_max[pname] - range_min[pname])
out_filename = plot_genetic_chart(out_filename, rpos2d, pnames, title=title, cmap=cmap, canvas=canvas)
return out_filename
def plot_genetic_chart(filename, rpos2d, param_labels, title=None, cmap=None, canvas=None):
"""
produce a genetic chart from the given data.
a genetic chart is a pseudo-colour representation of the coordinates of each individual in the model space.
the chart should highlight the amount of diversity in the population
and - by comparing charts of different generations - the changes due to mutation.
the axes are the model parameter (x) and particle number (y).
the colour is mapped from the relative position of a parameter value within the parameter range.
in contrast to render_genetic_chart() this function contains only the drawing code.
it requires input in the final form and does not do any checks, conversion or processing.
the graphics file format can be changed by providing a specific canvas. default is PNG.
this function requires the matplotlib module.
if it is not available, the function raises an error.
@param filename: path and name of the output file without extension.
@param rpos2d: (two-dimensional numpy array of numeric type)
relative positions of the particles in the model space.
dimension 0 (y-axis) is the particle index,
dimension 1 (x-axis) is the parameter index (in the order given by param_labels).
all values must be between 0 and 1.
@param param_labels: (sequence) list or tuple of parameter names.
@param title: (str) string to be printed as chart title. default is 'genetic chart'.
@param cmap: (str) name of colour map supported by matplotlib.
default is 'jet'.
other good-looking options are 'PiYG', 'RdBu', 'RdYlGn', 'coolwarm'.
@param canvas: a FigureCanvas class reference from a matplotlib backend.
if None, the default FigureCanvasAgg is used which produces a bitmap file in PNG format.
some other options are:
matplotlib.backends.backend_pdf.FigureCanvasPdf or
matplotlib.backends.backend_svg.FigureCanvasSVG.
@raise TypeError if matplotlib is not available.
"""
if canvas is None:
canvas = FigureCanvas
if cmap is None:
cmap = 'jet'
if title is None:
title = 'genetic chart'
fig = Figure()
canvas(fig)
ax = fig.add_subplot(111)
im = ax.imshow(rpos2d, aspect='auto', cmap=cmap, origin='lower')
im.set_clim((0.0, 1.0))
ax.set_xticks(np.arange(len(param_labels)))
ax.set_xticklabels(param_labels, rotation=45, ha="right", rotation_mode="anchor")
ax.set_ylabel('particle')
ax.set_title(title)
cb = ax.figure.colorbar(im, ax=ax)
cb.ax.set_ylabel("relative value", rotation=-90, va="bottom")
out_filename = "{base}.{ext}".format(base=filename, ext=canvas.get_default_filetype())
fig.savefig(out_filename)
return out_filename
def render_swarm(output_file, input_data, model_space=None, title=None, cmap=None, canvas=None):
"""
render a two-dimensional particle swarm population.
this function generates a schematic rendering of a particle swarm in two dimensions.
particles are represented by their position and velocity, indicated by an arrow.
the model space is projected on the first two (or selected two) variable parameters.
in the background, a scatter plot of results (dots with pseudocolor representing the R-factor) can be plotted.
the chart type is designed for the particle swarm optimization algorithm.
the function requires input in one of the following forms:
- position (.pos), velocity (.vel) and result (.dat) files or the respective numpy structured arrays.
the arrays must contain regular parameters, as well as the `_particle` column.
the result file must also contain an `_rfac` column.
- a pmsco.optimizers.population.Population object with valid data.
the graphics file format can be changed by providing a specific canvas. default is PNG.
this function requires the matplotlib module.
if it is not available, the function raises an error.
@param output_file: path and base name of the output file without extension.
a generation index and the file extension according to the file format are appended.
@param input_data: a pmsco.optimizers.population.Population object with valid data,
or a sequence of position, velocity and result arrays.
the arrays must be structured ndarrays corresponding to the respective Population members.
alternatively, the arrays can be referenced as file paths
in any format that numpy.genfromtxt() can handle.
@param model_space: model space can be a pmsco.project.ModelSpace object,
any object that contains the same min and max attributes as pmsco.project.ModelSpace,
or a dictionary with to keys 'min' and 'max' that provides the corresponding ModelSpace dictionaries.
by default, the model space boundaries are derived from the input data.
if a model_space is specified, only the parameters listed in it are plotted.
@param title: (str) title of the chart.
the title is a {}-style format string, where {base} is the output file name and {gen} is the generation.
default: derived from file name.
@param cmap: (str) name of colour map supported by matplotlib.
default is 'plasma'.
other good-looking options are 'viridis', 'plasma', 'inferno', 'magma', 'cividis'.
@param canvas: a FigureCanvas class reference from a matplotlib backend.
if None, the default FigureCanvasAgg is used which produces a bitmap file in PNG format.
some other options are:
matplotlib.backends.backend_pdf.FigureCanvasPdf or
matplotlib.backends.backend_svg.FigureCanvasSVG.
@return (str) path and name of the generated graphics file.
empty string if an error occurred.
@raise TypeError if matplotlib is not available.
"""
try:
range_min = input_data.model_min
range_max = input_data.model_max
pos = np.copy(input_data.pos)
vel = np.copy(input_data.vel)
rfac = np.copy(input_data.results)
generation = input_data.generation
except AttributeError:
try:
pos = np.atleast_1d(np.genfromtxt(input_data[0], names=True))
vel = np.atleast_1d(np.genfromtxt(input_data[1], names=True))
rfac = np.atleast_1d(np.genfromtxt(input_data[2], names=True))
except TypeError:
pos = np.copy(input_data[0])
vel = np.copy(input_data[1])
rfac = np.copy(input_data[2])
range_min, range_max = _default_range(rfac)
pnames = regular_params(pos.dtype.names)
if model_space is not None:
try:
# a ModelSpace-like object
range_min = model_space.min
range_max = model_space.max
except AttributeError:
# a dictionary-like object
range_min = model_space['min']
range_max = model_space['max']
try:
pnames = range_min.keys()
except AttributeError:
pnames = range_min.dtype.names
pnames = list(pnames)
_prune_constant_params(pnames, range_min, range_max)
pnames = pnames[0:2]
files = []
if len(pnames) == 2:
params = {pnames[0]: [range_min[pnames[0]], range_max[pnames[0]]],
pnames[1]: [range_min[pnames[1]], range_max[pnames[1]]]}
out_filename = plot_swarm(output_file, pos, vel, rfac, params, title=title, cmap=cmap, canvas=canvas)
files.append(out_filename)
else:
logging.warning("model space must be two-dimensional and non-degenerate.")
return files
def plot_swarm(filename, pos, vel, rfac, params, title=None, cmap=None, canvas=None):
"""
plot a two-dimensional particle swarm population.
this is a sub-function of render_swarm() containing just the plotting commands.
the graphics file format can be changed by providing a specific canvas. default is PNG.
this function requires the matplotlib module.
if it is not available, the function raises an error.
@param filename: path and base name of the output file without extension.
a generation index and the file extension according to the file format are appended.
@param pos: structured ndarray containing the positions of the particles.
@param vel: structured ndarray containing the velocities of the particles.
@param rfac: structured ndarray containing positions and R-factor values.
this array is independent of pos and vel.
it can also be set to None if results should be suppressed.
@param params: dictionary of two parameters to be plotted.
the keys correspond to columns of the pos, vel and rfac arrays.
the values are lists [minimum, maximum] that define the axis range.
@param title: (str) title of the chart.
the title is a {}-style format string, where {base} is the output file name and {gen} is the generation.
default: derived from file name.
@param cmap: (str) name of colour map supported by matplotlib.
default is 'plasma'.
other good-looking options are 'viridis', 'plasma', 'inferno', 'magma', 'cividis'.
@param canvas: a FigureCanvas class reference from a matplotlib backend.
if None, the default FigureCanvasAgg is used which produces a bitmap file in PNG format.
some other options are:
matplotlib.backends.backend_pdf.FigureCanvasPdf or
matplotlib.backends.backend_svg.FigureCanvasSVG.
@return (str) path and name of the generated graphics file.
empty string if an error occurred.
@raise TypeError if matplotlib is not available.
"""
if canvas is None:
canvas = FigureCanvas
if cmap is None:
cmap = 'plasma'
if title is None:
title = 'swarm map'
pnames = list(params.keys())
fig = Figure()
canvas(fig)
ax = fig.add_subplot(111)
if rfac is not None:
try:
s = ax.scatter(rfac[params[0]], rfac[params[1]], s=5, c=rfac['_rfac'], cmap=cmap, vmin=0, vmax=1)
except ValueError:
# _rfac column missing
pass
else:
cb = ax.figure.colorbar(s, ax=ax)
cb.ax.set_ylabel("R-factor", rotation=-90, va="bottom")
p = ax.plot(pos[pnames[0]], pos[pnames[1]], 'co')
q = ax.quiver(pos[pnames[0]], pos[pnames[1]], vel[pnames[0]], vel[pnames[1]], color='c')
ax.set_xlim(params[pnames[0]])
ax.set_ylim(params[pnames[1]])
ax.set_xlabel(pnames[0])
ax.set_ylabel(pnames[1])
ax.set_title(title)
out_filename = "{base}.{ext}".format(base=filename, ext=canvas.get_default_filetype())
fig.savefig(out_filename)
return out_filename

View File

@ -182,7 +182,7 @@ def render_results(results_file, data=None):
"""
if data is None:
data = np.genfromtxt(results_file, names=True)
data = np.atleast_1d(np.genfromtxt(results_file, names=True))
summary = evaluate_results(data)

View File

@ -7,16 +7,13 @@ interface and implementation are subject to change.
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2018 by Paul Scherrer Institut @n
@copyright (c) 2018-21 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import math
import numpy as np
@ -135,9 +132,8 @@ def render_ea_scan(filename, data, scan_mode, canvas=None, is_modf=False):
im.set_cmap("RdBu_r")
dhi = max(abs(dlo), abs(dhi))
dlo = -dhi
im.set_clim((dlo, dhi))
im.set_clim((-1., 1.))
try:
# requires matplotlib 2.1.0
ti = cb.get_ticks()
ti = [min(ti), 0., max(ti)]
cb.set_ticks(ti)
@ -213,9 +209,8 @@ def render_tp_scan(filename, data, canvas=None, is_modf=False):
# im.set_cmap("coolwarm")
dhi = max(abs(dlo), abs(dhi))
dlo = -dhi
pc.set_clim((dlo, dhi))
pc.set_clim((-1., 1.))
try:
# requires matplotlib 2.1.0
ti = cb.get_ticks()
ti = [min(ti), 0., max(ti)]
cb.set_ticks(ti)
@ -226,9 +221,12 @@ def render_tp_scan(filename, data, canvas=None, is_modf=False):
# im.set_cmap("inferno")
# im.set_cmap("viridis")
pc.set_clim((dlo, dhi))
try:
ti = cb.get_ticks()
ti = [min(ti), max(ti)]
cb.set_ticks(ti)
except AttributeError:
pass
out_filename = "{0}.{1}".format(filename, canvas.get_default_filetype())
fig.savefig(out_filename)

View File

@ -1,6 +1,6 @@
"""
@package pmsco.handlers
project-independent task handlers for models, scans, symmetries, emitters and energies.
project-independent task handlers for models, scans, domains, emitters and energies.
calculation tasks are organized in a hierarchical tree.
at each node, a task handler (feel free to find a better name)
@ -20,9 +20,9 @@ the handlers of the structural optimizers are declared in separate modules.
scans are defined by the project.
the actual merging step from multiple scans into one result dataset is delegated to the project class.
<em>symmetry handlers</em> split a task into one child per symmetry.
symmetries are defined by the project.
the actual merging step from multiple symmetries into one result dataset is delegated to the project class.
<em>domain handlers</em> split a task into one child per domain.
domains are defined by the project.
the actual merging step from multiple domains into one result dataset is delegated to the project class.
<em>emitter handlers</em> split a task into one child per emitter configuration (inequivalent sets of emitting atoms).
emitter configurations are defined by the project.
@ -35,31 +35,29 @@ code inspection and tests have shown that per-emitter results from EDAC can be s
in order to take advantage of parallel processing.
while several classes of model handlers are available,
the default handlers for scans, symmetries, emitters and energies should be sufficient in most situations.
the scan and symmetry handlers call methods of the project class to invoke project-specific functionality.
the default handlers for scans, domains, emitters and energies should be sufficient in most situations.
the scan and domain handlers call methods of the project class to invoke project-specific functionality.
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2015-18 by Paul Scherrer Institut @n
@copyright (c) 2015-21 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import datetime
from functools import reduce
import logging
import math
import numpy as np
import os
from pathlib import Path
from pmsco.compat import open
import pmsco.data as md
import pmsco.dispatch as dispatch
import pmsco.graphics.scan as mgs
from pmsco.helpers import BraceMessage as BMsg
@ -127,10 +125,14 @@ class TaskHandler(object):
for best efficiency the number of tasks generated should be greater or equal the number of slots.
it should not exceed N times the number of slots, where N is a reasonably small number.
@return None
@return (int) number of children that create_tasks() will generate on average.
the number does not need to be accurate, a rough estimate or order of magnitude if greater than 10 is fine.
it is used to distribute processing slots across task levels.
see pmsco.dispatch.MscoMaster.setup().
"""
self._project = project
self._slots = slots
return 1
def cleanup(self):
"""
@ -372,7 +374,7 @@ class SingleModelHandler(ModelHandler):
keys = [key for key in self.result]
keys.sort(key=lambda t: t[0].lower())
vals = (str(self.result[key]) for key in keys)
filename = self._project.output_file + ".dat"
filename = Path(self._project.output_file).with_suffix(".dat")
with open(filename, "w") as outfile:
outfile.write("# ")
outfile.write(" ".join(keys))
@ -416,6 +418,8 @@ class ScanHandler(TaskHandler):
def setup(self, project, slots):
"""
initialize the scan task handler and save processed experimental scans.
@return (int) number of scans defined in the project.
"""
super(ScanHandler, self).setup(project, slots)
@ -430,13 +434,15 @@ class ScanHandler(TaskHandler):
if project.combined_scan is not None:
ext = md.format_extension(project.combined_scan)
filename = project.output_file + ext
filename = Path(project.output_file).with_suffix(ext)
md.save_data(filename, project.combined_scan)
if project.combined_modf is not None:
ext = md.format_extension(project.combined_modf)
filename = project.output_file + ".modf" + ext
filename = Path(project.output_file).with_suffix(".modf" + ext)
md.save_data(filename, project.combined_modf)
return len(self._project.scans)
def create_tasks(self, parent_task):
"""
generate a calculation task for each scan of the given parent task.
@ -526,7 +532,7 @@ class ScanHandler(TaskHandler):
return None
class SymmetryHandler(TaskHandler):
class DomainHandler(TaskHandler):
## @var _pending_ids_per_parent
# (dict) sets of child task IDs per parent
#
@ -546,20 +552,29 @@ class SymmetryHandler(TaskHandler):
# the values are sets of all child CalculationTask.id belonging to the parent.
def __init__(self):
super(SymmetryHandler, self).__init__()
super(DomainHandler, self).__init__()
self._pending_ids_per_parent = {}
self._complete_ids_per_parent = {}
def setup(self, project, slots):
"""
initialize the domain task handler.
@return (int) number of domains defined in the project.
"""
super(DomainHandler, self).setup(project, slots)
return len(self._project.domains)
def create_tasks(self, parent_task):
"""
generate a calculation task for each symmetry of the given parent task.
generate a calculation task for each domain of the given parent task.
all symmetries share the same model parameters.
all domains share the same model parameters.
@return list of CalculationTask objects, with one element per symmetry.
the symmetry index varies according to project.symmetries.
@return list of CalculationTask objects, with one element per domain.
the domain index varies according to project.domains.
"""
super(SymmetryHandler, self).create_tasks(parent_task)
super(DomainHandler, self).create_tasks(parent_task)
parent_id = parent_task.id
self._parent_tasks[parent_id] = parent_task
@ -567,10 +582,10 @@ class SymmetryHandler(TaskHandler):
self._complete_ids_per_parent[parent_id] = set()
out_tasks = []
for (i_sym, sym) in enumerate(self._project.symmetries):
for (i_dom, domain) in enumerate(self._project.domains):
new_task = parent_task.copy()
new_task.parent_id = parent_id
new_task.change_id(sym=i_sym)
new_task.change_id(domain=i_dom)
child_id = new_task.id
self._pending_tasks[child_id] = new_task
@ -579,25 +594,25 @@ class SymmetryHandler(TaskHandler):
out_tasks.append(new_task)
if not out_tasks:
logger.error("no symmetry tasks generated. your project must declare at least one symmetry.")
logger.error("no domain tasks generated. your project must declare at least one domain.")
return out_tasks
def add_result(self, task):
"""
collect and combine the calculation results versus symmetry.
collect and combine the calculation results versus domain.
* mark the task as complete
* store its result for later
* check whether this was the last pending task of the family (belonging to the same parent).
the actual merging of data is delegated to the project's combine_symmetries() method.
the actual merging of data is delegated to the project's combine_domains() method.
@param task: (CalculationTask) calculation task that completed.
@return parent task (CalculationTask) if the family is complete. None if the family is not complete yet.
"""
super(SymmetryHandler, self).add_result(task)
super(DomainHandler, self).add_result(task)
self._complete_tasks[task.id] = task
del self._pending_tasks[task.id]
@ -607,7 +622,7 @@ class SymmetryHandler(TaskHandler):
family_pending.remove(task.id)
family_complete.add(task.id)
# all symmetries complete?
# all domains complete?
if len(family_pending) == 0:
parent_task = self._parent_tasks[task.parent_id]
@ -624,7 +639,7 @@ class SymmetryHandler(TaskHandler):
parent_task.time = reduce(lambda a, b: a + b, child_times)
if parent_task.result_valid:
self._project.combine_symmetries(parent_task, child_tasks)
self._project.combine_domains(parent_task, child_tasks)
self._project.evaluate_result(parent_task, child_tasks)
self._project.files.add_file(parent_task.result_filename, parent_task.id.model, 'scan')
self._project.files.add_file(parent_task.modf_filename, parent_task.id.model, 'scan')
@ -669,6 +684,19 @@ class EmitterHandler(TaskHandler):
self._pending_ids_per_parent = {}
self._complete_ids_per_parent = {}
def setup(self, project, slots):
"""
initialize the emitter task handler.
@return (int) estimated number of emitter configurations that the cluster generator will generate.
the estimate is based on the start parameters, scan 0 and domain 0.
"""
super(EmitterHandler, self).setup(project, slots)
mock_model = self._project.model_space.start
mock_index = dispatch.CalcID(-1, 0, 0, -1, -1)
n_emitters = project.cluster_generator.count_emitters(mock_model, mock_index)
return n_emitters
def create_tasks(self, parent_task):
"""
generate a calculation task for each emitter configuration of the given parent task.
@ -750,11 +778,11 @@ class EmitterHandler(TaskHandler):
if parent_task.result_valid:
self._project.combine_emitters(parent_task, child_tasks)
self._project.evaluate_result(parent_task, child_tasks)
self._project.files.add_file(parent_task.result_filename, parent_task.id.model, 'symmetry')
self._project.files.add_file(parent_task.modf_filename, parent_task.id.model, 'symmetry')
self._project.files.add_file(parent_task.result_filename, parent_task.id.model, 'domain')
self._project.files.add_file(parent_task.modf_filename, parent_task.id.model, 'domain')
graph_file = mgs.render_scan(parent_task.modf_filename,
ref_data=self._project.scans[parent_task.id.scan].modulation)
self._project.files.add_file(graph_file, parent_task.id.model, 'symmetry')
self._project.files.add_file(graph_file, parent_task.id.model, 'domain')
del self._pending_ids_per_parent[parent_task.id]
del self._complete_ids_per_parent[parent_task.id]
@ -921,7 +949,7 @@ class EnergyRegionHandler(RegionHandler):
@param slots (int) number of calculation slots (processes).
@return None
@return (int) average number of child tasks
"""
super(EnergyRegionHandler, self).setup(project, slots)
@ -934,6 +962,8 @@ class EnergyRegionHandler(RegionHandler):
logger.debug(BMsg("region handler: split scan {file} into {slots} chunks",
file=os.path.basename(scan.filename), slots=self._slots_per_scan[i]))
return max(int(sum(self._slots_per_scan) / len(self._slots_per_scan)), 1)
def create_tasks(self, parent_task):
"""
generate a calculation task for each energy region of the given parent task.

