5 Commits

Author SHA1 Message Date
ef781e2db4 public release 3.0.0 - see README and CHANGES for details 2021-02-09 12:46:20 +01:00
2b3dbd8bac update README 2020-09-04 16:31:45 +02:00
7c61eb1b41 public release 2.2.0 - see README.md and CHANGES.md for details 2020-09-04 16:22:42 +02:00
fbd2d4fa8c public distro 2.1.0 2019-07-19 12:54:54 +02:00
acea809e4e update public distribution
based on internal repository c9a2ac8 2019-01-03 16:04:57 +0100
tagged rev-master-2.0.0
2019-01-31 15:45:02 +01:00
128 changed files with 174557 additions and 144439 deletions

2
.gitignore vendored
View File

@ -1,6 +1,7 @@
work/*
debug/*
lib/*
dev/*
*.pyc
*.o
*.so
@ -13,3 +14,4 @@ lib/*
.eric5project/*
.ropeproject/*
.fuse*
.trash

14
.gitlab-ci.yml Normal file
View File

@ -0,0 +1,14 @@
pages:
stage: deploy
script:
- ~/miniconda3/bin/activate pmsco
- make docs
- mv docs/html/ public/
artifacts:
paths:
- public
only:
- master
tags:
- doxygen

59
CHANGES.md Normal file
View File

@ -0,0 +1,59 @@
Release 3.0.0 (2021-02-01)
==========================
| Hash | Date | Description |
| ---- | ---- | ----------- |
| 72a9f38 | 2021-02-06 | introduce run file based job scheduling |
| 42e12d8 | 2021-02-05 | compatibility with recent conda and singularity versions |
| caf9f43 | 2021-02-03 | installation: include plantuml.jar |
| 574c88a | 2021-02-01 | docs: replace doxypy by doxypypy |
| a5cb831 | 2021-02-05 | redefine output_file property |
| 49dbb89 | 2021-01-27 | documentation of run file interface |
| 940d9ae | 2021-01-07 | introduce run file interface |
| 6950f98 | 2021-02-05 | set legacy fortran for compatibility with recent compiler |
| 28d8bc9 | 2021-01-27 | graphics: fixed color range for modulation functions |
| 1382508 | 2021-01-16 | cluster: build_element accepts symbol or number |
| 53508b7 | 2021-01-06 | graphics: swarm plot |
| 4a24163 | 2021-01-05 | graphics: genetic chart |
| 99e9782 | 2020-12-23 | periodic table: use common binding energies in condensed matter XPS |
| fdfcf90 | 2020-12-23 | periodic table: reformat bindingenergy.json, add more import/export functions |
| 13cf90f | 2020-12-21 | hbnni: parameters for xpd demo with two domains |
| 680edb4 | 2020-12-21 | documentation: update documentation of optimizers |
| d909469 | 2020-12-18 | doc: update top components diagram (pmsco module is entry point) |
| 574993e | 2020-12-09 | spectrum: add plot cross section function |
Release 2.2.0 (2020-09-04)
==========================
| Hash | Date | Description |
| ---- | ---- | ----------- |
| 4bb2331 | 2020-07-30 | demo project for arbitrary molecule (cluster file) |
| f984f64 | 2020-09-03 | bugfix: DATA CORRUPTION in phagen translator (emitter mix-up) |
| 11fb849 | 2020-09-02 | bugfix: load native cluster file: wrong column order |
| d071c97 | 2020-09-01 | bugfix: initial-state command line option not respected |
| 9705eed | 2020-07-28 | photoionization cross sections and spectrum simulator |
| 98312f0 | 2020-06-12 | database: use local lock objects |
| c8fb974 | 2020-04-30 | database: create view on results and models |
| 2cfebcb | 2020-05-14 | REFACTORING: Domain -> ModelSpace, Params -> CalculatorParams |
| d5516ae | 2020-05-14 | REFACTORING: symmetry -> domain |
| b2dd21b | 2020-05-13 | possible conda/mpi4py conflict - changed installation procedure |
| cf5c7fd | 2020-05-12 | cluster: new calc_scattering_angles function |
| 20df82d | 2020-05-07 | include a periodic table of binding energies of the elements |
| 5d560bf | 2020-04-24 | clean up files in the main loop and in the end |
| 6e0ade5 | 2020-04-24 | bugfix: database ingestion overwrites results from previous jobs |
| 263b220 | 2020-04-24 | time out at least 10 minutes before the hard time limit given on the command line |
| 4ec526d | 2020-04-09 | cluster: new get_center function |
| fcdef4f | 2020-04-09 | bugfix: type error in grid optimizer |
| a4d1cf7 | 2020-03-05 | bugfix: file extension in phagen/makefile |
| 9461e46 | 2019-09-11 | dispatch: new algo to distribute processing slots to task levels |
| 30851ea | 2020-03-04 | bugfix: load single-line data files correctly! |
| 71fe0c6 | 2019-10-04 | cluster generator for zincblende crystal |
| 23965e3 | 2020-02-26 | phagen translator: fix phase convention (MAJOR), fix single-energy |
| cf1814f | 2019-09-11 | dispatch: give more priority to mid-level tasks in single mode |
| 58c778d | 2019-09-05 | improve performance of cluster add_bulk, add_layer and rotate |
| 20ef1af | 2019-09-05 | unit test for Cluster.translate, bugfix in translate and relax |
| 0b80850 | 2019-07-17 | fix compatibility with numpy >= 1.14, require numpy >= 1.13 |
| 1d0a542 | 2019-07-16 | database: introduce job-tags |
| 8461d81 | 2019-07-05 | qpmsco: delete code after execution |