View File

@ -12,7 +12,7 @@ MUFPOT_DIR = mufpot
LOESS_DIR = loess
PHAGEN_DIR = calculators/phagen
all: edac loess
all: edac loess phagen
edac:
$(MAKE) -C $(EDAC_DIR)

View File

@ -45,7 +45,7 @@ class GeneticPopulation(population.Population):
4. mutation: a gene may mutate at random.
5. selection: the globally best individual is added to a parent population (and replaces the worst).
the main tuning parameter of the algorithm is the mutation_step which is copied from the domain.step.
the main tuning parameter of the algorithm is the mutation_step which is copied from the model_space.step.
it defines the width of a gaussian distribution of change under a weak mutation.
it should be large enough so that the whole parameter space can be probed,
but small enough that a frequent mutation does not throw the individual out of the convergence region.
@ -92,9 +92,9 @@ class GeneticPopulation(population.Population):
## @var mutation_step
#
# standard deviations of the exponential distribution function used in the mutate_weak() method.
# the variable is a dictionary with the same keys as model_step (the parameter domain).
# the variable is a dictionary with the same keys as model_step (the parameter space).
#
# it is initialized from the domain.step
# it is initialized from the model_space.step
# or set to a default value based on the parameter range and population size.
def __init__(self):
@ -110,15 +110,15 @@ class GeneticPopulation(population.Population):
self.position_constrain_mode = 'random'
self.mutation_step = {}
def setup(self, size, domain, **kwargs):
def setup(self, size, model_space, **kwargs):
"""
@copydoc Population.setup()
in addition to the inherited behaviour, this method initializes self.mutation_step.
mutation_step of a parameter is set to its domain.step if non-zero.
mutation_step of a parameter is set to its model_space.step if non-zero.
otherwise it is set to the parameter range divided by the population size.
"""
super(GeneticPopulation, self).setup(size, domain, **kwargs)
super(GeneticPopulation, self).setup(size, model_space, **kwargs)
for key in self.model_step:
val = self.model_step[key]
@ -131,7 +131,7 @@ class GeneticPopulation(population.Population):
this implementation is a new proposal.
the distribution is not completely random.
rather, a position vector (by parameter) is initialized with a linear function
that covers the parameter domain.
that covers the parameter space.
the linear function is then permuted randomly.
the method does not update the particle info fields.
@ -243,7 +243,7 @@ class GeneticPopulation(population.Population):
"""
apply a weak mutation to a model.
each parameter is changed to a different value in the domain of the parameter at the given probability.
each parameter is changed to a different value in the parameter space at the given probability.
the amount of change has a gaussian distribution with a standard deviation of mutation_step.
@param[in,out] model: structured numpy.ndarray holding the model parameters.
@ -263,7 +263,7 @@ class GeneticPopulation(population.Population):
"""
apply a strong mutation to a model.
each parameter is changed to a random value in the domain of the parameter at the given probability.
each parameter is changed to a random value in the parameter space at the given probability.
@param[in,out] model: structured numpy.ndarray holding the model parameters.
model is modified in place.

View File

@ -8,7 +8,7 @@ the optimization task is distributed over multiple processes using MPI.
the optimization must be started with N+1 processes in the MPI environment,
where N equals the number of fit parameters.
IMPLEMENTATION IN PROGRESS - DEBUGGING
THIS MODULE IS NOT INTEGRATED INTO PMSCO YET.
Requires: scipy, numpy
@ -109,7 +109,7 @@ class MscMaster(MscProcess):
def setup(self, project):
super(MscMaster, self).setup(project)
self.dom = project.create_domain()
self.dom = project.create_model_space()
self.running_slaves = self.slaves
self._outfile = open(self.project.output_file + ".dat", "w")

View File

@ -63,7 +63,7 @@ class GridPopulation(object):
## @var positions
# (numpy.ndarray) flat list of grid coordinates and results.
#
# the column names include the names of the model parameters, taken from domain.start,
# the column names include the names of the model parameters, taken from model_space.start,
# and the special names @c '_model', @c '_rfac'.
# the special fields have the following meanings:
#
@ -113,11 +113,12 @@ class GridPopulation(object):
dt.sort(key=lambda t: t[0].lower())
return dt
def setup(self, domain):
def setup(self, model_space):
"""
set up the population and result arrays.
@param domain: definition of initial and limiting model parameters
@param model_space: (pmsco.project.ModelSpace)
definition of initial and limiting model parameters
expected by the cluster and parameters functions.
the attributes have the following meanings:
@arg start: values of the fixed parameters.
@ -128,24 +129,24 @@ class GridPopulation(object):
if step <= 0, the parameter is kept constant.
"""
self.model_start = domain.start
self.model_min = domain.min
self.model_max = domain.max
self.model_step = domain.step
self.model_start = model_space.start
self.model_min = model_space.min
self.model_max = model_space.max
self.model_step = model_space.step
self.model_count = 1
self.search_keys = []
self.fixed_keys = []
scales = []
for p in domain.step.keys():
if domain.step[p] > 0:
n = np.round((domain.max[p] - domain.min[p]) / domain.step[p]) + 1
for p in model_space.step.keys():
if model_space.step[p] > 0:
n = int(np.round((model_space.max[p] - model_space.min[p]) / model_space.step[p]) + 1)
else:
n = 1
if n > 1:
self.search_keys.append(p)
scales.append(np.linspace(domain.min[p], domain.max[p], n))
scales.append(np.linspace(model_space.min[p], model_space.max[p], n))
else:
self.fixed_keys.append(p)
@ -221,7 +222,7 @@ class GridPopulation(object):
@raise AssertionError if the number of rows of the two files differ.
"""
data = np.genfromtxt(filename, names=True)
data = np.atleast_1d(np.genfromtxt(filename, names=True))
assert data.shape == array.shape
for name in data.dtype.names:
array[name] = data[name]
@ -298,12 +299,12 @@ class GridSearchHandler(handlers.ModelHandler):
the minimum number of slots is 1, the recommended value is 10 or greater.
the population size is set to at least 4.
@return:
@return (int) number of models to be calculated.
"""
super(GridSearchHandler, self).setup(project, slots)
self._pop = GridPopulation()
self._pop.setup(self._project.create_domain())
self._pop.setup(self._project.model_space)
self._invalid_limit = max(slots, self._invalid_limit)
self._outfile = open(self._project.output_file + ".dat", "w")
@ -311,7 +312,7 @@ class GridSearchHandler(handlers.ModelHandler):
self._outfile.write(" ".join(self._pop.positions.dtype.names))
self._outfile.write("\n")
return None
return self._pop.model_count
def cleanup(self):
self._outfile.close()

View File

@ -3,7 +3,7 @@
base classes for population-based optimizers.
a _population_ is a set of individuals or particles
that can assume coordinates from the parameter domain.
that can assume coordinates from the parameter space.
a tuple of coordinates is also called _model parameters_ which define the _model_.
the individuals travel through parameter space according to an algorithm defined separately.
depending on the algorithm, the population can converge towards the optimum coordinates based on calculated R-factors.
@ -117,7 +117,7 @@ class Population(object):
## @var pos
# (numpy.ndarray) current positions of each particle.
#
# the column names include the names of the model parameters, taken from domain.start,
# the column names include the names of the model parameters, taken from model_space.start,
# and the special names @c '_particle', @c '_model', @c '_rfac'.
# the special fields have the following meanings:
#
@ -299,7 +299,7 @@ class Population(object):
arr[k] = model_dict[k]
return arr
def setup(self, size, domain, **kwargs):
def setup(self, size, model_space, **kwargs):
"""
set up the population arrays seeded with previous results and the start model.
@ -315,12 +315,12 @@ class Population(object):
@param size: requested number of particles.
@param domain: definition of initial and limiting model parameters
@param model_space: definition of initial and limiting model parameters
expected by the cluster and parameters functions.
@arg domain.start: initial guess.
@arg domain.min: minimum values allowed.
@arg domain.max: maximum values allowed. if min == max, the parameter is kept constant.
@arg domain.step: depends on the actual algorithm.
@arg model_space.start: initial guess.
@arg model_space.min: minimum values allowed.
@arg model_space.max: maximum values allowed. if min == max, the parameter is kept constant.
@arg model_space.step: depends on the actual algorithm.
not used in particle swarm.
standard deviation of mutations in genetic optimization.
@ -335,14 +335,14 @@ class Population(object):
"""
self.size_req = size
self.size_act = size
self.model_start = domain.start
self.model_min = domain.min
self.model_max = domain.max
self.model_step = domain.step
self.model_start_array = self.get_model_array(domain.start)
self.model_min_array = self.get_model_array(domain.min)
self.model_max_array = self.get_model_array(domain.max)
self.model_step_array = self.get_model_array(domain.step)
self.model_start = model_space.start
self.model_min = model_space.min
self.model_max = model_space.max
self.model_step = model_space.step
self.model_start_array = self.get_model_array(model_space.start)
self.model_min_array = self.get_model_array(model_space.min)
self.model_max_array = self.get_model_array(model_space.max)
self.model_step_array = self.get_model_array(model_space.step)
# allocate arrays
dt = self.get_pop_dtype(self.model_start)
@ -378,8 +378,8 @@ class Population(object):
"""
initializes a random population.
the position array is filled with random values (uniform distribution) from the parameter domain.
velocity values are randomly chosen between -1/8 to 1/8 times the width (max - min) of the parameter domain.
the position array is filled with random values (uniform distribution) from the parameter space.
velocity values are randomly chosen between -1/8 to 1/8 times the width (max - min) of the parameter space.
the method does not update the particle info fields.
@ -402,8 +402,8 @@ class Population(object):
the method does not update the particle info fields.
@param params: dictionary of model parameters.
the keys must match the ones of domain.start.
values that lie outside of the domain are skipped.
the keys must match the ones of model_space.start.
values that lie outside of the model space are skipped.
@param index: index of the particle that is seeded.
the index must be in the allowed range of the self.pos array.
@ -440,7 +440,7 @@ class Population(object):
this method is called as a part of setup().
it must not be called after the optimization has started.
parameter values that lie outside the parameter domain (min/max) are left at their previous value.
parameter values that lie outside the model space (min/max) are left at their previous value.
@note this method does not initialize the remaining particles.
neither does it set the velocity and best position arrays of the seeded particles.
@ -488,7 +488,7 @@ class Population(object):
count_limit = self.pos.shape[0]
count_limit = min(count_limit, self.pos.shape[0] - first_particle)
seed = np.genfromtxt(seed_file, names=True)
seed = np.atleast_1d(np.genfromtxt(seed_file, names=True))
try:
seed = seed[seed['_rfac'] <= rfac_limit]
except ValueError:
@ -554,14 +554,14 @@ class Population(object):
however, the patch is applied only upon the next execution of advance_population().
an info or warning message is printed to the log
depending on whether the filed contained a complete dataset or not.
depending on whether the file contained a complete dataset or not.
@attention patching a live population is a potentially dangerous operation.
it may cause an optimization to abort because of an error in the file.
this method does not handle exceptions coming from numpy.genfromtxt
such as missing file (IOError) or conversion errors (ValueError).
exception handling should be done by the owner of the population (typically the model handler).
patch values that lie outside the population domain aresilently ignored.
patch values that lie outside the model space are silently ignored.
@param patch_file: path and name of the patch file.
the file must have the correct format for load_array(),
@ -572,7 +572,7 @@ class Population(object):
@raise ValueError for conversion errors.
"""
self.pos_patch = np.genfromtxt(patch_file, names=True)
self.pos_patch = np.atleast_1d(np.genfromtxt(patch_file, names=True))
source_fields = set(self.pos_patch.dtype.names)
dest_fields = set(self.model_start.keys())
common_fields = source_fields & dest_fields
@ -592,7 +592,7 @@ class Population(object):
the method overwrites only parameter values, not control variables.
_particle indices that lie outside the range of available population items are ignored.
parameter values that lie outside the parameter domain (min/max) are ignored.
parameter values that lie outside the model space (min/max) are ignored.
"""
if self.pos_patch is not None:
logger.warning(BMsg("patching generation {gen} with new positions.", gen=self.generation))
@ -658,7 +658,7 @@ class Population(object):
elif isinstance(source, str):
for i in range(timeout):
try:
array = np.genfromtxt(source, names=True)
array = np.atleast_1d(np.genfromtxt(source, names=True))
except IOError:
time.sleep(1)
else:
@ -708,7 +708,7 @@ class Population(object):
the method also performs a range check.
the parameter values are constrained according to self.position_constrain_mode
and the parameter domain self.model_min and self.model_max.
and the model space self.model_min and self.model_max.
if the constrain mode is `error`, models that violate the constraints are ignored
and removed from the import queue.
@ -844,18 +844,18 @@ class Population(object):
"""
constrain a position to the given bounds.
this method resolves violations of parameter boundaries, i.e. when a particle is leaving the designated domain.
if a violation is detected, the method calculates an updated position inside the domain
this method resolves violations of parameter boundaries, i.e. when a particle is leaving the designated model space.
if a violation is detected, the method calculates an updated position inside the model space
according to the selected algorithm.
in some cases the velocity or boundaries have to be updated as well.
the method distinguishes overshoot and undershoot violations.
overshoot is the normal case when the particle is leaving the domain.
overshoot is the normal case when the particle is leaving the model space.
it is handled according to the selected algorithm.
undershoot is a special case where the particle was outside the boundaries before the move.
this case can occur in the beginning if the population is seeded with out-of-bounds values.
undershoot is always handled by placing the particle at a random position in the domain
undershoot is always handled by placing the particle at a random position in the model space
regardless of the chosen constraint mode.
@note it is important to avoid bias while handling constraint violations.
@ -877,7 +877,7 @@ class Population(object):
@param _mode: what to do if a boundary constraint is violated:
@arg 're-enter': re-enter from the opposite side of the parameter interval.
@arg 'bounce': fold the motion vector at the boundary and move the particle back into the domain.
@arg 'bounce': fold the motion vector at the boundary and move the particle back into the model space.
@arg 'scatter': place the particle at a random place between its old position and the violated boundary.
@arg 'stick': place the particle at the violated boundary.
@arg 'expand': move the boundary so that the particle fits.
@ -982,7 +982,7 @@ class Population(object):
@param search_array: population-like numpy structured array to search for the model.
defaults to self.results if None.
@param precision: precision relative to model domain at which elements should be considered equal.
@param precision: precision relative to model space at which elements should be considered equal.
@return index of the first occurrence.
@ -1071,7 +1071,7 @@ class Population(object):
@raise AssertionError if the number of rows of the two files differ.
"""
data = np.genfromtxt(filename, names=True)
data = np.atleast_1d(np.genfromtxt(filename, names=True))
assert data.shape == array.shape
for name in data.dtype.names:
array[name] = data[name]
@ -1182,7 +1182,7 @@ class PopulationHandler(handlers.ModelHandler):
which may slow down convergence.
if calculations take a long time compared to the available computation time
or spawn a lot of sub-tasks due to complex symmetry,
or spawn a lot of sub-tasks due to complex model space,
and you prefer to allow for a good number of generations,
you should override the population size.
@ -1190,7 +1190,7 @@ class PopulationHandler(handlers.ModelHandler):
@param slots: number of calculation processes available through MPI.
@return: None
@return (int) population size
"""
super(PopulationHandler, self).setup(project, slots)
@ -1206,10 +1206,10 @@ class PopulationHandler(handlers.ModelHandler):
outfile.write(" ".join(self._pop.results.dtype.names))
outfile.write("\n")
return None
return self._pop_size
def setup_population(self):
self._pop.setup(self._pop_size, self._project.create_domain(), **self._project.optimizer_params)
self._pop.setup(self._pop_size, self._project.model_space, **self._project.optimizer_params)
def cleanup(self):
super(PopulationHandler, self).cleanup()

View File

@ -83,8 +83,8 @@ class TablePopulation(population.Population):
although, a seed file is accepted, it is not used.
patching is allowed, but there is normally no advantage over modifying the table.
the domain is used to define the model parameters and the parameter range.
models violating the parameter domain are ignored.
the model space is used to define the model parameters and the parameter range.
models violating the parameter model space are ignored.
"""
## @var table_source
@ -103,20 +103,20 @@ class TablePopulation(population.Population):
self.table_source = None
self.position_constrain_mode = 'error'
def setup(self, size, domain, **kwargs):
def setup(self, size, model_space, **kwargs):
"""
set up the population arrays, parameter domain and data source.
set up the population arrays, parameter model space and data source.
@param size: requested number of particles.
this does not need to correspond to the number of table entries.
on each generation the population loads up to this number of new entries from the table source.
@param domain: definition of initial and limiting model parameters
@param model_space: definition of initial and limiting model parameters
expected by the cluster and parameters functions.
@arg domain.start: not used.
@arg domain.min: minimum values allowed.
@arg domain.max: maximum values allowed.
@arg domain.step: not used.
@arg model_space.start: not used.
@arg model_space.min: minimum values allowed.
@arg model_space.max: maximum values allowed.
@arg model_space.step: not used.
the following arguments are keyword arguments.
the method also accepts the inherited arguments for seeding. they do not have an effect, however.
@ -128,7 +128,7 @@ class TablePopulation(population.Population):
@return: None
"""
super(TablePopulation, self).setup(size, domain, **kwargs)
super(TablePopulation, self).setup(size, model_space, **kwargs)
self.table_source = kwargs['table_source']
def advance_population(self):

View File

@ -6,12 +6,12 @@ PEARL Multiple-Scattering Calculation and Structural Optimization
this is the top-level interface of the PMSCO package.
all calculations (any mode, any project) start by calling the run_project() function of this module.
the module also provides a command line parser for common options.
the module also provides a command line and a run-file/run-dict interface.
for parallel execution, prefix the command line with mpi_exec -np NN, where NN is the number of processes to use.
note that in parallel mode, one process takes the role of the coordinator (master).
the master does not run calculations and is idle most of the time.
to benefit from parallel execution on a work station, NN should be the number of processors plus one.
to benefit from parallel execution on a work station, NN should be the number of processors.
on a cluster, the number of processes is chosen according to the available resources.
all calculations can also be run in a single process.
@ -25,26 +25,35 @@ refer to the projects folder for examples.
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2015-18 by Paul Scherrer Institut @n
@copyright (c) 2015-21 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
from builtins import range
import datetime
import logging
import importlib
import os.path
import commentjson as json
from pathlib import Path
import sys
try:
from mpi4py import MPI
mpi_comm = MPI.COMM_WORLD
mpi_size = mpi_comm.Get_size()
mpi_rank = mpi_comm.Get_rank()
except ImportError:
MPI = None
mpi_comm = None
mpi_size = 1
mpi_rank = 0
pmsco_root = Path(__file__).resolve().parent.parent
if str(pmsco_root) not in sys.path:
sys.path.insert(0, str(pmsco_root))
import pmsco.dispatch as dispatch
import pmsco.files as files
@ -71,40 +80,36 @@ def setup_logging(enable=False, filename="pmsco.log", level="WARNING"):
@param enable: (bool) True=enable logging to the specified file,
False=do not generate a log (null handler).
@param filename: (string) path and name of the log file.
@param filename: (Path-like) path and name of the log file.
if this process is part of an MPI communicator,
the function inserts a dot and the MPI rank of this process before the extension.
if the filename is empty, logging is disabled.
@param level: (string) name of the log level.
must be the name of one of "DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL".
if empty or invalid, the function raises a ValueError.
if empty, logging is disabled.
if not a valid level, defaults to "WARNING".
@return None
"""
numeric_level = getattr(logging, level.upper(), None)
if not isinstance(numeric_level, int):
raise ValueError('Invalid log level: %s' % level)
logger = logging.getLogger("")
logger.setLevel(numeric_level)
logformat = '%(asctime)s (%(name)s) %(levelname)s: %(message)s'
formatter = logging.Formatter(logformat)
enable = enable and str(filename) and level
numeric_level = getattr(logging, level.upper(), logging.WARNING)
root_logger = logging.getLogger()
root_logger.setLevel(numeric_level)
if enable:
mpi_comm = MPI.COMM_WORLD
mpi_size = mpi_comm.Get_size()
if mpi_size > 1:
mpi_rank = mpi_comm.Get_rank()
root, ext = os.path.splitext(filename)
filename = root + "." + str(mpi_rank) + ext
p = Path(filename)
filename = p.with_suffix(f".{mpi_rank}" + p.suffix)
log_format = '%(asctime)s (%(name)s) %(levelname)s: %(message)s'
formatter = logging.Formatter(log_format)
handler = logging.FileHandler(filename, mode="w", delay=True)
handler.setLevel(numeric_level)
handler.setFormatter(formatter)
else:
handler = logging.NullHandler()
logger.addHandler(handler)
root_logger.addHandler(handler)
def set_common_args(project, args):
@ -124,65 +129,58 @@ def set_common_args(project, args):
@return: None
"""
log_file = "pmsco.log"
if args.data_dir:
project.data_dir = args.data_dir
if args.output_file:
project.set_output(args.output_file)
log_file = args.output_file + ".log"
project.output_file = args.output_file
if args.db_file:
project.db_file = args.db_file
if args.log_file:
log_file = args.log_file
setup_logging(enable=args.log_enable, filename=log_file, level=args.log_level)
logger.debug("creating project")
mode = args.mode.lower()
if mode in {'single', 'grid', 'swarm', 'genetic', 'table'}:
project.mode = mode
else:
logger.error("invalid optimization mode '%s'.", mode)
if args.pop_size:
project.optimizer_params['pop_size'] = args.pop_size
if args.seed_file:
project.optimizer_params['seed_file'] = args.seed_file
if args.seed_limit:
project.optimizer_params['seed_limit'] = args.seed_limit
if args.table_file:
project.optimizer_params['table_file'] = args.table_file
project.log_file = args.log_file
if args.log_level:
project.log_level = args.log_level
if not args.log_enable:
project.log_file = ""
project.log_level = ""
if args.mode:
project.mode = args.mode.lower()
if args.time_limit:
project.set_timedelta_limit(datetime.timedelta(hours=args.time_limit))
project.time_limit = args.time_limit
if args.keep_files:
if "all" in args.keep_files:
cats = set([])
else:
cats = files.FILE_CATEGORIES - set(args.keep_files)
cats -= {'report'}
if mode == 'single':
cats -= {'model'}
project.files.categories_to_delete = cats
if args.keep_levels > project.keep_levels:
project.keep_levels = args.keep_levels
if args.keep_best > project.keep_best:
project.keep_best = args.keep_best
project.keep_files = args.keep_files
if args.keep_levels:
project.keep_levels = max(args.keep_levels, project.keep_levels)
if args.keep_best:
project.keep_best = max(args.keep_best, project.keep_best)
def run_project(project):
"""
run a calculation project.
@param project:
@return:
the function sets up logging, validates the project, chooses the handler classes,
and passes control to the pmsco.dispatch module to run the calculations.
@param project: fully initialized project object.
the validate method is called as part of this function after setting up the logger.
@return: None
"""
# log project arguments only in rank 0
mpi_comm = MPI.COMM_WORLD
mpi_rank = mpi_comm.Get_rank()
log_file = Path(project.log_file)
if not log_file.name:
log_file = Path(project.job_name).with_suffix(".log")
if log_file.name:
log_file.parent.mkdir(exist_ok=True)
log_level = project.log_level
else:
log_level = ""
setup_logging(enable=bool(log_level), filename=log_file, level=log_level)
if mpi_rank == 0:
project.log_project_args()
project.validate()
optimizer_class = None
if project.mode == 'single':
optimizer_class = handlers.SingleModelHandler
@ -219,6 +217,34 @@ def run_project(project):
logger.error("undefined project, optimizer, or calculator.")
def schedule_project(project, run_dict):
"""
schedule a calculation project.
the function validates the project and submits a job to the scheduler.
@param project: fully initialized project object.
the validate method is called as part of this function.
@param run_dict: dictionary holding the contents of the run file.
@return: None
"""
assert mpi_rank == 0
setup_logging(enable=False)
project.validate()
schedule_dict = run_dict['schedule']
module = importlib.import_module(schedule_dict['__module__'])
schedule_class = getattr(module, schedule_dict['__class__'])
schedule = schedule_class(project)
schedule.set_properties(module, schedule_dict, project)
schedule.run_dict = run_dict
schedule.validate()
schedule.submit()
class Args(object):
"""
arguments of the main function.
@ -231,7 +257,7 @@ class Args(object):
values as the command line parser.
"""
def __init__(self, mode="single", output_file="pmsco_data"):
def __init__(self):
"""
constructor.
@ -240,12 +266,9 @@ class Args(object):
other parameters may be required depending on the project
and/or the calculation mode.
"""
self.mode = mode
self.pop_size = 0
self.seed_file = ""
self.seed_limit = 0
self.data_dir = ""
self.output_file = output_file
self.output_file = ""
self.db_file = ""
self.time_limit = 24.0
self.keep_files = files.FILE_CATEGORIES_TO_KEEP
self.keep_best = 10
@ -253,13 +276,9 @@ class Args(object):
self.log_level = "WARNING"
self.log_file = ""
self.log_enable = True
self.table_file = ""
def get_cli_parser(default_args=None):
if not default_args:
default_args = Args()
def get_cli_parser():
KEEP_FILES_CHOICES = files.FILE_CATEGORIES | {'all'}
parser = argparse.ArgumentParser(
@ -272,7 +291,7 @@ def get_cli_parser(default_args=None):
1) a project class derived from pmsco.project.Project.
the class implements/overrides all necessary methods of the calculation project,
in particular create_domain, create_cluster, and create_params.
in particular create_model_space, create_cluster, and create_params.
2) a global function named create_project.
the function accepts a namespace object from the argument parser.
@ -287,54 +306,45 @@ def get_cli_parser(default_args=None):
# for simplicity, the parser does not check these requirements.
# all parameters are optional and accepted regardless of mode.
# errors may occur if implicit requirements are not met.
parser.add_argument('project_module',
parser.add_argument('project_module', nargs='?',
help="path to custom module that defines the calculation project")
parser.add_argument('-m', '--mode', default=default_args.mode,
parser.add_argument('-r', '--run-file',
help="path to run-time parameters file which contains all program arguments. " +
"must be in JSON format.")
parser.add_argument('-m', '--mode',
choices=['single', 'grid', 'swarm', 'genetic', 'table'],
help='calculation mode')
parser.add_argument('--pop-size', type=int, default=default_args.pop_size,
help='population size (number of particles) in swarm or genetic optimization mode. ' +
'default is the greater of 4 or the number of calculation processes.')
parser.add_argument('--seed-file',
help='path and name of population seed file. ' +
'population data of previous optimizations can be used to seed a new optimization. ' +
'the file must have the same structure as the .pop or .dat files.')
parser.add_argument('--seed-limit', type=int, default=default_args.seed_limit,
help='maximum number of models to use from the seed file. ' +
'the models with the best R-factors are selected.')
parser.add_argument('-d', '--data-dir', default=default_args.data_dir,
parser.add_argument('-d', '--data-dir',
help='directory path for experimental data files (if required by project). ' +
'default: working directory')
parser.add_argument('-o', '--output-file', default=default_args.output_file,
parser.add_argument('-o', '--output-file',
help='base path for intermediate and output files.')
parser.add_argument('--table-file',
help='path and name of population table file for table optimization mode. ' +
'the file must have the same structure as the .pop or .dat files.')
parser.add_argument('-k', '--keep-files', nargs='*', default=default_args.keep_files,
parser.add_argument('-b', '--db-file',
help='name of an sqlite3 database file where the results should be stored.')
parser.add_argument('-k', '--keep-files', nargs='*',
choices=KEEP_FILES_CHOICES,
help='output file categories to keep after the calculation. '
'by default, cluster and model (simulated data) '
'of a limited number of best models are kept.')
parser.add_argument('--keep-best', type=int, default=default_args.keep_best,
parser.add_argument('--keep-best', type=int,
help='number of best models for which to keep result files '
'(at each node from root down to keep-levels).')
parser.add_argument('--keep-levels', type=int, choices=range(5),
default=default_args.keep_levels,
help='task level down to which result files of best models are kept. '
'0 = model, 1 = scan, 2 = symmetry, 3 = emitter, 4 = region.')
parser.add_argument('-t', '--time-limit', type=float, default=default_args.time_limit,
'0 = model, 1 = scan, 2 = domain, 3 = emitter, 4 = region.')
parser.add_argument('-t', '--time-limit', type=float,
help='wall time limit in hours. the optimizers try to finish before the limit.')
parser.add_argument('--log-file', default=default_args.log_file,
parser.add_argument('--log-file',
help='name of the main log file. ' +
'under MPI, the rank of the process is inserted before the extension.')
parser.add_argument('--log-level', default=default_args.log_level,
parser.add_argument('--log-level',
help='minimum level of log messages. DEBUG, INFO, WARNING, ERROR, CRITICAL.')
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--log-enable', dest='log_enable', action="store_true",
help="enable logging. by default, logging is on.")
feature_parser.add_argument('--log-disable', dest='log_enable', action='store_false',
help="disable logging. by default, logging is on.")
parser.set_defaults(log_enable=default_args.log_enable)
parser.set_defaults(log_enable=True)
return parser
@ -345,52 +355,135 @@ def parse_cli():
@return: Namespace object created by the argument parser.
"""
default_args = Args()
parser = get_cli_parser(default_args)
parser = get_cli_parser()
args, unknown_args = parser.parse_known_args()
return args, unknown_args
def import_project_module(path):
def import_module(module_name):
"""
import the custom project module.
import a custom module by name.
imports the project module given its file path.
the path is expanded to its absolute form and appended to the python path.
import a module given its file path or module name (like in an import statement).
@param path: path and name of the module to be loaded.
path is optional and defaults to the python path.
if the name includes an extension, it is stripped off.
preferably, the module name should be given as in an import statement.
as the top-level pmsco directory is on the python path,
the module name will begin with `projects` for a custom project module or `pmsco` for a core pmsco module.
in this case, the function just calls importlib.import_module.
if a file path is given, i.e., `module_name` links to an existing file and has a `.py` extension,
the function extracts the directory path,
inserts it into the python path,
and calls importlib.import_module on the stem of the file name.
@note the file path remains in the python path.
this option should be used carefully to avoid breaking file name resolution.
@param module_name: file path or module name.
file path is interpreted relative to the working directory.
@return: the loaded module as a python object
"""
path, name = os.path.split(path)
name, __ = os.path.splitext(name)
path = os.path.abspath(path)
sys.path.append(path)
project_module = importlib.import_module(name)
return project_module
p = Path(module_name)
if p.is_file() and p.suffix == ".py":
path = p.parent.resolve()
module_name = p.stem
if path not in sys.path:
sys.path.insert(0, path)
module = importlib.import_module(module_name)
return module
def main_dict(run_params):
"""
main function with dictionary run-time parameters
this starts the whole process with all direct parameters.
the command line is not parsed.
no run-file is loaded (just the project module).
@param run_params: dictionary with the same structure as the JSON run-file.
@return: None
"""
project_params = run_params['project']
module = importlib.import_module(project_params['__module__'])
try:
project_class = getattr(module, project_params['__class__'])
except KeyError:
project = module.create_project()
else:
project = project_class()
project._module = module
project.directories['pmsco'] = Path(__file__).parent
project.directories['project'] = Path(module.__file__).parent
project.set_properties(module, project_params, project)
run_project(project)
def main():
"""
main function with command line parsing
this function starts the whole process with parameters from the command line.
if the command line contains a run-file parameter, it determines the module to load and the project parameters.
otherwise, the command line parameters apply.
the project class can be specified either in the run-file or the project module.
if the run-file specifies a class name, that class is looked up in the project module and instantiated.
otherwise, the module's create_project is called.
@return: None
"""
args, unknown_args = parse_cli()
if args:
module = import_project_module(args.project_module)
try:
with open(args.run_file, 'r') as f:
rf = json.load(f)
except AttributeError:
rfp = {'__module__': args.project_module}
else:
rfp = rf['project']
module = import_module(rfp['__module__'])
try:
project_args = module.parse_project_args(unknown_args)
except NameError:
except AttributeError:
project_args = None
try:
project_class = getattr(module, rfp['__class__'])
except (AttributeError, KeyError):
project = module.create_project()
else:
project = project_class()
project_args = None
project._module = module
project.directories['pmsco'] = Path(__file__).parent
project.directories['project'] = Path(module.__file__).parent
project.set_properties(module, rfp, project)
set_common_args(project, args)
try:
if project_args:
module.set_project_args(project, project_args)
except NameError:
except AttributeError:
pass
try:
schedule_enabled = rf['schedule']['enabled']
except KeyError:
schedule_enabled = False
if schedule_enabled:
schedule_project(project, rf)
else:
run_project(project)