201
LICENSE Normal file
View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2015-2020 Paul Scherrer Institut
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -6,29 +6,33 @@ It is a collection of computer programs to calculate photoelectron diffraction p
and to optimize structural models based on measured data.
The actual scattering calculation is done by code developed by other parties.
PMSCO wraps around that program and facilitates parameter handling, cluster building, structural optimization and parallel processing.
PMSCO wraps around those programs and facilitates parameter handling, cluster building, structural optimization and parallel processing.
In the current version, the [EDAC](http://garciadeabajos-group.icfo.es/widgets/edac/) code
developed by F. J. García de Abajo, M. A. Van Hove, and C. S. Fadley (1999) is used for scattering calculations.
Other code can be integrated as well.
Instead of EDAC built-in routines, alternatively,
the PHAGEN program from [MsSpec-1.0](https://msspec.cnrs.fr/index.html) can be used to calculate atomic scattering factors.
Highlights
----------
- angle or energy scanned XPD.
- various scanning modes including energy, polar angle, azimuthal angle, analyser angle.
- averaging over multiple symmetries (domains or emitters).
- angle and energy scanned XPD.
- various scanning modes including energy, manipulator angle (polar/azimuthal), emission angle.
- averaging over multiple domains and emitters.
- global optimization of multiple scans.
- structural optimization algorithms: particle swarm optimization, grid search, gradient search.
- structural optimization algorithms: particle swarm optimization, genetic algorithm, grid scan, table scan.
- detailed reports and graphs of result files.
- calculation of the modulation function.
- calculation of the weighted R-factor.
- automatic parallel processing using OpenMPI.
- compatible with Slurm resource manager on Linux cluster machines.
Installation
============
PMSCO is written in Python 2.7.
The code will run in any recent Linux environment on a workstation or in a virtual machine.
PMSCO is written in Python 3.6.
The code will run in any recent Linux environment on a workstation or virtual machine.
Scientific Linux, CentOS7, [Ubuntu](https://www.ubuntu.com/)
and [Lubuntu](http://lubuntu.net/) (recommended for virtual machine) have been tested.
For optimization jobs, a cluster with 20-50 available processor cores is recommended.
@ -36,7 +40,12 @@ The code requires about 2 GB of RAM per process.
Detailed installation instructions and dependencies can be found in the documentation
(docs/src/installation.dox).
A [Doxygen](http://www.stack.nl/~dimitri/doxygen/index.html) compiler with Doxypy is required to generate the documentation in HTML or LaTeX format.
A [Doxygen](http://www.stack.nl/~dimitri/doxygen/index.html) compiler with Doxypypy is required to generate the documentation in HTML format.
The easiest way to set up an environment with all dependencies and without side-effects on other installed software is to use a [Singularity](https://www.sylabs.io/guides/3.7/user-guide/index.html) container.
A Singularity recipe file is part of the distribution, see the PMSCO documentation for details, Singularity must be installed separately.
Installation in a [virtual box](https://www.virtualbox.org/) on Windows or Mac is straightforward using pre-compiled images with [Vagrant](https://www.vagrantup.com/).
A Vagrant definition file is included in the distribution.
The public distribution of PMSCO does not contain the [EDAC](http://garciadeabajos-group.icfo.es/widgets/edac/) code.
Please obtain the EDAC source code from the original author, copy it to the pmsco/edac directory, and apply the edac_all.patch patch.
@ -61,10 +70,39 @@ Matthias Muntwiler, <mailto:matthias.muntwiler@psi.ch>
Copyright
---------
Copyright 2015-2017 by [Paul Scherrer Institut](http://www.psi.ch)
Copyright 2015-2021 by [Paul Scherrer Institut](http://www.psi.ch)
Release Notes
=============
For a detailed list of changes, see the CHANGES.md file.
3.0.0 (2021-02-08)
------------------
- Run file interface replaces command line arguments:
- Specify all run-time parameters in a JSON-formatted text file.
- Override any public attribute of the project class.
- Only the name of the run file is needed on the command line.
- The command line interface is still available, some default values and the handling of directory paths have changed.
Check your code for compatibility.
- Integrated job scheduling with the Slurm resource manager:
- Declare all job arguments in the run file and have PMSCO submit the job.
- Graphics scripts for genetic chart and swarm population (experimental feature).
- Update for compatibility with recent Ubuntu (20.04), Anaconda (4.8) and Singularity (3.7).
- Drop compatibility with Python 2.7, minimum requirement is Python 3.6.
2.2.0 (2020-09-04)
------------------
This release breaks existing project code unless the listed refactorings are applied.
- Major refactoring: The 'symmetry' calculation level is renamed to 'domain'.
The previous Domain class is renamed to ModelSpace, Params to CalculatorParams.
The refactorings must be applied to project code as well.
- Included periodic table of elements with electron binding energies and scattering cross-sections.
- Various bug fixes in cluster routines, data file handling, and in the PHAGEN interface.
- Experimental sqlite3 database interface for optimization results.