File diff suppressed because it is too large Load Diff

309
pmsco/schedule.py Normal file
View File

@ -0,0 +1,309 @@
"""
@package pmsco.schedule
job schedule interface
this module defines common infrastructure to submit a pmsco calculation job to a job scheduler such as slurm.
the schedule can be defined as part of the run-file (see pmsco module).
users may derive sub-classes in a separate module to adapt to their own computing cluster.
the basic call sequence is:
1. create a schedule object.
2. initialize its properties with job parameters.
3. validate()
4. submit()
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2015-21 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
import collections.abc
import commentjson as json
import datetime
import logging
from pathlib import Path
import shutil
import subprocess
import pmsco.config
logger = logging.getLogger(__name__)
class JobSchedule(pmsco.config.ConfigurableObject):
"""
base class for job schedule
this class defines the abstract interface and some utilities.
derived classes may override any method, but should call the inherited method.
usage:
1. create object, assigning a project instance.
2. assign run_file.
3. call validate.
4. call submit.
this class' properties should not be listed in the run file - they will be overwritten.
"""
## @var enabled (bool)
#
# this parameter signals whether pmsco should schedule a job or run the calculation.
# it is not directly used by the schedule classes but by the pmsco module.
# it must be defined in the run file and set to true to submit the job to a scheduler.
# it is set to false in the run file copied to the job directory so that the job script starts the calculation.
def __init__(self, project):
super(JobSchedule, self).__init__()
self.project = project
self.enabled = False
self.run_dict = {}
self.job_dir = Path()
self.job_file = Path()
self.run_file = Path()
# directory that contains the pmsco and projects directories
self.pmsco_root = Path(__file__).parent.parent
def validate(self):
"""
validate the job parameters.
make sure all object attributes are correct for submission.
@return: None
"""
self.pmsco_root = Path(self.project.directories['pmsco']).parent
output_dir = Path(self.project.directories['output'])
assert self.pmsco_root.is_dir()
assert (self.pmsco_root / "pmsco").is_dir()
assert (self.pmsco_root / "projects").is_dir()
assert output_dir.is_dir()
assert self.project.job_name
self.job_dir = output_dir / self.project.job_name
self.job_dir.mkdir(parents=True, exist_ok=True)
self.job_file = (self.job_dir / self.project.job_name).with_suffix(".sh")
self.run_file = (self.job_dir / self.project.job_name).with_suffix(".json")
def submit(self):
"""
submit the job to the scheduler.
as of this class, the method does to following:
1. copy source files
2. copy a patched version of the run file.
3. write the job file (_write_job_file must be implemented by a derived class).
@return: None
"""
self._copy_source()
self._fix_run_file()
self._write_run_file()
self._write_job_file()
def _copy_source(self):
"""
copy the source files to the job directory.
the source_dir and job_dir attributes must be correct.
the job_dir directory must not exist and will be created.
this is a utility method used internally by derived classes.
job_dir/pmsco/pmsco/**
job_dir/pmsco/projects/**
job_dir/job.sh
job_dir/job.json
@return: None
"""
source = self.pmsco_root
dest = self.job_dir / "pmsco"
ignore = shutil.ignore_patterns(".*", "~*", "*~")
shutil.copytree(source / "pmsco", dest / "pmsco", ignore=ignore)
shutil.copytree(source / "projects", dest / "projects", ignore=ignore)
def _fix_run_file(self):
"""
fix the run file.
patch some entries of self.run_dict so that it can be used as run file.
the following changes are made:
1. set schedule.enabled to false so that the calculation is run.
2. set the output directory to the job directory.
3. set the log file to the job directory.
@return: None
"""
self.run_dict['schedule']['enabled'] = False
self.run_dict['project']['directories']['output'] = str(self.job_dir)
self.run_dict['project']['log_file'] = str((self.job_dir / self.project.job_name).with_suffix(".log"))
def _write_run_file(self):
"""
copy the run file.
this is a JSON dump of self.run_dict to the self.run_file file.
@return: None
"""
with open(self.run_file, "wt") as f:
json.dump(self.run_dict, f, indent=2)
def _write_job_file(self):
"""
create the job script.
this method must be implemented by a derived class.
the script must be written to the self.job_file file.
don't forget to make the file executable.
@return: None
"""
pass
class SlurmSchedule(JobSchedule):
"""
job schedule for a slurm scheduler.
this class implements commonly used features of the slurm scheduler.
host-specific features and the creation of the job file should be done in a derived class.
derived classes must, in particular, implement the _write_job_file method.
they can override other methods, too, but should call the inherited method first.
1. copy the source trees (pmsco and projects) to the job directory
2. copy a patched version of the run file.
3. call the submission command
the public properties of this class should be assigned from the run file.
"""
def __init__(self, project):
super(SlurmSchedule, self).__init__(project)
self.host = ""
self.nodes = 1
self.tasks_per_node = 8
self.wall_time = datetime.timedelta(hours=1)
self.signal_time = 600
self.manual = True
@staticmethod
def parse_timedelta(td):
"""
parse time delta input formats
converts a string or dictionary from run-file into datetime.timedelta.
@param td:
str: [days-]hours[:minutes[:seconds]]
dict: days, hours, minutes, seconds - at least one needs to be defined. values must be numeric.
datetime.timedelta - native type
@return: datetime.timedelta
"""
if isinstance(td, str):
dt = {}
d = td.split("-")
if len(d) > 1:
dt['days'] = float(d.pop(0))
t = d[0].split(":")
try:
dt['hours'] = float(t.pop(0))
dt['minutes'] = float(t.pop(0))
dt['seconds'] = float(t.pop(0))
except (IndexError, ValueError):
pass
td = datetime.timedelta(**dt)
elif isinstance(td, collections.abc.Mapping):
td = datetime.timedelta(**td)
return td
def validate(self):
super(SlurmSchedule, self).validate()
self.wall_time = self.parse_timedelta(self.wall_time)
assert self.job_dir.is_absolute()
def submit(self):
"""
call the sbatch command
if manual is true, the job files are generated but the job is not submitted.
@return: None
"""
super(SlurmSchedule, self).submit()
args = ['sbatch', str(self.job_file)]
print(" ".join(args))
if self.manual:
print("manual run - job files created but not submitted")
else:
cp = subprocess.run(args)
cp.check_returncode()
class PsiRaSchedule(SlurmSchedule):
"""
job shedule for the Ra cluster at PSI.
this class selects specific features of the Ra cluster,
such as the partition and node type (24 or 32 cores).
it also implements the _write_job_file method.
"""
## @var partition (str)
#
# the partition is selected based on wall time and number of tasks by the validate() method.
# it should not be listed in the run file.
def __init__(self, project):
super(PsiRaSchedule, self).__init__(project)
self.partition = "shared"
def validate(self):
super(PsiRaSchedule, self).validate()
assert self.nodes <= 2
assert self.tasks_per_node <= 24 or self.tasks_per_node == 32
assert self.wall_time.total_seconds() >= 60
if self.wall_time.total_seconds() > 24 * 60 * 60:
self.partition = "week"
elif self.tasks_per_node < 24:
self.partition = "shared"
else:
self.partition = "day"
assert self.partition in ["day", "week", "shared"]
def _write_job_file(self):
lines = []
lines.append('#!/bin/bash')
lines.append('#SBATCH --export=NONE')
lines.append(f'#SBATCH --job-name="{self.project.job_name}"')
lines.append(f'#SBATCH --partition={self.partition}')
lines.append(f'#SBATCH --time={int(self.wall_time.total_seconds() / 60)}')
lines.append(f'#SBATCH --nodes={self.nodes}')
lines.append(f'#SBATCH --ntasks-per-node={self.tasks_per_node}')
if self.tasks_per_node > 24:
lines.append('#SBATCH --cores-per-socket=16')
# 0 - 65535 seconds
# currently, PMSCO does not react to signals properly
# lines.append(f'#SBATCH --signal=TERM@{self.signal_time}')
lines.append(f'#SBATCH --output="{self.project.job_name}.o.%j"')
lines.append(f'#SBATCH --error="{self.project.job_name}.e.%j"')
lines.append('module load psi-python36/4.4.0')
lines.append('module load gcc/4.8.5')
lines.append('module load openmpi/3.1.3')
lines.append('source activate pmsco')
lines.append(f'cd "{self.job_dir}"')
lines.append(f'mpirun python pmsco/pmsco -r {self.run_file.name}')
lines.append(f'cd "{self.job_dir}"')
lines.append('rm -rf pmsco')
lines.append('exit 0')
self.job_file.write_text("\n".join(lines))
self.job_file.chmod(0o755)

View File

@ -0,0 +1,138 @@
"""
@package projects.common.clusters.crystals
cluster generators for some common bulk crystals
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2015-19 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import os.path
import periodictable as pt
import logging
import pmsco.cluster as cluster
import pmsco.dispatch as dispatch
import pmsco.project as project
from pmsco.helpers import BraceMessage as BMsg
logger = logging.getLogger(__name__)
class ZincblendeCluster(cluster.ClusterGenerator):
def __init__(self, proj):
super(ZincblendeCluster, self).__init__(proj)
self.atomtype1 = 30
self.atomtype2 = 16
self.bulk_lattice = 1.0
self.surface = (1, 1, 1)
@classmethod
def check(cls, outfilename=None, model_dict=None, domain_dict=None):
"""
function to test and debug the cluster generator.
to use this function, you don't need to import or initialize anything but the class.
though the project class is used internally, the result does not depend on any project settings.
@param outfilename: name of output file for the cluster (XYZ format).
the file is written to the same directory where this module is located.
if empty or None, no file is written.
@param model_dict: dictionary of model parameters to override the default values.
@param domain_dict: dictionary of domain parameters to override the default values.
@return: @ref pmsco.cluster.Cluster object
"""
proj = project.Project()
dom = project.ModelSpace()
dom.add_param('dlat', 10.)
dom.add_param('rmax', 5.0)
if model_dict:
dom.start.update(model_dict)
try:
proj.domains[0].update({'zrot': 0.})
except IndexError:
proj.add_domain({'zrot': 0.})
if domain_dict:
proj.domains[0].update(domain_dict)
proj.add_scan("", 'C', '1s')
clu_gen = cls(proj)
index = dispatch.CalcID(0, 0, 0, -1, -1)
clu = clu_gen.create_cluster(dom.start, index)
if outfilename:
project_dir = os.path.dirname(os.path.abspath(__file__))
outfilepath = os.path.join(project_dir, outfilename)
clu.save_to_file(outfilepath, fmt=cluster.FMT_XYZ, comment="{0} {1} {2}".format(cls, index, str(dom.start)))
return clu
def count_emitters(self, model, index):
return 1
def create_cluster(self, model, index):
"""
calculate a specific set of atom positions given the optimizable parameters.
@param model (dict) optimizable parameters
@arg model['dlat'] bulk lattice constant in Angstrom
@arg model['rmax'] cluster radius
@arg model['phi'] azimuthal rotation angle in degrees
@param dom (dict) domain
@arg dom['term'] surface termination
"""
clu = cluster.Cluster()
clu.comment = "{0} {1}".format(self.__class__, index)
clu.set_rmax(model['rmax'])
a_lat = model['dlat']
dom = self.project.domains[index]
try:
term = int(dom['term'])
except ValueError:
term = pt.elements.symbol(dom['term'].strip().number)
if self.surface == (0, 0, 1):
# identity matrix
m = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
elif self.surface == (1, 1, 1):
# this will map the [111] direction onto the z-axis
m1 = np.array([1, -1, 0]) * math.sqrt(1/2)
m2 = np.array([0.5, 0.5, -1]) * math.sqrt(2/3)
m3 = np.array([1, 1, 1]) * math.sqrt(1/3)
m = np.array([m1, m2, m3])
else:
raise ValueError("unsupported surface specification")
# lattice vectors
a1 = np.matmul(m, np.array((1.0, 0.0, 0.0)) * a_lat)
a2 = np.matmul(m, np.array((0.0, 1.0, 0.0)) * a_lat)
a3 = np.matmul(m, np.array((0.0, 0.0, 1.0)) * a_lat)
# basis
b1 = [np.array((0.0, 0.0, 0.0)), (a2 + a3) / 2, (a3 + a1) / 2, (a1 + a2) / 2]
if term == self.atomtype1:
d1 = np.array((0, 0, 0))
d2 = (a1 + a2 + a3) / 4
else:
d1 = -(a1 + a2 + a3) / 4
d2 = np.array((0, 0, 0))
for b in b1:
clu.add_bulk(self.atomtype1, b + d1, a1, a2, a3)
clu.add_bulk(self.atomtype2, b + d2, a1, a2, a3)
return clu

View File

@ -91,7 +91,7 @@ class FCC111Project(mp.Project):
par['V0'] = inner potential
par['Zsurf'] = position of surface
"""
params = mp.Params()
params = mp.CalculatorParams()
params.title = "fcc(111)"
params.comment = "{0} {1}".format(self.__class__, index)
@ -133,11 +133,11 @@ class FCC111Project(mp.Project):
return params
def create_domain(self):
def create_model_space(self):
"""
define the domain of the optimization parameters.
define the model space of the optimization parameters.
"""
dom = mp.Domain()
dom = mp.ModelSpace()
if self.mode == "single":
dom.add_param('rmax', 5.00, 5.00, 15.00, 2.50)
@ -190,7 +190,7 @@ def create_project():
project.scan_dict['alpha'] = {'filename': os.path.join(project_dir, "demo_alpha_scan.etp"),
'emitter': "Ni", 'initial_state': "3s"}
project.add_symmetry({'default': 0.0})
project.add_domain({'default': 0.0})
return project
@ -229,8 +229,9 @@ def set_project_args(project, project_args):
try:
if project_args.initial_state:
project.initial_state = project_args.initial_state
logger.warning(BMsg("override initial states to {0}", project.initial_state))
for scan in project.scans:
scan.initial_state = project_args.initial_state
logger.warning(f"override initial states of all scans to {project_args.initial_state}")
except AttributeError:
pass