View File

@ -1,157 +0,0 @@
#!/bin/bash
#
# Slurm script template for PMSCO calculations on the Ra cluster
# based on run_mpi_HPL_nodes-2.sl by V. Markushin 2016-03-01
#
# Use:
# - enter the appropriate parameters and save as a new file.
# - call the sbatch command to pass the job script.
# request a specific number of nodes and tasks.
# example:
# sbatch --nodes=2 --ntasks-per-node=24 --time=02:00:00 run_pmsco.sl
#
# PMSCO arguments
# copy this template to a new file, and set the arguments
#
# PMSCO_WORK_DIR
# path to be used as working directory.
# contains the script derived from this template.
# receives output and temporary files.
#
# PMSCO_PROJECT_FILE
# python module that declares the project and starts the calculation.
# must include the file path relative to $PMSCO_WORK_DIR.
#
# PMSCO_SOURCE_DIR
# path to the pmsco source directory
# (the directory which contains the bin, lib, pmsco sub-directories)
#
# PMSCO_SCAN_FILES
# list of scan files.
#
# PMSCO_OUT
# name of output file. should not include a path.
#
# all paths are relative to $PMSCO_WORK_DIR or (better) absolute.
#
#
# Further arguments
#
# PMSCO_JOBNAME (required)
# the job name is the base name for output files.
#
# PMSCO_WALLTIME_HR (integer, required)
# wall time limit in hours. must be integer, minimum 1.
# this value is passed to PMSCO.
# it should specify the same amount of wall time as requested from the scheduler.
#
# PMSCO_MODE (optional)
# calculation mode: single, swarm, grid, gradient
#
# PMSCO_CODE (optional)
# calculation code: edac, msc, test
#
# PMSCO_LOGLEVEL (optional)
# request log level: DEBUG, INFO, WARNING, ERROR
# create a log file based on the job name.
#
# PMSCO_PROJECT_ARGS (optional)
# extra arguments that are parsed by the project module.
#
#SBATCH --job-name="_PMSCO_JOBNAME"
#SBATCH --output="_PMSCO_JOBNAME.o.%j"
#SBATCH --error="_PMSCO_JOBNAME.e.%j"
PMSCO_WORK_DIR="_PMSCO_WORK_DIR"
PMSCO_JOBNAME="_PMSCO_JOBNAME"
PMSCO_WALLTIME_HR=_PMSCO_WALLTIME_HR
PMSCO_PROJECT_FILE="_PMSCO_PROJECT_FILE"
PMSCO_MODE="_PMSCO_MODE"
PMSCO_CODE="_PMSCO_CODE"
PMSCO_SOURCE_DIR="_PMSCO_SOURCE_DIR"
PMSCO_SCAN_FILES="_PMSCO_SCAN_FILES"
PMSCO_OUT="_PMSCO_JOBNAME"
PMSCO_LOGLEVEL="_PMSCO_LOGLEVEL"
PMSCO_PROJECT_ARGS="_PMSCO_PROJECT_ARGS"
module load psi-python27/2.4.1
module load gcc/4.8.5
module load openmpi/1.10.2
source activate pmsco
echo '================================================================================'
echo "=== Running $0 at the following time and place:"
date
/bin/hostname
cd $PMSCO_WORK_DIR
pwd
ls -lA
#the intel compiler is currently not compatible with mpi4py. -mm 170131
#echo
#echo '================================================================================'
#echo "=== Setting the environment to use Intel Cluster Studio XE 2016 Update 2 intel/16.2:"
#cmd="source /opt/psi/Programming/intel/16.2/bin/compilervars.sh intel64"
#echo $cmd
#$cmd
echo
echo '================================================================================'
echo "=== The environment is set as following:"
env
echo
echo '================================================================================'
echo "BEGIN test"
echo "=== Intel native mpirun will get the number of nodes and the machinefile from Slurm"
which mpirun
cmd="mpirun /bin/hostname"
echo $cmd
$cmd
echo "END test"
echo
echo '================================================================================'
echo "BEGIN mpirun pmsco"
echo "Intel native mpirun will get the number of nodes and the machinefile from Slurm"
echo
echo "code revision"
cd "$PMSCO_SOURCE_DIR"
git log --pretty=tformat:'%h %ai %d' -1
python -m compileall pmsco
python -m compileall projects
cd "$PMSCO_WORK_DIR"
echo
PMSCO_CMD="python $PMSCO_PROJECT_FILE"
PMSCO_ARGS="$PMSCO_PROJECT_ARGS"
if [ -n "$PMSCO_SCAN_FILES" ]; then
PMSCO_ARGS="-s $PMSCO_SCAN_FILES $PMSCO_ARGS"
fi
if [ -n "$PMSCO_CODE" ]; then
PMSCO_ARGS="-c $PMSCO_CODE $PMSCO_ARGS"
fi
if [ -n "$PMSCO_MODE" ]; then
PMSCO_ARGS="-m $PMSCO_MODE $PMSCO_ARGS"
fi
if [ -n "$PMSCO_OUT" ]; then
PMSCO_ARGS="-o $PMSCO_OUT $PMSCO_ARGS"
fi
if [ "$PMSCO_WALLTIME_HR" -ge 1 ]; then
PMSCO_ARGS="-t $PMSCO_WALLTIME_HR $PMSCO_ARGS"
fi
if [ -n "$PMSCO_LOGLEVEL" ]; then
PMSCO_ARGS="--log-level $PMSCO_LOGLEVEL --log-file $PMSCO_JOBNAME.log $PMSCO_ARGS"
fi
which mpirun
ls -l "$PMSCO_SOURCE_DIR"
ls -l "$PMSCO_PROJECT_FILE"
# Do no use the OpenMPI specific options, like "-x LD_LIBRARY_PATH", with the Intel mpirun.
cmd="mpirun $PMSCO_CMD $PMSCO_ARGS"
echo $cmd
$cmd
echo "END mpirun pmsco"
echo '================================================================================'
date
ls -lAtr
echo '================================================================================'
exit 0

View File

@ -1,178 +0,0 @@
#!/bin/bash
#
# SGE script template for MSC calculations
#
# This script uses the tight integration of openmpi-1.4.5-gcc-4.6.3 in SGE
# using the parallel environment (PE) "orte".
# This script must be used only with qsub command - do NOT run it as a stand-alone
# shell script because it will start all processes on the local node.
#
# PhD arguments
# copy this template to a new file, and set the arguments
#
# PHD_WORK_DIR
# path to be used as working directory.
# contains the SGE script derived from this template.
# receives output and temporary files.
#
# PHD_PROJECT_FILE
# python module that declares the project and starts the calculation.
# must include the file path relative to $PHD_WORK_DIR.
#
# PHD_SOURCE_DIR
# path to the pmsco source directory
# (the directory which contains the bin, lib, pmsco sub-directories)
#
# PHD_SCAN_FILES
# list of scan files.
#
# PHD_OUT
# name of output file. should not include a path.
#
# all paths are relative to $PHD_WORK_DIR or (better) absolute.
#
#
# Further arguments
#
# PHD_JOBNAME (required)
# the job name is the base name for output files.
#
# PHD_NODES (required)
# number of computing nodes (processes) to allocate for the job.
#
# PHD_WALLTIME_HR (required)
# wall time limit (hours)
#
# PHD_WALLTIME_MIN (required)
# wall time limit (minutes)
#
# PHD_MODE (optional)
# calculation mode: single, swarm, grid, gradient
#
# PHD_CODE (optional)
# calculation code: edac, msc, test
#
# PHD_LOGLEVEL (optional)
# request log level: DEBUG, INFO, WARNING, ERROR
# create a log file based on the job name.
#
# PHD_PROJECT_ARGS (optional)
# extra arguments that are parsed by the project module.
#
PHD_WORK_DIR="_PHD_WORK_DIR"
PHD_JOBNAME="_PHD_JOBNAME"
PHD_NODES=_PHD_NODES
PHD_WALLTIME_HR=_PHD_WALLTIME_HR
PHD_WALLTIME_MIN=_PHD_WALLTIME_MIN
PHD_PROJECT_FILE="_PHD_PROJECT_FILE"
PHD_MODE="_PHD_MODE"
PHD_CODE="_PHD_CODE"
PHD_SOURCE_DIR="_PHD_SOURCE_DIR"
PHD_SCAN_FILES="_PHD_SCAN_FILES"
PHD_OUT="_PHD_JOBNAME"
PHD_LOGLEVEL="_PHD_LOGLEVEL"
PHD_PROJECT_ARGS="_PHD_PROJECT_ARGS"
# Define your job name, parallel environment with the number of slots, and run time:
#$ -cwd
#$ -N _PHD_JOBNAME.job
#$ -pe orte _PHD_NODES
#$ -l ram=2G
#$ -l s_rt=_PHD_WALLTIME_HR:_PHD_WALLTIME_MIN:00
#$ -l h_rt=_PHD_WALLTIME_HR:_PHD_WALLTIME_MIN:30
#$ -V
###################################################
# Fix the SGE environment-handling bug (bash):
source /usr/share/Modules/init/sh
export -n -f module
# Load the environment modules for this job (the order may be important):
module load python/python-2.7.5
module load gcc/gcc-4.6.3
module load mpi/openmpi-1.4.5-gcc-4.6.3
module load blas/blas-20110419-gcc-4.6.3
module load lapack/lapack-3.4.2-gcc-4.6.3
export LD_LIBRARY_PATH=$PHD_SOURCE_DIR/lib/:$LD_LIBRARY_PATH
###################################################
# Set the environment variables:
MPIEXEC=$OPENMPI/bin/mpiexec
# OPENMPI is set by the mpi/openmpi-* module.
export OMP_NUM_THREADS=1
export OMPI_MCA_btl='openib,sm,self'
# export OMPI_MCA_orte_process_binding=core
##############
# BEGIN DEBUG
# Print the SGE environment on master host:
echo "================================================================"
echo "=== SGE job JOB_NAME=$JOB_NAME JOB_ID=$JOB_ID"
echo "================================================================"
echo DATE=`date`
echo HOSTNAME=`hostname`
echo PWD=`pwd`
echo "NSLOTS=$NSLOTS"
echo "PE_HOSTFILE=$PE_HOSTFILE"
cat $PE_HOSTFILE
echo "================================================================"
echo "Running environment:"
env
echo "================================================================"
echo "Loaded environment modules:"
module list 2>&1
echo
# END DEBUG
##############
##############
# Setup
cd "$PHD_SOURCE_DIR"
python -m compileall .
cd "$PHD_WORK_DIR"
ulimit -c 0
###################################################
# The command to run with mpiexec:
CMD="python $PHD_PROJECT_FILE"
ARGS="$PHD_PROJECT_ARGS"
if [ -n "$PHD_SCAN_FILES" ]; then
ARGS="-s $PHD_SCAN_FILES -- $ARGS"
fi
if [ -n "$PHD_CODE" ]; then
ARGS="-c $PHD_CODE $ARGS"
fi
if [ -n "$PHD_MODE" ]; then
ARGS="-m $PHD_MODE $ARGS"
fi
if [ -n "$PHD_OUT" ]; then
ARGS="-o $PHD_OUT $ARGS"
fi
if [ "$PHD_WALLTIME_HR" -ge 1 ]
then
ARGS="-t $PHD_WALLTIME_HR $ARGS"
else
ARGS="-t 0.5 $ARGS"
fi
if [ -n "$PHD_LOGLEVEL" ]; then
ARGS="--log-level $PHD_LOGLEVEL --log-file $PHD_JOBNAME.log $ARGS"
fi
# The MPI command to run:
MPICMD="$MPIEXEC --prefix $OPENMPI -x PATH -x LD_LIBRARY_PATH -x OMP_NUM_THREADS -x OMPI_MCA_btl -np $NSLOTS $CMD $ARGS"
echo "Command to run:"
echo "$MPICMD"
echo
exec $MPICMD
exit 0