384
projects/demo/molecule.py Normal file
View File

@ -0,0 +1,384 @@
"""
@package pmsco.projects.demo.molecule
scattering calculation project for single molecules
the atomic positions are read from a molecule file.
cluster file, emitter (by chemical symbol), initial state and kinetic energy are specified on the command line.
there are no structural parameters.
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2015-20 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
import math
import numpy as np
import os.path
from pathlib import Path
import periodictable as pt
import argparse
import logging
# noinspection PyUnresolvedReferences
from pmsco.calculators.calculator import InternalAtomicCalculator
# noinspection PyUnresolvedReferences
from pmsco.calculators.edac import EdacCalculator
# noinspection PyUnresolvedReferences
from pmsco.calculators.phagen.runner import PhagenCalculator
import pmsco.cluster as cluster
from pmsco.data import calc_modfunc_loess
# noinspection PyUnresolvedReferences
import pmsco.elements.bindingenergy
from pmsco.helpers import BraceMessage as BMsg
import pmsco.project as project
logger = logging.getLogger(__name__)
class MoleculeFileCluster(cluster.ClusterGenerator):
"""
cluster generator based on external file.
work in progress.
"""
def __init__(self, project):
super(MoleculeFileCluster, self).__init__(project)
self.base_cluster = None
def load_base_cluster(self):
"""
load and cache the project-defined coordinate file.
the file path is set in self.project.cluster_file.
the file must be in XYZ (.xyz) or PMSCO cluster (.clu) format (cf. pmsco.cluster module).
@return: Cluster object (also referenced by self.base_cluster)
"""
if self.base_cluster is None:
clu = cluster.Cluster()
clu.set_rmax(120.0)
p = Path(self.project.cluster_file)
ext = p.suffix
if ext == ".xyz":
fmt = cluster.FMT_XYZ
elif ext == ".clu":
fmt = cluster.FMT_PMSCO
else:
raise ValueError(f"unknown cluster file extension {ext}")
clu.load_from_file(self.project.cluster_file, fmt=fmt)
self.base_cluster = clu
return self.base_cluster
def count_emitters(self, model, index):
"""
count the number of emitter configurations.
the method creates the full cluster and counts the emitters.
@param model: model parameters.
@param index: scan and domain are used by the create_cluster() method,
emit decides whether the method returns the number of configurations (-1),
or the number of emitters in the specified configuration (>= 0).
@return: number of emitter configurations.
"""
clu = self.create_cluster(model, index)
return clu.get_emitter_count()
def create_cluster(self, model, index):
"""
import a cluster from a coordinate file (XYZ format).
the method does the following:
- load the cluster file specified by self.cluster_file.
- trim the cluster according to model['rmax'].
- mark the 6 nitrogen atoms at the center of the trimer as emitters.
@param model: rmax is the trim radius of the cluster in units of the surface lattice constant.
@param index (named tuple CalcID) calculation index.
this method uses the domain index to look up domain parameters in
`pmsco.project.Project.domains`.
`index.emit` selects whether a single-emitter (>= 0) or all-emitter cluster (== -1) is returned.
@return pmsco.cluster.Cluster object
"""
self.load_base_cluster()
clu = cluster.Cluster()
clu.copy_from(self.base_cluster)
clu.comment = f"{self.__class__}, {index}"
dom = self.project.domains[index.domain]
# trim
clu.set_rmax(model['rmax'])
clu.trim_sphere(clu.rmax)
# emitter selection
idx_emit = np.where(clu.data['s'] == self.project.scans[index.scan].emitter)
assert isinstance(idx_emit, tuple)
idx_emit = idx_emit[0]
if index.emit >= 0:
idx_emit = idx_emit[index.emit]
clu.data['e'][idx_emit] = 1
# rotation
if 'xrot' in model:
clu.rotate_z(model['xrot'])
elif 'xrot' in dom:
clu.rotate_z(dom['xrot'])
if 'yrot' in model:
clu.rotate_z(model['yrot'])
elif 'yrot' in dom:
clu.rotate_z(dom['yrot'])
if 'zrot' in model:
clu.rotate_z(model['zrot'])
elif 'zrot' in dom:
clu.rotate_z(dom['zrot'])
logger.info(f"cluster for calculation {index}: "
f"{clu.get_atom_count()} atoms, {clu.get_emitter_count()} emitters")
return clu
class MoleculeProject(project.Project):
"""
general molecule project.
the following model parameters are used:
@arg `model['zsurf']` : position of surface above molecule (angstrom)
@arg `model['Texp']` : experimental temperature (K)
@arg `model['Tdeb']` : debye temperature (K)
@arg `model['V0']` : inner potential (eV)
@arg `model['rmax']` : cluster radius (angstrom)
@arg `model['ares']` : angular resolution (degrees, FWHM)
@arg `model['distm']` : dmax for EDAC (angstrom)
the following domain parameters are used.
they can also be specified as model parameters.
@arg `'xrot'` : rotation about x-axis (applied first) (deg)
@arg `'yrot'` : rotation about y-axis (applied after x) (deg)
@arg `'zrot'` : rotation about z-axis (applied after x and y) (deg)
the project parameters are:
@arg `cluster_file` : name of cluster file of template molecule.
default: "dpdi-trimer.xyz"
"""
def __init__(self):
"""
initialize a project instance
"""
super(MoleculeProject, self).__init__()
self.model_space = project.ModelSpace()
self.scan_dict = {}
self.cluster_file = "demo-cluster.xyz"
self.cluster_generator = MoleculeFileCluster(self)
self.atomic_scattering_factory = PhagenCalculator
self.multiple_scattering_factory = EdacCalculator
self.phase_files = {}
self.rme_files = {}
self.modf_smth_ei = 0.5
def create_params(self, model, index):
"""
set a specific set of parameters given the optimizable parameters.
@param model: (dict) optimization parameters
this method requires zsurf, V0, Texp, Tdeb, ares and distm.
@param index (named tuple CalcID) calculation index.
this method formats the index into the comment line.
"""
params = project.CalculatorParams()
params.title = "molecule demo"
params.comment = f"{self.__class__} {index}"
params.cluster_file = ""
params.output_file = ""
initial_state = self.scans[index.scan].initial_state
params.initial_state = initial_state
emitter = self.scans[index.scan].emitter
params.binding_energy = pt.elements.symbol(emitter).binding_energy[initial_state]
params.polarization = "H"
params.z_surface = model['zsurf']
params.inner_potential = model['V0']
params.work_function = 4.5
params.polar_incidence_angle = 60.0
params.azimuthal_incidence_angle = 0.0
params.angular_resolution = model['ares']
params.experiment_temperature = model['Texp']
params.debye_temperature = model['Tdeb']
params.phase_files = self.phase_files
params.rme_files = self.rme_files
# edac_interface only
params.emitters = []
params.lmax = 15
params.dmax = model['distm']
params.orders = [20]
return params
def create_model_space(self):
"""
define the range of model parameters.
see the class description for a list of parameters.
"""
return self.model_space
# noinspection PyUnusedLocal
def calc_modulation(self, data, model):
"""
calculate the modulation function with project-specific smoothing factor
see @ref pmsco.pmsco.project.calc_modulation.
@param data: (numpy.ndarray) experimental data in ETPI, or ETPAI format.
@param model: (dict) model parameters of the calculation task. not used.
@return copy of the data array with the modulation function in the 'i' column.
"""
return calc_modfunc_loess(data, smth=self.modf_smth_ei)
def create_model_space(mode):
"""
define the model space.
"""
dom = project.ModelSpace()
if mode == "single":
dom.add_param('zsurf', 1.20)
dom.add_param('Texp', 300.00)
dom.add_param('Tdeb', 100.00)
dom.add_param('V0', 10.00)
dom.add_param('rmax', 50.00)
dom.add_param('ares', 5.00)
dom.add_param('distm', 5.00)
dom.add_param('wdom1', 1.0)
dom.add_param('wdom2', 1.0)
dom.add_param('wdom3', 1.0)
dom.add_param('wdom4', 1.0)
dom.add_param('wdom5', 1.0)
else:
raise ValueError(f"undefined model space for {mode} optimization")
return dom
def create_project():
"""
create the project instance.
"""
proj = MoleculeProject()
proj_dir = os.path.dirname(os.path.abspath(__file__))
proj.project_dir = proj_dir
# scan dictionary
# to select any number of scans, add their dictionary keys as scans option on the command line
proj.scan_dict['empty'] = {'filename': os.path.join(proj_dir, "../common/empty-hemiscan.etpi"),
'emitter': "N", 'initial_state': "1s"}
proj.mode = 'single'
proj.model_space = create_model_space(proj.mode)
proj.job_name = 'molecule0000'
proj.description = 'molecule demo'
return proj
def set_project_args(project, project_args):
"""
set the project arguments.
@param project: project instance
@param project_args: (Namespace object) project arguments.
"""
scans = []
try:
if project_args.scans:
scans = project_args.scans
else:
logger.error("missing scan argument")
exit(1)
except AttributeError:
logger.error("missing scan argument")
exit(1)
for scan_key in scans:
scan_spec = project.scan_dict[scan_key]
project.add_scan(**scan_spec)
try:
project.cluster_file = os.path.abspath(project_args.cluster_file)
project.cluster_generator = MoleculeFileCluster(project)
except (AttributeError, TypeError):
logger.error("missing cluster-file argument")
exit(1)
try:
if project_args.emitter:
for scan in project.scans:
scan.emitter = project_args.emitter
logger.warning(f"override emitters of all scans to {project_args.emitter}")
except AttributeError:
pass
try:
if project_args.initial_state:
for scan in project.scans:
scan.initial_state = project_args.initial_state
logger.warning(f"override initial states of all scans to {project_args.initial_state}")
except AttributeError:
pass
try:
if project_args.energy:
for scan in project.scans:
scan.energies = np.asarray((project_args.energy, ))
logger.warning(f"override scan energy of all scans to {project_args.energy}")
except AttributeError:
pass
try:
if project_args.symmetry:
for angle in np.linspace(0, 360, num=project_args.symmetry, endpoint=False):
project.add_domain({'xrot': 0., 'yrot': 0., 'zrot': angle})
logger.warning(f"override rotation symmetry to {project_args.symmetry}")
except AttributeError:
pass
def parse_project_args(_args):
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# main arguments
parser.add_argument('--scans', nargs="*",
help="nick names of scans to use in calculation (see create_project function)")
parser.add_argument('--cluster-file',
help="path name of molecule file (xyz format).")
# conditional arguments
parser.add_argument('--emitter',
help="emitter: chemical symbol")
parser.add_argument('--initial-state',
help="initial state term: e.g. 2p1/2")
parser.add_argument('--energy', type=float,
help="kinetic energy (eV)")
parser.add_argument('--symmetry', type=int, default=1,
help="n-fold rotational symmetry")
parsed_args = parser.parse_args(_args)
return parsed_args

View File

@ -0,0 +1,93 @@
{
// line comments using // or # prefix are allowed as an extension of JSON syntax
"project": {
"__module__": "projects.twoatom.twoatom",
"__class__": "TwoatomProject",
"job_name": "twoatom0002",
"job_tags": [],
"description": "",
"mode": "single",
"directories": {
"data": "",
"output": ""
},
"keep_files": [
"cluster",
"model",
"scan",
"report",
"population"
],
"keep_best": 10,
"keep_levels": 1,
"time_limit": 24,
"log_file": "",
"log_level": "WARNING",
"cluster_generator": {
"__class__": "TwoatomCluster",
"atom_types": {
"A": "N",
"B": "Ni"
},
"model_dict": {
"dAB": "dNNi",
"th": "pNNi",
"ph": "aNNi"
}
},
"atomic_scattering_factory": "InternalAtomicCalculator",
"multiple_scattering_factory": "EdacCalculator",
"model_space": {
"dNNi": {
"start": 2.109,
"min": 2.0,
"max": 2.25,
"step": 0.05
},
"pNNi": {
"start": 15.0,
"min": 0.0,
"max": 30.0,
"step": 1.0
},
"V0": {
"start": 21.966,
"min": 15.0,
"max": 25.0,
"step": 1.0
},
"Zsurf": {
"start": 1.449,
"min": 0.5,
"max": 2.0,
"step": 0.25
}
},
"domains": [
{
"default": 0.0
}
],
"scans": [
{
"__class__": "mp.ScanCreator",
"filename": "twoatom_energy_alpha.etpai",
"emitter": "N",
"initial_state": "1s",
"positions": {
"e": "np.arange(10, 400, 5)",
"t": "0",
"p": "0",
"a": "np.linspace(-30, 30, 31)"
}
}
],
"optimizer_params": {
"pop_size": 0,
"seed_file": "",
"seed_limit": 0,
"recalc_seed": true,
"table_file": ""
}
}
}

View File

@ -0,0 +1,90 @@
{
// line comments using // or # prefix are allowed as an extension of JSON syntax
"project": {
"__module__": "projects.twoatom.twoatom",
"__class__": "TwoatomProject",
"job_name": "twoatom0001",
"job_tags": [],
"description": "",
"mode": "single",
"directories": {
"data": "",
"output": ""
},
"keep_files": [
"cluster",
"model",
"scan",
"report",
"population"
],
"keep_best": 10,
"keep_levels": 1,
"time_limit": 24,
"log_file": "",
"log_level": "WARNING",
"cluster_generator": {
"__class__": "TwoatomCluster",
"atom_types": {
"A": "N",
"B": "Ni"
},
"model_dict": {
"dAB": "dNNi",
"th": "pNNi",
"ph": "aNNi"
}
},
"atomic_scattering_factory": "InternalAtomicCalculator",
"multiple_scattering_factory": "EdacCalculator",
"model_space": {
"dNNi": {
"start": 2.109,
"min": 2.0,
"max": 2.25,
"step": 0.05
},
"pNNi": {
"start": 15.0,
"min": 0.0,
"max": 30.0,
"step": 1.0
},
"V0": {
"start": 21.966,
"min": 15.0,
"max": 25.0,
"step": 1.0
},
"Zsurf": {
"start": 1.449,
"min": 0.5,
"max": 2.0,
"step": 0.25
}
},
"domains": [
{
"default": 0.0
}
],
"scans": [
{
// class name as it would be used in the project module
"__class__": "mp.ScanLoader",
// any placeholder key from project.directories can be used
"filename": "{project}/twoatom_hemi_250e.etpi",
"emitter": "N",
"initial_state": "1s",
"is_modf": false
}
],
"optimizer_params": {
"pop_size": 0,
"seed_file": "",
"seed_limit": 0,
"recalc_seed": true,
"table_file": ""
}
}
}

View File

@ -17,6 +17,9 @@ import numpy as np
import os.path
import periodictable as pt
from pmsco.calculators.calculator import InternalAtomicCalculator
from pmsco.calculators.edac import EdacCalculator
from pmsco.calculators.phagen.runner import PhagenCalculator
import pmsco.cluster as mc
import pmsco.project as mp
from pmsco.helpers import BraceMessage as BMsg
@ -152,6 +155,17 @@ class TwoatomProject(mp.Project):
self.cluster_generator.model_dict['dAB'] = 'dNNi'
self.cluster_generator.model_dict['th'] = 'pNNi'
self.cluster_generator.model_dict['ph'] = 'aNNi'
self.atomic_scattering_factory = PhagenCalculator
self.multiple_scattering_factory = EdacCalculator
self.phase_files = {}
self.rme_files = {}
self.bindings = {}
self.bindings['N'] = {'1s': 409.9}
self.bindings['B'] = {'1s': 188.0}
self.bindings['Ni'] = {'2s': 1008.6,
'2p': (870.0 + 852.7) / 2, '2p1/2': 870.0, '2p3/2': 852.7,
'3s': 110.8,
'3p': (68.0 + 66.2) / 2, '3p1/2': 68.0, '3p3/2': 66.2}
def create_params(self, model, index):
"""
@ -159,40 +173,40 @@ class TwoatomProject(mp.Project):
@param model: (dict) optimizable parameters
"""
params = mp.Params()
params = mp.CalculatorParams()
params.title = "two-atom demo"
params.comment = "{0} {1}".format(self.__class__, index)
params.cluster_file = ""
params.output_file = ""
params.initial_state = self.scans[index.scan].initial_state
params.spherical_order = 2
initial_state = self.scans[index.scan].initial_state
params.initial_state = initial_state
emitter = self.scans[index.scan].emitter
params.binding_energy = self.bindings[emitter][initial_state]
params.polarization = "H"
params.scattering_level = 5
params.fcut = 15.0
params.cut = 15.0
params.angular_resolution = 0.0
params.lattice_constant = 1.0
params.z_surface = model['Zsurf']
params.phase_files = {self.cluster_generator.atom_types['A']: "",
self.cluster_generator.atom_types['B']: ""}
params.msq_displacement = {self.cluster_generator.atom_types['A']: 0.01,
self.cluster_generator.atom_types['B']: 0.0}
params.planewave_attenuation = 1.0
params.inner_potential = model['V0']
params.work_function = 3.6
params.symmetry_range = 360.0
params.polar_incidence_angle = 60.0
params.azimuthal_incidence_angle = 0.0
params.vibration_model = "P"
params.substrate_atomic_mass = 58.69
params.experiment_temperature = 300.0
params.debye_temperature = 356.0
params.debye_wavevector = 1.7558
params.rme_minus_value = 0.0
if self.phase_files:
state = emitter + initial_state
try:
params.phase_files = self.phase_files[state]
except KeyError:
params.phase_files = {}
logger.warning("no phase files found for {} - using default calculator".format(state))
params.rme_files = {}
params.rme_minus_value = 0.1
params.rme_minus_shift = 0.0
params.rme_plus_value = 1.0
params.rme_plus_shift = 0.0
# used by EDAC only
params.emitters = []
params.lmax = 15
@ -201,11 +215,11 @@ class TwoatomProject(mp.Project):
return params
def create_domain(self):
def create_model_space(self):
"""
define the domain of the optimization parameters.
"""
dom = mp.Domain()
dom = mp.ModelSpace()
if self.mode == "single":
dom.add_param('dNNi', 2.109, 2.000, 2.250, 0.050)
@ -294,21 +308,19 @@ def set_project_args(project, project_args):
@param project_args: (Namespace object) project arguments.
"""
scans = ['tp250e']
scans = []
try:
if project_args.scans:
scans = project_args.scans
else:
logger.warning(BMsg("missing scan argument, using {0}", scans[0]))
except AttributeError:
logger.warning(BMsg("missing scan argument, using {0}", scans[0]))
pass
for scan_key in scans:
scan_spec = project.scan_dict[scan_key]
project.add_scan(**scan_spec)
logger.info(BMsg("add scan {filename} ({emitter} {initial_state})", **scan_spec))
project.add_symmetry({'default': 0.0})
project.add_domain({'default': 0.0})
def parse_project_args(_args):
@ -323,7 +335,7 @@ def parse_project_args(_args):
parser = argparse.ArgumentParser()
# main arguments
parser.add_argument('-s', '--scans', nargs="*", default=['tp250e'],
parser.add_argument('-s', '--scans', nargs="*",
help="nick names of scans to use in calculation (see create_project function)")
parsed_args = parser.parse_args(_args)

View File

@ -1,3 +1,4 @@
python >= 3.6
attrdict
fasteners
numpy >= 1.13
@ -11,3 +12,4 @@ matplotlib
future
swig
gitpython
commentjson

26
setup.py Normal file
View File

@ -0,0 +1,26 @@
#!/usr/bin/env python
"""
@file package distribution information.
preliminary - not tested.
"""
try:
from setuptools import setup
except ImportError:
from distutils.core import setup
config = {
'name': "pmsco",
'description': "PEARL Multiple-Scattering Cluster Calculation and Structural Optimization",
'url': "https://git.psi.ch/pearl/pmsco",
'author': "Matthias Muntwiler",
'author_email': "matthias.muntwiler@psi.ch",
'version': '0.1',
'packages': ['pmsco'],
'scripts': [],
'install_requires': ['numpy','periodictable','statsmodels','mpi4py','nose', 'scipy']
}
setup(**config)

View File

View File

View File

@ -0,0 +1,79 @@
"""
@package tests.calculators.phagen.test_translator
unit tests for pmsco.calculators.phagen.translator
the purpose of these tests is to check whether the code runs as expected in a particular environment.
to run the tests, change to the directory which contains the tests directory, and execute =nosetests=.
@pre nose must be installed (python-nose package on Debian).
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2015-19 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
from pmsco.calculators.phagen import translator
class TestModule(unittest.TestCase):
def setUp(self):
# before each test method
pass
def tearDown(self):
# after each test method
pass
@classmethod
def setup_class(cls):
# before any methods in this class
pass
@classmethod
def teardown_class(cls):
# teardown_class() after any methods in this class
pass
def test_state_to_edge(self):
self.assertEqual(translator.state_to_edge('1s'), 'k')
self.assertEqual(translator.state_to_edge('2s'), 'l1')
self.assertEqual(translator.state_to_edge('3s'), 'm1')
self.assertEqual(translator.state_to_edge('4s'), 'n1')
self.assertEqual(translator.state_to_edge('5s'), 'o1')
self.assertEqual(translator.state_to_edge('2p'), 'l2')
self.assertEqual(translator.state_to_edge('3p'), 'm2')
self.assertEqual(translator.state_to_edge('4p'), 'n2')
self.assertEqual(translator.state_to_edge('5p'), 'o2')
self.assertEqual(translator.state_to_edge('2p1/2'), 'l2')
self.assertEqual(translator.state_to_edge('3p1/2'), 'm2')
self.assertEqual(translator.state_to_edge('4p1/2'), 'n2')
self.assertEqual(translator.state_to_edge('5p1/2'), 'o2')
self.assertEqual(translator.state_to_edge('2p3/2'), 'l3')
self.assertEqual(translator.state_to_edge('3p3/2'), 'm3')
self.assertEqual(translator.state_to_edge('4p3/2'), 'n3')
self.assertEqual(translator.state_to_edge('5p3/2'), 'o3')
self.assertEqual(translator.state_to_edge('3d'), 'm4')
self.assertEqual(translator.state_to_edge('4d'), 'n4')
self.assertEqual(translator.state_to_edge('5d'), 'o4')
self.assertEqual(translator.state_to_edge('3d3/2'), 'm4')
self.assertEqual(translator.state_to_edge('4d3/2'), 'n4')
self.assertEqual(translator.state_to_edge('5d3/2'), 'o4')
self.assertEqual(translator.state_to_edge('3d5/2'), 'm5')
self.assertEqual(translator.state_to_edge('4d5/2'), 'n5')
self.assertEqual(translator.state_to_edge('5d5/2'), 'o5')