View File

@ -1,145 +0,0 @@
#!/bin/sh
#
# submission script for PMSCO calculations on the Ra cluster
if [ $# -lt 1 ]; then
echo "Usage: $0 [NOSUB] JOBNAME NODES TASKS_PER_NODE WALLTIME:HOURS PROJECT MODE [ARGS [ARGS [...]]]"
echo ""
echo " NOSUB (optional): do not submit the script to the queue. default: submit."
echo " JOBNAME (text): name of job. use only alphanumeric characters, no spaces."
echo " NODES (integer): number of computing nodes. (1 node = 24 or 32 processors)."
echo " do not specify more than 2."
echo " TASKS_PER_NODE (integer): 1...24, or 32."
echo " 24 or 32 for full-node allocation."
echo " 1...23 for shared node allocation."
echo " WALLTIME:HOURS (integer): requested wall time."
echo " 1...24 for day partition"
echo " 24...192 for week partition"
echo " 1...192 for shared partition"
echo " PROJECT: python module (file path) that declares the project and starts the calculation."
echo " MODE: PMSCO calculation mode (single|swarm|gradient|grid)."
echo " ARGS (optional): any number of further PMSCO or project arguments (except mode and time)."
echo ""
echo "the job script complete with the program code and input/output data is generated in ~/jobs/\$JOBNAME"
exit 1
fi
# location of the pmsco package is derived from the path of this script
SCRIPTDIR="$(dirname $(readlink -f $0))"
SOURCEDIR="$SCRIPTDIR/.."
PMSCO_SOURCE_DIR="$SOURCEDIR"
# read arguments
if [ "$1" == "NOSUB" ]; then
NOSUB="true"
shift
else
NOSUB="false"
fi
PMSCO_JOBNAME=$1
shift
PMSCO_NODES=$1
PMSCO_TASKS_PER_NODE=$2
PMSCO_TASKS=$(expr $PMSCO_NODES \* $PMSCO_TASKS_PER_NODE)
shift 2
PMSCO_WALLTIME_HR=$1
PMSCO_WALLTIME_MIN=$(expr $PMSCO_WALLTIME_HR \* 60)
shift
# select partition
if [ $PMSCO_WALLTIME_HR -ge 25 ]; then
PMSCO_PARTITION="week"
else
PMSCO_PARTITION="day"
fi
if [ $PMSCO_TASKS_PER_NODE -lt 24 ]; then
PMSCO_PARTITION="shared"
fi
PMSCO_PROJECT_FILE="$(readlink -f $1)"
shift
PMSCO_MODE="$1"
shift
PMSCO_PROJECT_ARGS="$*"
# use defaults, override explicitly in PMSCO_PROJECT_ARGS if necessary
PMSCO_SCAN_FILES=""
PMSCO_LOGLEVEL=""
PMSCO_CODE=""
# set up working directory
cd ~
if [ ! -d "jobs" ]; then
mkdir jobs
fi
cd jobs
if [ ! -d "$PMSCO_JOBNAME" ]; then
mkdir "$PMSCO_JOBNAME"
fi
cd "$PMSCO_JOBNAME"
WORKDIR="$(pwd)"
PMSCO_WORK_DIR="$WORKDIR"
# provide revision information, requires git repository
cd "$SOURCEDIR"
PMSCO_REV=$(git log --pretty=format:"Data revision %h, %ai" -1)
if [ $? -ne 0 ]; then
PMSCO_REV="Data revision unknown, "$(date +"%F %T %z")
fi
cd "$WORKDIR"
echo "$PMSCO_REV" > revision.txt
# generate job script from template
sed -e "s:_PMSCO_WORK_DIR:$PMSCO_WORK_DIR:g" \
-e "s:_PMSCO_JOBNAME:$PMSCO_JOBNAME:g" \
-e "s:_PMSCO_NODES:$PMSCO_NODES:g" \
-e "s:_PMSCO_WALLTIME_HR:$PMSCO_WALLTIME_HR:g" \
-e "s:_PMSCO_PROJECT_FILE:$PMSCO_PROJECT_FILE:g" \
-e "s:_PMSCO_PROJECT_ARGS:$PMSCO_PROJECT_ARGS:g" \
-e "s:_PMSCO_CODE:$PMSCO_CODE:g" \
-e "s:_PMSCO_MODE:$PMSCO_MODE:g" \
-e "s:_PMSCO_SOURCE_DIR:$PMSCO_SOURCE_DIR:g" \
-e "s:_PMSCO_SCAN_FILES:$PMSCO_SCAN_FILES:g" \
-e "s:_PMSCO_LOGLEVEL:$PMSCO_LOGLEVEL:g" \
"$SCRIPTDIR/pmsco.ra.template" > $PMSCO_JOBNAME.job
chmod u+x "$PMSCO_JOBNAME.job"
# request nodes and tasks
#
# The option --ntasks-per-node is meant to be used with the --nodes option.
# (For the --ntasks option, the default is one task per node, use the --cpus-per-task option to change this default.)
#
# sbatch options
# --cores-per-socket=16
# 32 cores per node
# --partition=[shared|day|week]
# --time=8-00:00:00
# override default time limit (2 days in long queue)
# time formats: "minutes", "minutes:seconds", "hours:minutes:seconds", "days-hours", "days-hours:minutes", "days-hours:minutes:seconds"
# --mail-type=ALL
# --test-only
# check script but do not submit
#
SLURM_ARGS="--nodes=$PMSCO_NODES --ntasks-per-node=$PMSCO_TASKS_PER_NODE"
if [ $PMSCO_TASKS_PER_NODE -gt 24 ]; then
SLURM_ARGS="--cores-per-socket=16 $SLURM_ARGS"
fi
SLURM_ARGS="--partition=$PMSCO_PARTITION $SLURM_ARGS"
SLURM_ARGS="--time=$PMSCO_WALLTIME_HR:00:00 $SLURM_ARGS"
CMD="sbatch $SLURM_ARGS $PMSCO_JOBNAME.job"
echo $CMD
if [ "$NOSUB" != "true" ]; then
$CMD
fi
exit 0