View File

@ -175,6 +175,22 @@ class TestClusterFunctions(unittest.TestCase):
np.testing.assert_allclose(layers, np.asarray([-0.3, -0.2, -0.1, 0.0, +0.1]), atol=0.001)
def test_get_center(self):
clu = mc.Cluster()
clu.add_atom(1, np.asarray([1, 0, 0]), 0)
clu.add_atom(2, np.asarray([0, 0, 1]), 0)
clu.add_atom(1, np.asarray([0, 1, 0]), 0)
clu.add_atom(2, np.asarray([-1, -1, -1]), 0)
v0 = np.asarray([0, 0, 0])
v1 = np.asarray([1/2, 1/2, 0])
v2 = np.asarray([-1/2, -1/2, 0])
v = clu.get_center()
np.testing.assert_allclose(v, v0, atol=0.001)
v = clu.get_center(element=1)
np.testing.assert_allclose(v, v1, atol=0.001)
v = clu.get_center(element="He")
np.testing.assert_allclose(v, v2, atol=0.001)
def test_relax(self):
clu = mc.Cluster()
clu.add_atom(1, np.asarray([1, 0, 1]), 0)
@ -184,7 +200,7 @@ class TestClusterFunctions(unittest.TestCase):
clu.add_atom(2, np.asarray([0, 1, -3]), 0)
idx = clu.relax(-0.3, -0.1, 2)
np.testing.assert_almost_equal(idx, np.asarray([[2, 4]]))
np.testing.assert_almost_equal(idx, np.asarray([2, 4]))
np.testing.assert_allclose(clu.get_position(0), np.asarray([1, 0, 1]), atol=1e-6)
np.testing.assert_allclose(clu.get_position(1), np.asarray([1, 0, 0]), atol=1e-6)
np.testing.assert_allclose(clu.get_position(2), np.asarray([0, 1, -1.1]), atol=1e-6)
@ -224,18 +240,81 @@ class TestClusterFunctions(unittest.TestCase):
np.testing.assert_allclose(clu.get_position(1), np.asarray([-1, 0, 0]), atol=1e-6)
np.testing.assert_allclose(clu.get_position(2), np.asarray([0, 0, 1]), atol=1e-6)
def test_translate(self):
clu = mc.Cluster()
clu.add_atom(1, np.asarray([1, 0, 0]), 0)
clu.add_atom(2, np.asarray([0, 1, 0]), 0)
clu.add_atom(3, np.asarray([0, 0, 1]), 0)
v = np.array((0.1, 0.2, 0.3))
shift = clu.translate(v)
np.testing.assert_allclose(clu.get_position(0), np.asarray([1.1, 0.2, 0.3]), atol=1e-6)
np.testing.assert_allclose(clu.get_position(1), np.asarray([0.1, 1.2, 0.3]), atol=1e-6)
np.testing.assert_allclose(clu.get_position(2), np.asarray([0.1, 0.2, 1.3]), atol=1e-6)
np.testing.assert_allclose(shift, np.asarray([0, 1, 2]))
shift = clu.translate(v, element=3)
np.testing.assert_allclose(clu.get_position(0), np.asarray([1.1, 0.2, 0.3]), atol=1e-6)
np.testing.assert_allclose(clu.get_position(1), np.asarray([0.1, 1.2, 0.3]), atol=1e-6)
np.testing.assert_allclose(clu.get_position(2), np.asarray([0.2, 0.4, 1.6]), atol=1e-6)
np.testing.assert_allclose(shift, np.asarray([2]))
def test_add_layer(self):
clu = mc.Cluster()
# from hbncu project
b_surf = 2.50
clu.set_rmax(4.0)
b1 = np.array((b_surf, 0.0, 0.0))
b2 = np.array((b_surf / 2.0, b_surf * math.sqrt(3.0) / 2.0, 0.0))
a1 = -10.0 * b1 - 10.0 * b2
emitter = np.array((0.0, 0.0, 0.0))
clu.set_rmax(2.0)
b1 = np.array((1.0, 0.0, 0.0))
b2 = np.array((0.0, 1.0, 0.0))
a1 = np.array((0.1, 0.0, -0.1))
clu.add_layer(7, a1, b1, b2)
pos = clu.find_positions(pos=emitter)
self.assertEqual(1, len(pos))
exp_pos = [[-0.9, -1.0, -0.1], [0.1, -1.0, -0.1], [1.1, -1.0, -0.1],
[-1.9, 0.0, -0.1], [-0.9, 0.0, -0.1], [0.1, 0.0, -0.1], [1.1, 0.0, -0.1],
[-0.9, 1.0, -0.1], [0.1, 1.0, -0.1], [1.1, 1.0, -0.1]]
nn = len(exp_pos)
self.assertEqual(nn, clu.data.shape[0])
self.assertEqual(nn, clu.get_atom_count())
act_pos = np.sort(clu.get_positions(), axis=0)
exp_pos = np.sort(np.array(exp_pos), axis=0)
np.testing.assert_allclose(act_pos, exp_pos)
act_idx = np.unique(clu.data['i'])
self.assertEqual(nn, act_idx.shape[0])
act_typ = (clu.data['t'] == 7).nonzero()[0]
self.assertEqual(nn, act_typ.shape[0])
def test_add_bulk(self):
clu = mc.Cluster()
clu.set_rmax(2.0)
b1 = np.array((1.0, 0.0, 0.0))
b2 = np.array((0.0, 1.0, 0.0))
b3 = np.array((0.0, 0.0, 1.0))
a1 = np.array((0.1, 0.0, -0.1))
z_surf = 0.8
clu.add_bulk(7, a1, b1, b2, b3, z_surf=z_surf)
r_great = max(clu.rmax, np.linalg.norm(a1))
n1 = max(int(r_great / np.linalg.norm(b1)) + 1, 4) * 3
n2 = max(int(r_great / np.linalg.norm(b2)) + 1, 4) * 3
n3 = max(int(r_great / np.linalg.norm(b3)) + 1, 4) * 3
exp_pos = []
nn = 0
for i1 in range(-n1, n1 + 1):
for i2 in range(-n2, n2 + 1):
for i3 in range(-n3, n3 + 1):
v = a1 + b1 * i1 + b2 * i2 + b3 * i3
if np.linalg.norm(v) <= clu.rmax and v[2] <= z_surf:
exp_pos.append(v)
nn += 1
self.assertEqual(nn, clu.data.shape[0])
self.assertEqual(nn, clu.get_atom_count())
act_pos = np.sort(clu.get_positions(), axis=0)
exp_pos = np.sort(np.array(exp_pos), axis=0)
np.testing.assert_allclose(act_pos, exp_pos)
act_idx = np.unique(clu.data['i'])
self.assertEqual(nn, act_idx.shape[0])
act_typ = (clu.data['t'] == 7).nonzero()[0]
self.assertEqual(nn, act_typ.shape[0])
def test_add_cluster(self):
clu1 = mc.Cluster()
@ -375,6 +454,18 @@ class TestClusterFunctions(unittest.TestCase):
f = BytesIO()
pos = np.asarray((-1, -1, 0))
clu.set_emitter(pos=pos)
clu.save_to_file(f, mc.FMT_PMSCO, "qwerty", emitters_only=True)
f.seek(0)
line = f.readline()
self.assertEqual(line, b"# index element symbol class x y z emitter charge\n", b"line 1: " + line)
line = f.readline()
self.assertRegexpMatches(line, b"[0-9]+ +1 +H +[0-9]+ +[0.]+ +[0.]+ +[0.]+ +1 +[0.]", b"line 3: " + line)
line = f.readline()
self.assertRegexpMatches(line, b"[0-9]+ +14 +Si +[0-9]+ +[01.-]+ +[01.-]+ +[0.]+ +1 +[0.]", b"line 4: " + line)
line = f.readline()
self.assertEqual(b"", line, b"end of file")
f = BytesIO()
clu.save_to_file(f, mc.FMT_XYZ, "qwerty", emitters_only=True)
f.seek(0)
line = f.readline()
@ -388,6 +479,37 @@ class TestClusterFunctions(unittest.TestCase):
line = f.readline()
self.assertEqual(b"", line, b"end of file")
def test_load_from_file(self):
f = BytesIO()
f.write(b"2\n")
f.write(b"qwerty\n")
f.write(b"H 0.5 0.6 0.7\n")
f.write(b"Si -1.5 -1.6 -1.7\n")
f.seek(0)
clu = mc.Cluster()
clu.load_from_file(f, fmt=mc.FMT_XYZ)
np.testing.assert_allclose(clu.data['t'], np.array([1, 14]))
np.testing.assert_allclose(clu.data['x'], np.array([0.5, -1.5]))
np.testing.assert_allclose(clu.data['y'], np.array([0.6, -1.6]))
np.testing.assert_allclose(clu.data['z'], np.array([0.7, -1.7]))
np.testing.assert_allclose(clu.data['e'], np.array([0, 0]))
np.testing.assert_allclose(clu.data['q'], np.array([0, 0]))
f = BytesIO()
f.write(b"# index element symbol class x y z emitter charge\n")
# ['i', 't', 's', 'c', 'x', 'y', 'z', 'e', 'q']
f.write(b"1 6 C 1 0.5 0.6 0.7 0 -0.5\n")
f.write(b"2 14 Si 2 -1.5 -1.6 -1.7 1 0.5\n")
f.seek(0)
clu = mc.Cluster()
clu.load_from_file(f, fmt=mc.FMT_PMSCO)
np.testing.assert_allclose(clu.data['t'], np.array([6, 14]))
np.testing.assert_allclose(clu.data['x'], np.array([0.5, -1.5]))
np.testing.assert_allclose(clu.data['y'], np.array([0.6, -1.6]))
np.testing.assert_allclose(clu.data['z'], np.array([0.7, -1.7]))
np.testing.assert_allclose(clu.data['e'], np.array([0, 1]))
np.testing.assert_allclose(clu.data['q'], np.array([-0.5, 0.5]))
def test_update_atoms(self):
clu = mc.Cluster()
clu.add_atom(1, np.asarray([0, 0, 0]), 1)
@ -409,3 +531,29 @@ class TestClusterFunctions(unittest.TestCase):
clu.update_atoms(other, {'c'})
expected = np.asarray((1, 3, 2, 3, 2, 4))
np.testing.assert_array_equal(expected, clu.data['c'])
def test_calc_scattering_angles(self):
clu = mc.Cluster()
ref_em = np.asarray([0.1, -0.1, 0.5])
ref_th = np.asarray([0., 15., 90., 100., 120.])
ref_ph = np.asarray([0., 90., 180., 270., 360.])
ref_di = np.asarray([0.5, 1.0, 1.5, 2.0, 2.5])
exp_th = ref_th[0:4]
exp_ph = ref_ph[0:4]
exp_di = ref_di[0:4]
sel_ph = exp_ph > 180.
exp_ph[sel_ph] = exp_ph[sel_ph] - 360.
idx_em = clu.add_atom(1, ref_em, 1)
for i, r in enumerate(ref_di):
v = np.asarray([
r * math.cos(math.radians(ref_ph[i])) * math.sin(math.radians(ref_th[i])) + ref_em[0],
r * math.sin(math.radians(ref_ph[i])) * math.sin(math.radians(ref_th[i])) + ref_em[1],
r * math.cos(math.radians(ref_th[i])) + ref_em[2]])
clu.add_atom(i, v, 0)
result = clu.calc_scattering_angles(idx_em, 2.2)
np.testing.assert_allclose(result['index'], np.arange(1, exp_di.shape[0] + 1))
np.testing.assert_allclose(result['polar'], exp_th, atol=1e-3)
np.testing.assert_allclose(result['azimuth'], exp_ph, atol=1e-3)
np.testing.assert_allclose(result['dist'], exp_di, rtol=1e-5)