View File

@ -1,128 +0,0 @@
#!/bin/sh
#
# submission script for PMSCO calculations on Merlin cluster
#
if [ $# -lt 1 ]; then
echo "Usage: $0 [NOSUB] JOBNAME NODES WALLTIME:HOURS PROJECT MODE [LOG_LEVEL]"
echo ""
echo " NOSUB (optional): do not submit the script to the queue. default: submit."
echo " WALLTIME:HOURS (integer): sets the wall time limits."
echo " soft limit = HOURS:00:00"
echo " hard limit = HOURS:00:30"
echo " for short.q: HOURS = 0 (-> MINUTES=30)"
echo " for all.q: HOURS <= 24"
echo " for long.q: HOURS <= 96"
echo " PROJECT: python module (file path) that declares the project and starts the calculation."
echo " MODE: PMSCO calculation mode (single|swarm|gradient|grid)."
echo " LOG_LEVEL (optional): one of DEBUG, INFO, WARNING, ERROR if log files should be produced."
echo ""
echo "the job script complete with the program code and input/output data is generated in ~/jobs/\$JOBNAME"
exit 1
fi
# location of the pmsco package is derived from the path of this script
SCRIPTDIR="$(dirname $(readlink -f $0))"
SOURCEDIR="$SCRIPTDIR/.."
PHD_SOURCE_DIR="$SOURCEDIR"
PHD_CODE="edac"
# read arguments
if [ "$1" == "NOSUB" ]; then
NOSUB="true"
shift
else
NOSUB="false"
fi
PHD_JOBNAME=$1
shift
PHD_NODES=$1
shift
PHD_WALLTIME_HR=$1
PHD_WALLTIME_MIN=0
shift
PHD_PROJECT_FILE="$(readlink -f $1)"
PHD_PROJECT_ARGS=""
shift
PHD_MODE="$1"
shift
PHD_LOGLEVEL=""
if [ "$1" == "DEBUG" ] || [ "$1" == "INFO" ] || [ "$1" == "WARNING" ] || [ "$1" == "ERROR" ]; then
PHD_LOGLEVEL="$1"
shift
fi
# ignore remaining arguments
PHD_SCAN_FILES=""
# select allowed queues
QUEUE=short.q,all.q,long.q
# for short queue (limit 30 minutes)
if [ "$PHD_WALLTIME_HR" -lt 1 ]; then
PHD_WALLTIME_HR=0
PHD_WALLTIME_MIN=30
fi
# set up working directory
cd ~
if [ ! -d "jobs" ]; then
mkdir jobs
fi
cd jobs
if [ ! -d "$PHD_JOBNAME" ]; then
mkdir "$PHD_JOBNAME"
fi
cd "$PHD_JOBNAME"
WORKDIR="$(pwd)"
PHD_WORK_DIR="$WORKDIR"
# provide revision information, requires git repository
cd "$SOURCEDIR"
PHD_REV=$(git log --pretty=format:"Data revision %h, %ad" --date=iso -1)
if [ $? -ne 0 ]; then
PHD_REV="Data revision unknown, "$(date +"%F %T %z")
fi
cd "$WORKDIR"
echo "$PHD_REV" > revision.txt
# generate job script from template
sed -e "s:_PHD_WORK_DIR:$PHD_WORK_DIR:g" \
-e "s:_PHD_JOBNAME:$PHD_JOBNAME:g" \
-e "s:_PHD_NODES:$PHD_NODES:g" \
-e "s:_PHD_WALLTIME_HR:$PHD_WALLTIME_HR:g" \
-e "s:_PHD_WALLTIME_MIN:$PHD_WALLTIME_MIN:g" \
-e "s:_PHD_PROJECT_FILE:$PHD_PROJECT_FILE:g" \
-e "s:_PHD_PROJECT_ARGS:$PHD_PROJECT_ARGS:g" \
-e "s:_PHD_CODE:$PHD_CODE:g" \
-e "s:_PHD_MODE:$PHD_MODE:g" \
-e "s:_PHD_SOURCE_DIR:$PHD_SOURCE_DIR:g" \
-e "s:_PHD_SCAN_FILES:$PHD_SCAN_FILES:g" \
-e "s:_PHD_LOGLEVEL:$PHD_LOGLEVEL:g" \
"$SCRIPTDIR/pmsco.sge.template" > $PHD_JOBNAME.job
chmod u+x "$PHD_JOBNAME.job"
if [ "$NOSUB" != "true" ]; then
# suppress bash error [stackoverflow.com/questions/10496758]
unset module
# submit the job script
# EMAIL must be defined in the environment
if [ -n "$EMAIL" ]; then
qsub -q $QUEUE -m ae -M $EMAIL $PHD_JOBNAME.job
else
qsub -q $QUEUE $PHD_JOBNAME.job
fi
fi
exit 0