View File

@ -77,7 +77,7 @@ class TestDatabase(unittest.TestCase):
cid1 = dispatch.CalcID(1, 2, 3, 4, -1)
cid2 = db.special_params(cid1)
cid3 = {'model': 1, 'scan': 2, 'sym': 3, 'emit': 4, 'region': -1}
cid3 = {'model': 1, 'scan': 2, 'domain': 3, 'emit': 4, 'region': -1}
self.assertEqual(cid2, cid3)
l1 = d1.keys()
@ -91,6 +91,7 @@ class TestDatabase(unittest.TestCase):
self.assertEqual(t2, t3)
def setup_sample_database(self):
self.db.register_project("oldproject", "oldcode")
self.db.register_project("unittest", "testcode")
self.db.register_job(self.db.project_id, "testjob", "testmode", "testhost", None, datetime.datetime.now())
self.ex_model = {'parA': 1.234, 'parB': 5.678, '_model': 91, '_rfac': 0.534}
@ -101,10 +102,13 @@ class TestDatabase(unittest.TestCase):
def test_register_project(self):
id1 = self.db.register_project("unittest1", "Atest")
self.assertIsInstance(id1, int)
self.assertEqual(id1, self.db.project_id)
id2 = self.db.register_project("unittest2", "Btest")
self.assertIsInstance(id2, int)
self.assertEqual(id2, self.db.project_id)
id3 = self.db.register_project("unittest1", "Ctest")
self.assertIsInstance(id3, int)
self.assertEqual(id3, self.db.project_id)
self.assertNotEqual(id1, id2)
self.assertEqual(id1, id3)
c = self.db._conn.cursor()
@ -120,6 +124,47 @@ class TestDatabase(unittest.TestCase):
self.assertEqual(row['name'], "unittest1")
self.assertEqual(row['code'], "Atest")
def test_register_job(self):
pid1 = self.db.register_project("unittest1", "Acode")
pid2 = self.db.register_project("unittest2", "Bcode")
dt1 = datetime.datetime.now()
# insert new job
id1 = self.db.register_job(pid1, "Ajob", "Amode", "local", "Ahash", dt1, "Adesc")
self.assertIsInstance(id1, int)
self.assertEqual(id1, self.db.job_id)
# insert another job
id2 = self.db.register_job(pid1, "Bjob", "Amode", "local", "Ahash", dt1, "Adesc")
self.assertIsInstance(id2, int)
self.assertEqual(id2, self.db.job_id)
# update first job
id3 = self.db.register_job(pid1, "Ajob", "Cmode", "local", "Chash", dt1, "Cdesc")
self.assertIsInstance(id3, int)
self.assertEqual(id3, self.db.job_id)
# insert another job with same name but in other project
id4 = self.db.register_job(pid2, "Ajob", "Dmode", "local", "Dhash", dt1, "Ddesc")
self.assertIsInstance(id4, int)
self.assertEqual(id4, self.db.job_id)
self.assertNotEqual(id1, id2)
self.assertEqual(id1, id3)
self.assertNotEqual(id1, id4)
c = self.db._conn.cursor()
c.execute("select count(*) from Jobs")
count = c.fetchone()
self.assertEqual(count[0], 3)
c.execute("select name, mode, machine, git_hash, datetime, description from Jobs where id=:id", {'id': id1})
row = c.fetchone()
self.assertIsNotNone(row)
self.assertEqual(len(row), 6)
self.assertEqual(row[0], "Ajob")
self.assertEqual(row[1], "Amode")
self.assertEqual(row['machine'], "local")
self.assertEqual(str(row['datetime']), str(dt1))
self.assertEqual(row['git_hash'], "Ahash")
self.assertEqual(row['description'], "Adesc")
def test_register_params(self):
self.setup_sample_database()
model5 = {'parA': 2.341, 'parC': 6.785, '_model': 92, '_rfac': 0.453}
@ -181,7 +226,7 @@ class TestDatabase(unittest.TestCase):
def test_query_model_array(self):
self.setup_sample_database()
index = {'_scan': -1, '_sym': -1, '_emit': -1, '_region': -1}
index = {'_scan': -1, '_domain': -1, '_emit': -1, '_region': -1}
model2 = {'parA': 4.123, 'parB': 8.567, '_model': 92, '_rfac': 0.654}
model3 = {'parA': 3.412, 'parB': 7.856, '_model': 93, '_rfac': 0.345}
model4 = {'parA': 4.123, 'parB': 8.567, '_model': 94, '_rfac': 0.354}
@ -234,12 +279,12 @@ class TestDatabase(unittest.TestCase):
model7 = {'parA': 5.123, 'parB': 6.567, '_model': 97, '_rfac': 0.154, '_gen': 1, '_particle': 7}
self.db.register_params(model5)
self.db.create_models_view()
model2.update({'_scan': -1, '_sym': 11, '_emit': 21, '_region': 31})
model3.update({'_scan': 1, '_sym': 12, '_emit': 22, '_region': 32})
model4.update({'_scan': 2, '_sym': 11, '_emit': 23, '_region': 33})
model5.update({'_scan': 3, '_sym': 11, '_emit': 24, '_region': 34})
model6.update({'_scan': 4, '_sym': 11, '_emit': 25, '_region': 35})
model7.update({'_scan': 5, '_sym': -1, '_emit': -1, '_region': -1})
model2.update({'_scan': -1, '_domain': 11, '_emit': 21, '_region': 31})
model3.update({'_scan': 1, '_domain': 12, '_emit': 22, '_region': 32})
model4.update({'_scan': 2, '_domain': 11, '_emit': 23, '_region': 33})
model5.update({'_scan': 3, '_domain': 11, '_emit': 24, '_region': 34})
model6.update({'_scan': 4, '_domain': 11, '_emit': 25, '_region': 35})
model7.update({'_scan': 5, '_domain': -1, '_emit': -1, '_region': -1})
self.db.insert_result(model2, model2)
self.db.insert_result(model3, model3)
self.db.insert_result(model4, model4)
@ -248,12 +293,12 @@ class TestDatabase(unittest.TestCase):
self.db.insert_result(model7, model7)
# only model3, model4 and model5 fulfill all conditions and limits
fil = ['mode = "testmode"', 'sym = 11']
fil = ['mode = "testmode"', 'domain = 11']
lim = 3
result = self.db.query_best_results(filter=fil, limit=lim)
ifields = ['_db_job', '_db_model', '_db_result',
'_model', '_scan', '_sym', '_emit', '_region',
'_model', '_scan', '_domain', '_emit', '_region',
'_gen', '_particle']
ffields = ['_rfac']
dt = [(f, 'i8') for f in ifields]
@ -262,7 +307,7 @@ class TestDatabase(unittest.TestCase):
expected['_rfac'] = np.array([0.354, 0.354, 0.453])
expected['_model'] = np.array([94, 96, 95])
expected['_scan'] = np.array([2, 4, 3])
expected['_sym'] = np.array([11, 11, 11])
expected['_domain'] = np.array([11, 11, 11])
expected['_emit'] = np.array([23, 25, 24])
expected['_region'] = np.array([33, 35, 34])
expected['_gen'] = np.array([1, 1, 1])
@ -272,7 +317,7 @@ class TestDatabase(unittest.TestCase):
np.testing.assert_array_almost_equal(result['_rfac'], expected['_rfac'])
np.testing.assert_array_equal(result['_model'], expected['_model'])
np.testing.assert_array_equal(result['_scan'], expected['_scan'])
np.testing.assert_array_equal(result['_sym'], expected['_sym'])
np.testing.assert_array_equal(result['_domain'], expected['_domain'])
np.testing.assert_array_equal(result['_emit'], expected['_emit'])
np.testing.assert_array_equal(result['_region'], expected['_region'])
np.testing.assert_array_equal(result['_gen'], expected['_gen'])
@ -296,7 +341,7 @@ class TestDatabase(unittest.TestCase):
model_id = row['model_id']
self.assertIsInstance(model_id, int)
self.assertEqual(row['scan'], index.scan)
self.assertEqual(row['sym'], index.sym)
self.assertEqual(row['domain'], index.domain)
self.assertEqual(row['emit'], index.emit)
self.assertEqual(row['region'], index.region)
self.assertEqual(row['rfac'], result['_rfac'])
@ -342,7 +387,7 @@ class TestDatabase(unittest.TestCase):
model_id = row['model_id']
self.assertIsInstance(model_id, int)
self.assertEqual(row['scan'], index.scan)
self.assertEqual(row['sym'], index.sym)
self.assertEqual(row['domain'], index.domain)
self.assertEqual(row['emit'], index.emit)
self.assertEqual(row['region'], index.region)
self.assertEqual(row['rfac'], result2['_rfac'])
@ -372,7 +417,7 @@ class TestDatabase(unittest.TestCase):
@return:
"""
self.setup_sample_database()
index = {'_model': 15, '_scan': 16, '_sym': 17, '_emit': 18, '_region': -1}
index = {'_model': 15, '_scan': 16, '_domain': 17, '_emit': 18, '_region': -1}
result1 = {'parA': 4.123, 'parB': 8.567, '_rfac': 0.654, '_particle': 21}
result_id1 = self.db.insert_result(index, result1)
result2 = {'parA': 5.456, '_rfac': 0.254, '_particle': 11}
@ -393,7 +438,7 @@ class TestDatabase(unittest.TestCase):
model_id = row['model_id']
self.assertIsInstance(model_id, int)
self.assertEqual(row['scan'], index['_scan'])
self.assertEqual(row['sym'], index['_sym'])
self.assertEqual(row['domain'], index['_domain'])
self.assertEqual(row['emit'], index['_emit'])
self.assertEqual(row['region'], index['_region'])
self.assertEqual(row['rfac'], result2['_rfac'])
@ -418,19 +463,19 @@ class TestDatabase(unittest.TestCase):
def test_query_best_task_models(self):
self.setup_sample_database()
model0xxx = {'_model': 0, '_scan': -1, '_sym': -1, '_emit': -1, '_region': -1, 'parA': 4., 'parB': 8.567, '_rfac': 0.01}
model00xx = {'_model': 1, '_scan': 0, '_sym': -1, '_emit': -1, '_region': -1, 'parA': 4., 'parB': 8.567, '_rfac': 0.02}
model000x = {'_model': 2, '_scan': 0, '_sym': 0, '_emit': -1, '_region': -1, 'parA': 4., 'parB': 8.567, '_rfac': 0.03}
model01xx = {'_model': 3, '_scan': 1, '_sym': -1, '_emit': -1, '_region': -1, 'parA': 4., 'parB': 8.567, '_rfac': 0.04}
model010x = {'_model': 4, '_scan': 1, '_sym': 0, '_emit': -1, '_region': -1, 'parA': 4., 'parB': 8.567, '_rfac': 0.05}
model0xxx = {'_model': 0, '_scan': -1, '_domain': -1, '_emit': -1, '_region': -1, 'parA': 4., 'parB': 8.567, '_rfac': 0.01}
model00xx = {'_model': 1, '_scan': 0, '_domain': -1, '_emit': -1, '_region': -1, 'parA': 4., 'parB': 8.567, '_rfac': 0.02}
model000x = {'_model': 2, '_scan': 0, '_domain': 0, '_emit': -1, '_region': -1, 'parA': 4., 'parB': 8.567, '_rfac': 0.03}
model01xx = {'_model': 3, '_scan': 1, '_domain': -1, '_emit': -1, '_region': -1, 'parA': 4., 'parB': 8.567, '_rfac': 0.04}
model010x = {'_model': 4, '_scan': 1, '_domain': 0, '_emit': -1, '_region': -1, 'parA': 4., 'parB': 8.567, '_rfac': 0.05}
model1xxx = {'_model': 5, '_scan': -1, '_sym': -1, '_emit': -1, '_region': -1, 'parA': 4.123, 'parB': 8.567, '_rfac': 0.09}
model10xx = {'_model': 6, '_scan': 0, '_sym': -1, '_emit': -1, '_region': -1, 'parA': 4.123, 'parB': 8.567, '_rfac': 0.08}
model100x = {'_model': 7, '_scan': 0, '_sym': 0, '_emit': -1, '_region': -1, 'parA': 4.123, 'parB': 8.567, '_rfac': 0.07}
model11xx = {'_model': 8, '_scan': 1, '_sym': -1, '_emit': -1, '_region': -1, 'parA': 4.123, 'parB': 8.567, '_rfac': 0.06}
model110x = {'_model': 9, '_scan': 1, '_sym': 0, '_emit': -1, '_region': -1, 'parA': 4.123, 'parB': 8.567, '_rfac': 0.05}
model1xxx = {'_model': 5, '_scan': -1, '_domain': -1, '_emit': -1, '_region': -1, 'parA': 4.123, 'parB': 8.567, '_rfac': 0.09}
model10xx = {'_model': 6, '_scan': 0, '_domain': -1, '_emit': -1, '_region': -1, 'parA': 4.123, 'parB': 8.567, '_rfac': 0.08}
model100x = {'_model': 7, '_scan': 0, '_domain': 0, '_emit': -1, '_region': -1, 'parA': 4.123, 'parB': 8.567, '_rfac': 0.07}
model11xx = {'_model': 8, '_scan': 1, '_domain': -1, '_emit': -1, '_region': -1, 'parA': 4.123, 'parB': 8.567, '_rfac': 0.06}
model110x = {'_model': 9, '_scan': 1, '_domain': 0, '_emit': -1, '_region': -1, 'parA': 4.123, 'parB': 8.567, '_rfac': 0.05}
model2xxx = {'_model': 10, '_scan': -1, '_sym': -1, '_emit': -1, '_region': -1, 'parA': 4.123, 'parB': 8.567, '_rfac': 0.01}
model2xxx = {'_model': 10, '_scan': -1, '_domain': -1, '_emit': -1, '_region': -1, 'parA': 4.123, 'parB': 8.567, '_rfac': 0.01}
self.db.insert_result(model0xxx, model0xxx)
self.db.insert_result(model00xx, model00xx)
@ -451,6 +496,75 @@ class TestDatabase(unittest.TestCase):
expected = {0, 1, 3, 6, 8, 10}
self.assertEqual(result, expected)
def test_sample_project(self):
"""
test ingestion of two results
this test uses the same call sequence as the actual pmsco code.
it has been used to debug a problem in the main code
where prevous results were overwritten.
"""
db_filename = os.path.join(self.test_dir, "sample_database.db")
lock_filename = os.path.join(self.test_dir, "sample_database.lock")
# project
project_name = self.__class__.__name__
project_module = self.__class__.__module__
# job 1
job_name1 = "job1"
result1 = {'parA': 1.234, 'parB': 5.678, '_model': 91, '_rfac': 0.534}
task1 = dispatch.CalcID(91, -1, -1, -1, -1)
# ingest job 1
_db = db.ResultsDatabase()
_db.connect(db_filename, lock_filename=lock_filename)
project_id1 = _db.register_project(project_name, project_module)
job_id1 = _db.register_job(project_id1, job_name1, "test", "localhost", "", datetime.datetime.now(), "")
# _db.insert_jobtags(job_id, self.job_tags)
_db.register_params(result1.keys())
_db.create_models_view()
result_id1 = _db.insert_result(task1, result1)
_db.disconnect()
# job 2
job_name2 = "job2"
result2 = {'parA': 1.345, 'parB': 5.789, '_model': 91, '_rfac': 0.654}
task2 = dispatch.CalcID(91, -1, -1, -1, -1)
# ingest job 2
_db = db.ResultsDatabase()
_db.connect(db_filename, lock_filename=lock_filename)
project_id2 = _db.register_project(project_name, project_module)
job_id2 = _db.register_job(project_id2, job_name2, "test", "localhost", "", datetime.datetime.now(), "")
# _db.insert_jobtags(job_id, self.job_tags)
_db.register_params(result2.keys())
_db.create_models_view()
result_id2 = _db.insert_result(task2, result2)
_db.disconnect()
# check jobs
_db = db.ResultsDatabase()
_db.connect(db_filename, lock_filename=lock_filename)
sql = "select * from Jobs "
c = _db._conn.execute(sql)
rows = c.fetchall()
self.assertEqual(len(rows), 2)
# check models
sql = "select * from Models "
c = _db._conn.execute(sql)
rows = c.fetchall()
self.assertEqual(len(rows), 2)
# check results
sql = "select * from Results "
c = _db._conn.execute(sql)
rows = c.fetchall()
self.assertEqual(len(rows), 2)
_db.disconnect()
if __name__ == '__main__':
unittest.main()

View File

@ -99,7 +99,7 @@ class TestCalculationTask(unittest.TestCase):
def test_get_mpi_message(self):
result = self.sample.get_mpi_message()
expected = {'model': 11, 'scan': 12, 'sym': 13, 'emit': 14, 'region': 15}
expected = {'model': 11, 'scan': 12, 'domain': 13, 'emit': 14, 'region': 15}
self.assertEqual(result['id'], expected)
self.assertEqual(result['model'], self.sample.model)
self.assertEqual(result['result_filename'], self.sample.result_filename)

View File

@ -39,11 +39,11 @@ class TestPopulation(unittest.TestCase):
def setUp(self):
random.seed(0)
self._test_dir = ""
self.domain = mp.Domain()
self.model_space = mp.ModelSpace()
self.domain.add_param('A', 1.5, 1.0, 2.0, 0.1)
self.domain.add_param('B', 2.5, 2.0, 3.0, 0.1)
self.domain.add_param('C', 3.5, 3.0, 4.0, 0.1)
self.model_space.add_param('A', 1.5, 1.0, 2.0, 0.1)
self.model_space.add_param('B', 2.5, 2.0, 3.0, 0.1)
self.model_space.add_param('C', 3.5, 3.0, 4.0, 0.1)
self.expected_names = ('_gen', '_model', '_particle', '_rfac', 'A', 'B', 'C')
self.size = POP_SIZE
@ -114,7 +114,7 @@ class TestPopulation(unittest.TestCase):
return r
def test_setup(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
self.assertEqual(self.pop.pos.dtype.names, self.expected_names)
self.assertEqual(self.pop.pos.shape, (POP_SIZE,))
np.testing.assert_array_equal(np.arange(POP_SIZE), self.pop.pos['_particle'])
@ -131,7 +131,7 @@ class TestPopulation(unittest.TestCase):
def test_setup_with_results(self):
data_dir = os.path.dirname(os.path.abspath(__file__))
data_file = os.path.join(data_dir, "test_swarm.setup_with_results.1.dat")
self.pop.setup(self.size, self.domain, seed_file=data_file, recalc_seed=False)
self.pop.setup(self.size, self.model_space, seed_file=data_file, recalc_seed=False)
self.assertEqual(self.pop.pos.dtype.names, self.expected_names)
self.assertEqual(self.pop.pos.shape, (POP_SIZE,))
@ -158,7 +158,7 @@ class TestPopulation(unittest.TestCase):
def test_setup_with_results_recalc(self):
data_dir = os.path.dirname(os.path.abspath(__file__))
data_file = os.path.join(data_dir, "test_swarm.setup_with_results.1.dat")
self.pop.setup(self.size, self.domain, seed_file=data_file, recalc_seed=True)
self.pop.setup(self.size, self.model_space, seed_file=data_file, recalc_seed=True)
self.assertEqual(self.pop.pos.dtype.names, self.expected_names)
self.assertEqual(self.pop.pos.shape, (POP_SIZE,))
@ -183,26 +183,26 @@ class TestPopulation(unittest.TestCase):
self.assertAlmostEqual(3.5, self.pop.pos['C'][0], 3)
def test_pos_gen(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
for index, item in enumerate(self.pop.pos_gen()):
self.assertIsInstance(item, dict)
self.assertEqual(set(item.keys()), set(self.expected_names))
self.assertEqual(item['_particle'], index)
def test_randomize(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
self.pop.randomize()
self.assertTrue(np.all(self.pop.pos['A'] >= self.domain.min['A']))
self.assertTrue(np.all(self.pop.pos['A'] <= self.domain.max['A']))
self.assertGreater(np.std(self.pop.pos['A']), self.domain.step['A'])
self.assertTrue(np.all(self.pop.pos['A'] >= self.model_space.min['A']))
self.assertTrue(np.all(self.pop.pos['A'] <= self.model_space.max['A']))
self.assertGreater(np.std(self.pop.pos['A']), self.model_space.step['A'])
def test_seed(self):
self.pop.setup(self.size, self.domain)
self.pop.seed(self.domain.start)
self.assertAlmostEqual(self.pop.pos['A'][0], self.domain.start['A'], delta=0.001)
self.pop.setup(self.size, self.model_space)
self.pop.seed(self.model_space.start)
self.assertAlmostEqual(self.pop.pos['A'][0], self.model_space.start['A'], delta=0.001)
def test_add_result(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
i_sample = 1
i_result = 0
result = self.pop.pos[i_sample]
@ -212,7 +212,7 @@ class TestPopulation(unittest.TestCase):
self.assertEqual(self.pop.best[i_sample], result)
def test_is_converged(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
self.assertFalse(self.pop.is_converged())
i_sample = 0
result = self.pop.pos[i_sample]
@ -226,12 +226,12 @@ class TestPopulation(unittest.TestCase):
self.assertTrue(self.pop.is_converged())
def test_save_population(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
filename = os.path.join(self.test_dir, "test_save_population.pop")
self.pop.save_population(filename)
def test_save_results(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
i_sample = 1
result = self.pop.pos[i_sample]
self.pop.add_result(result, 1.0)
@ -239,17 +239,17 @@ class TestPopulation(unittest.TestCase):
self.pop.save_results(filename)
def test_save_array(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
filename = os.path.join(self.test_dir, "test_save_array.pos")
self.pop.save_array(filename, self.pop.pos)
def test_load_array(self):
n = 3
filename = os.path.join(self.test_dir, "test_load_array")
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
# expected array
dt_exp = self.pop.get_pop_dtype(self.domain.start)
dt_exp = self.pop.get_pop_dtype(self.model_space.start)
a_exp = np.zeros((n,), dtype=dt_exp)
a_exp['A'] = np.linspace(0, 1, n)
a_exp['B'] = np.linspace(1, 2, n)
@ -276,13 +276,13 @@ class TestPopulation(unittest.TestCase):
np.testing.assert_almost_equal(result[name], a_exp[name], err_msg=name)
def test_mate_parents(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
pos1 = self.pop.pos.copy()
parents = self.pop.mate_parents(pos1)
self.assertEqual(len(parents), pos1.shape[0] / 2)
def test_crossover(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
p1 = self.pop.pos[2].copy()
p2 = self.pop.pos[3].copy()
c1, c2 = self.pop.crossover(p1, p2)
@ -290,11 +290,11 @@ class TestPopulation(unittest.TestCase):
self.assertIsInstance(c2, np.void)
self.assertEqual(c1['_particle'], p1['_particle'])
self.assertEqual(c2['_particle'], p2['_particle'])
for name in self.domain.start:
for name in self.model_space.start:
self.assertAlmostEqual(c1[name] + c2[name], p1[name] + p2[name], msg=name)
def test_mutate_weak(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
p1 = self.pop.pos[3].copy()
c1 = p1.copy()
self.pop.mutate_weak(c1, 1.0)
@ -304,7 +304,7 @@ class TestPopulation(unittest.TestCase):
self.assertNotAlmostEqual(c1['C'], p1['C'])
def test_mutate_strong(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
p1 = self.pop.pos[3].copy()
c1 = p1.copy()
self.pop.mutate_strong(c1, 1.0)
@ -314,7 +314,7 @@ class TestPopulation(unittest.TestCase):
self.assertNotAlmostEqual(c1['C'], p1['C'])
def test_advance_population(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
p1 = {'A': np.linspace(1.0, 2.0, POP_SIZE),
'B': np.linspace(2.0, 3.0, POP_SIZE),
@ -335,7 +335,7 @@ class TestPopulation(unittest.TestCase):
self.assertTrue(np.any(abs(self.pop.pos[name] - value) >= 0.001), msg=name)
def test_convergence_1(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
self.pop.pos['A'] = np.linspace(1.0, 2.0, POP_SIZE)
self.pop.pos['B'] = np.linspace(2.0, 3.0, POP_SIZE)
@ -352,7 +352,7 @@ class TestPopulation(unittest.TestCase):
def optimize_rfactor_2(self, pop_size, iterations):
self.size = pop_size
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
for i in range(iterations):
self.pop.advance_population()

View File

@ -32,11 +32,11 @@ import pmsco.project as mp
class TestPopulation(unittest.TestCase):
def setUp(self):
random.seed(0)
self.domain = mp.Domain()
self.model_space = mp.ModelSpace()
self.domain.add_param('A', 1.5, 1.0, 2.0, 0.2)
self.domain.add_param('B', 2.5, 2.0, 3.0, 0.25)
self.domain.add_param('C', 3.5, 3.5, 3.5, 0.0)
self.model_space.add_param('A', 1.5, 1.0, 2.0, 0.2)
self.model_space.add_param('B', 2.5, 2.0, 3.0, 0.25)
self.model_space.add_param('C', 3.5, 3.5, 3.5, 0.0)
self.expected_popsize = 30
self.expected_names = ('_model', '_rfac', 'A', 'B', 'C')
@ -57,7 +57,7 @@ class TestPopulation(unittest.TestCase):
pass
def test_setup(self):
self.pop.setup(self.domain)
self.pop.setup(self.model_space)
self.assertEqual(self.pop.positions.dtype.names, self.expected_names)
self.assertEqual(self.pop.positions.shape, (self.expected_popsize,))
self.assertEqual(self.pop.model_count, self.expected_popsize)

View File

@ -41,11 +41,11 @@ class TestPopulation(unittest.TestCase):
def setUp(self):
random.seed(0)
self.test_dir = tempfile.mkdtemp()
self.domain = project.Domain()
self.model_space = project.ModelSpace()
self.domain.add_param('A', 1.5, 1.0, 2.0, 0.1)
self.domain.add_param('B', 2.5, 2.0, 3.0, 0.1)
self.domain.add_param('C', 3.5, 3.0, 4.0, 0.1)
self.model_space.add_param('A', 1.5, 1.0, 2.0, 0.1)
self.model_space.add_param('B', 2.5, 2.0, 3.0, 0.1)
self.model_space.add_param('C', 3.5, 3.0, 4.0, 0.1)
self.expected_names = ('_gen', '_model', '_particle', '_rfac', 'A', 'B', 'C')
self.size = POP_SIZE
@ -115,7 +115,7 @@ class TestPopulation(unittest.TestCase):
return r
def test_setup(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
self.assertEqual(self.pop.pos.dtype.names, self.expected_names)
self.assertEqual(self.pop.pos.shape, (POP_SIZE,))
np.testing.assert_array_equal(np.arange(POP_SIZE), self.pop.pos['_particle'])
@ -132,7 +132,7 @@ class TestPopulation(unittest.TestCase):
def test_setup_with_results(self):
data_dir = os.path.dirname(os.path.abspath(__file__))
data_file = os.path.join(data_dir, "test_swarm.setup_with_results.1.dat")
self.pop.setup(self.size, self.domain, seed_file=data_file, recalc_seed=False)
self.pop.setup(self.size, self.model_space, seed_file=data_file, recalc_seed=False)
self.assertEqual(self.pop.pos.dtype.names, self.expected_names)
self.assertEqual(self.pop.pos.shape, (POP_SIZE,))
@ -159,7 +159,7 @@ class TestPopulation(unittest.TestCase):
def test_setup_with_results_recalc(self):
data_dir = os.path.dirname(os.path.abspath(__file__))
data_file = os.path.join(data_dir, "test_swarm.setup_with_results.1.dat")
self.pop.setup(self.size, self.domain, seed_file=data_file, recalc_seed=True)
self.pop.setup(self.size, self.model_space, seed_file=data_file, recalc_seed=True)
self.assertEqual(self.pop.pos.dtype.names, self.expected_names)
self.assertEqual(self.pop.pos.shape, (POP_SIZE,))
@ -184,12 +184,12 @@ class TestPopulation(unittest.TestCase):
self.assertAlmostEqual(3.5, self.pop.pos['C'][0], 3)
def test_setup_with_partial_results(self):
self.domain.add_param('D', 4.5, 4.0, 5.0, 0.1)
self.model_space.add_param('D', 4.5, 4.0, 5.0, 0.1)
self.expected_names = ('_gen', '_model', '_particle', '_rfac', 'A', 'B', 'C', 'D')
data_dir = os.path.dirname(os.path.abspath(__file__))
data_file = os.path.join(data_dir, "test_swarm.setup_with_results.1.dat")
self.pop.setup(self.size, self.domain, seed_file=data_file, recalc_seed=False)
self.pop.setup(self.size, self.model_space, seed_file=data_file, recalc_seed=False)
self.assertEqual(self.pop.pos.dtype.names, self.expected_names)
self.assertEqual(self.pop.pos.shape, (POP_SIZE,))
@ -214,7 +214,7 @@ class TestPopulation(unittest.TestCase):
self.assertAlmostEqual(3.5, self.pop.pos['C'][0], 3)
def test_pos_gen(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
for index, item in enumerate(self.pop.pos_gen()):
self.assertIsInstance(item, dict)
self.assertEqual(set(item.keys()), set(self.expected_names))
@ -242,19 +242,19 @@ class TestPopulation(unittest.TestCase):
np.testing.assert_array_equal(result, expected)
def test_randomize(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
self.pop.randomize()
m = np.mean(self.pop.pos['A'])
self.assertGreaterEqual(m, self.domain.min['A'])
self.assertLessEqual(m, self.domain.max['A'])
self.assertGreaterEqual(m, self.model_space.min['A'])
self.assertLessEqual(m, self.model_space.max['A'])
def test_seed(self):
self.pop.setup(self.size, self.domain)
self.pop.seed(self.domain.start)
self.assertAlmostEqual(self.pop.pos['A'][0], self.domain.start['A'], delta=0.001)
self.pop.setup(self.size, self.model_space)
self.pop.seed(self.model_space.start)
self.assertAlmostEqual(self.pop.pos['A'][0], self.model_space.start['A'], delta=0.001)
def test_add_result(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
i_sample = 1
i_result = 0
result = self.pop.pos[i_sample]
@ -264,12 +264,12 @@ class TestPopulation(unittest.TestCase):
self.assertEqual(self.pop.best[i_sample], result)
def test_save_population(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
filename = os.path.join(self.test_dir, "test_save_population.pop")
self.pop.save_population(filename)
def test_save_results(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
i_sample = 1
result = self.pop.pos[i_sample]
self.pop.add_result(result, 1.0)
@ -277,17 +277,17 @@ class TestPopulation(unittest.TestCase):
self.pop.save_results(filename)
def test_save_array(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
filename = os.path.join(self.test_dir, "test_save_array.pos")
self.pop.save_array(filename, self.pop.pos)
def test_load_array(self):
n = 3
filename = os.path.join(self.test_dir, "test_load_array")
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
# expected array
dt_exp = self.pop.get_pop_dtype(self.domain.start)
dt_exp = self.pop.get_pop_dtype(self.model_space.start)
a_exp = np.zeros((n,), dtype=dt_exp)
a_exp['A'] = np.linspace(0, 1, n)
a_exp['B'] = np.linspace(1, 2, n)
@ -395,7 +395,7 @@ class TestPopulation(unittest.TestCase):
self.assertRaises(ValueError, population.Population.constrain_position, pos1, vel1, min1, max1, 'error')
def test_patch_from_file(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
data_dir = os.path.dirname(os.path.abspath(__file__))
data_file = os.path.join(data_dir, "test_swarm.setup_with_results.1.dat")
@ -411,7 +411,7 @@ class TestPopulation(unittest.TestCase):
np.testing.assert_array_almost_equal(self.pop.pos_patch['C'], expected_pos['C'])
def test_apply_patch(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
expected_pos = self.pop.pos.copy()
dt_test = [('A', 'f4'), ('_particle', 'i4'), ('_rfac', 'f4'), ('C', 'f4'), ('_model', 'i4')]
patch_size = 3
@ -436,14 +436,14 @@ class TestPopulation(unittest.TestCase):
self.assert_pop_array_equal(self.pop.pos, expected_pos)
def test_find_result(self):
self.domain.min['A'] = -0.1
self.domain.max['A'] = 0.1
self.domain.min['B'] = 0.0
self.domain.max['B'] = 1000.
self.domain.min['C'] = 9.
self.domain.max['C'] = 9.001
self.model_space.min['A'] = -0.1
self.model_space.max['A'] = 0.1
self.model_space.min['B'] = 0.0
self.model_space.max['B'] = 1000.
self.model_space.min['C'] = 9.
self.model_space.max['C'] = 9.001
self.size = 100
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
self.pop.results = self.pop.pos.copy()
expected_index = 77
@ -472,7 +472,7 @@ class TestPopulation(unittest.TestCase):
check the different type conversions.
the main work is in test_import_positions_array.
"""
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
source_type = [('A', 'f4'), ('B', 'f4'), ('C', 'f4'), ('D', 'f4'),
('_model', 'i4'), ('_particle', 'i4'), ('_gen', 'i4'), ('_rfac', 'f4')]
@ -548,7 +548,7 @@ class TestPopulation(unittest.TestCase):
- no range or duplicate checking.
- missing parameter.
"""
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
source_type = [('A', 'f4'), ('B', 'f4'), ('C', 'f4'), ('D', 'f4'),
('_model', 'i4'), ('_particle', 'i4'), ('_gen', 'i4'), ('_rfac', 'f4')]
source = np.array([(1.0, 0.0, 0.0, 0.0, 0, 0, 0, 0.0),
@ -584,7 +584,7 @@ class TestPopulation(unittest.TestCase):
- range checks.
- de-duplication.
"""
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
self.pop.position_constrain_mode = 'error'
source_type = [('A', 'f8'), ('B', 'f8'), ('C', 'f8'),
('_model', 'i8'), ('_particle', 'i8'), ('_gen', 'i8'), ('_rfac', 'f8')]

View File

@ -10,20 +10,17 @@ to run the tests, change to the directory which contains the tests directory, an
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2015-18 by Paul Scherrer Institut @n
@copyright (c) 2015-21 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import mock
import numpy as np
import os
from pathlib import Path
import unittest
import pmsco.data as data
@ -31,6 +28,103 @@ import pmsco.dispatch as dispatch
import pmsco.project as project
class TestModelSpace(unittest.TestCase):
def setUp(self):
self.d1 = {
"A": {"start": 2.1, "min": 2.0, "max": 3.0, "step": 0.05},
"B": {"start": 15.0, "min": 0.0, "max": 30.0, "step": 1.0}}
self.d2 = {
"C": {"start": 22.0, "min": 15.0, "max": 25.0, "step": 1.0},
"D": {"start": 1.5, "min": 0.5, "max": 2.0, "step": 0.25}}
def test_add_param(self):
ms = project.ModelSpace()
ms.start['A'] = 2.1
ms.min['A'] = 2.0
ms.max['A'] = 3.0
ms.step['A'] = 0.05
ms.add_param("E", 5.0, 1.0, 9.0, 0.2)
ms.add_param("F", 8.0, width=6.0, step=0.5)
d_start = {'A': 2.1, 'E': 5.0, 'F': 8.0}
d_min = {'A': 2.0, 'E': 1.0, 'F': 5.0}
d_max = {'A': 3.0, 'E': 9.0, 'F': 11.0}
d_step = {'A': 0.05, 'E': 0.2, 'F': 0.5}
self.assertDictEqual(ms.start, d_start)
self.assertDictEqual(ms.min, d_min)
self.assertDictEqual(ms.max, d_max)
self.assertDictEqual(ms.step, d_step)
def test_get_param(self):
ms = project.ModelSpace()
ms.add_param("A", **self.d1['A'])
ms.add_param("B", **self.d1['B'])
result = ms.get_param('B')
expected = {'start': 15.0, 'min': 0.0, 'max': 30.0, 'step': 1.0}
self.assertIsInstance(result, project.ParamSpace)
self.assertEqual(result.start, expected['start'])
self.assertEqual(result.min, expected['min'])
self.assertEqual(result.max, expected['max'])
self.assertEqual(result.step, expected['step'])
def test_set_param_dict(self):
ms = project.ModelSpace()
ms.set_param_dict(self.d1)
ms.set_param_dict(self.d2)
d_start = {'C': 22.0, 'D': 1.5}
d_min = {'C': 15.0, 'D': 0.5}
d_max = {'C': 25.0, 'D': 2.0}
d_step = {'C': 1.0, 'D': 0.25}
self.assertDictEqual(ms.start, d_start)
self.assertDictEqual(ms.min, d_min)
self.assertDictEqual(ms.max, d_max)
self.assertDictEqual(ms.step, d_step)
class TestScanCreator(unittest.TestCase):
"""
test case for @ref pmsco.project.ScanCreator class
"""
def test_load_1(self):
"""
test the load method, case 1
test for:
- correct array expansion of an ['e', 'a'] scan.
- correct file name expansion with place holders and pathlib.Path objects.
"""
sc = project.ScanCreator()
sc.filename = Path("{test_p}", "twoatom_energy_alpha.etpai")
sc.positions = {
"e": "np.arange(10, 400, 5)",
"t": "0",
"p": "0",
"a": "np.linspace(-30, 30, 31)"
}
sc.emitter = "Cu"
sc.initial_state = "2p3/2"
p = Path(__file__).parent / ".." / "projects" / "twoatom"
dirs = {"test_p": p,
"test_s": str(p)}
result = sc.load(dirs=dirs)
self.assertEqual(result.mode, ['e', 'a'])
self.assertEqual(result.emitter, sc.emitter)
self.assertEqual(result.initial_state, sc.initial_state)
e = np.arange(10, 400, 5)
a = np.linspace(-30, 30, 31)
t = p = np.asarray([0])
np.testing.assert_array_equal(result.energies, e)
np.testing.assert_array_equal(result.thetas, t)
np.testing.assert_array_equal(result.phis, p)
np.testing.assert_array_equal(result.alphas, a)
self.assertTrue(Path(result.filename).is_file(), msg=f"file {result.filename} not found")
class TestScan(unittest.TestCase):
"""
test case for @ref pmsco.project.Scan class
@ -106,16 +200,16 @@ class TestProject(unittest.TestCase):
@mock.patch('pmsco.data.load_data')
@mock.patch('pmsco.data.save_data')
def test_combine_symmetries(self, save_data_mock, load_data_mock):
def test_combine_domains(self, save_data_mock, load_data_mock):
self.project.scans.append(project.Scan())
parent_task = dispatch.CalculationTask()
parent_task.change_id(model=0, scan=0)
parent_task.model['wsym1'] = 0.5
parent_task.model['wdom1'] = 0.5
child_tasks = [parent_task.copy()] * 2
for idx, task in enumerate(child_tasks):
task.change_id(sym=idx)
task.change_id(domain=idx)
data1 = data.create_data(5, datatype='EI')
data1['e'] = np.arange(5)
@ -126,7 +220,7 @@ class TestProject(unittest.TestCase):
data3 = data1.copy()
data3['i'] = (10. + 0.5 * 10.) / 1.5
self.project.combine_symmetries(parent_task, child_tasks)
self.project.combine_domains(parent_task, child_tasks)
save_data_mock.assert_called()
args, kwargs = save_data_mock.call_args

View File

@ -38,11 +38,11 @@ class TestSwarmPopulation(unittest.TestCase):
def setUp(self):
random.seed(0)
self.test_dir = tempfile.mkdtemp()
self.domain = project.Domain()
self.model_space = project.ModelSpace()
self.domain.add_param('A', 1.5, 1.0, 2.0, 0.1)
self.domain.add_param('B', 2.5, 2.0, 3.0, 0.1)
self.domain.add_param('C', 3.5, 3.0, 4.0, 0.1)
self.model_space.add_param('A', 1.5, 1.0, 2.0, 0.1)
self.model_space.add_param('B', 2.5, 2.0, 3.0, 0.1)
self.model_space.add_param('C', 3.5, 3.0, 4.0, 0.1)
self.expected_names = ('_gen', '_model', '_particle', '_rfac', 'A', 'B', 'C')
self.size = POP_SIZE
@ -73,14 +73,14 @@ class TestSwarmPopulation(unittest.TestCase):
return r
def test_best_friend(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
self.pop.best['_rfac'] = np.arange(self.size)
friend = self.pop.best_friend(0)
self.assertNotIsInstance(friend, np.ndarray)
self.assertEqual(friend.dtype.names, self.expected_names)
def test_advance_particle(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
self.pop.pos['A'] = np.linspace(1.0, 2.0, POP_SIZE)
self.pop.pos['B'] = np.linspace(2.0, 3.0, POP_SIZE)
@ -98,11 +98,11 @@ class TestSwarmPopulation(unittest.TestCase):
for key in ['A','B','C']:
for pos in self.pop.pos[key]:
self.assertGreaterEqual(pos, self.domain.min[key])
self.assertLessEqual(pos, self.domain.max[key])
self.assertGreaterEqual(pos, self.model_space.min[key])
self.assertLessEqual(pos, self.model_space.max[key])
def test_is_converged(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
self.assertFalse(self.pop.is_converged())
i_sample = 0
result = self.pop.pos[i_sample]
@ -116,7 +116,7 @@ class TestSwarmPopulation(unittest.TestCase):
self.assertTrue(self.pop.is_converged())
def test_convergence_1(self):
self.pop.setup(self.size, self.domain)
self.pop.setup(self.size, self.model_space)
self.pop.pos['A'] = np.linspace(1.0, 2.0, POP_SIZE)
self.pop.pos['B'] = np.linspace(2.0, 3.0, POP_SIZE)