View File

@ -32,19 +32,19 @@ DOXYFILE_ENCODING = UTF-8
# title of most generated pages and in a few other places.
# The default value is: My Project.
PROJECT_NAME = "PEARL MSCO"
PROJECT_NAME = "PMSCO"
# The PROJECT_NUMBER tag can be used to enter a project or revision number. This
# could be handy for archiving the generated documentation or if some version
# control system is used.
PROJECT_NUMBER =
PROJECT_NUMBER = $(REVISION)
# Using the PROJECT_BRIEF tag one can provide an optional one line description
# for a project that appears at the top of each page and should give viewer a
# quick idea about the purpose of the project. Keep the description short.
PROJECT_BRIEF = "PEARL multiple scattering calculations and optimizations"
PROJECT_BRIEF = "PEARL multiple scattering calculation and optimization"
# With the PROJECT_LOGO tag one can specify a logo or an icon that is included
# in the documentation. The maximum height of the logo should not exceed 55
@ -228,7 +228,7 @@ TAB_SIZE = 4
# "Side Effects:". You can put \n's in the value part of an alias to insert
# newlines.
ALIASES =
ALIASES = "raise=@exception"
# This tag can be used to specify a number of word-keyword mappings (TCL only).
# A mapping has the form "name=value". For example adding "class=itcl::class"
@ -597,19 +597,19 @@ STRICT_PROTO_MATCHING = NO
# list. This list is created by putting \todo commands in the documentation.
# The default value is: YES.
GENERATE_TODOLIST = YES
GENERATE_TODOLIST = NO
# The GENERATE_TESTLIST tag can be used to enable (YES) or disable (NO) the test
# list. This list is created by putting \test commands in the documentation.
# The default value is: YES.
GENERATE_TESTLIST = YES
GENERATE_TESTLIST = NO
# The GENERATE_BUGLIST tag can be used to enable (YES) or disable (NO) the bug
# list. This list is created by putting \bug commands in the documentation.
# The default value is: YES.
GENERATE_BUGLIST = YES
GENERATE_BUGLIST = NO
# The GENERATE_DEPRECATEDLIST tag can be used to enable (YES) or disable (NO)
# the deprecated list. This list is created by putting \deprecated commands in
@ -761,9 +761,15 @@ WARN_LOGFILE =
INPUT = \
src/introduction.dox \
src/concepts.dox \
src/concepts-tasks.dox \
src/concepts-emitter.dox \
src/concepts-atomscat.dox \
src/installation.dox \
src/project.dox \
src/execution.dox \
src/commandline.dox \
src/runfile.dox \
src/optimizers.dox \
../pmsco \
../projects \
../tests
@ -859,7 +865,7 @@ EXAMPLE_RECURSIVE = NO
# that contain images that are to be included in the documentation (see the
# \image command).
IMAGE_PATH =
IMAGE_PATH = src/images
# The INPUT_FILTER tag can be used to specify a program that doxygen should
# invoke to filter for each input file. Doxygen will invoke the filter program
@ -876,7 +882,7 @@ IMAGE_PATH =
# code is scanned, but not when the output code is generated. If lines are added
# or removed, the anchors will not be placed correctly.
INPUT_FILTER = /usr/bin/doxypy
INPUT_FILTER =
# The FILTER_PATTERNS tag can be used to specify filters on a per file pattern
# basis. Doxygen will compare the file name with each pattern and apply the
@ -885,7 +891,7 @@ INPUT_FILTER = /usr/bin/doxypy
# filters are used. If the FILTER_PATTERNS tag is empty or if none of the
# patterns match the file name, INPUT_FILTER is applied.
FILTER_PATTERNS =
FILTER_PATTERNS = *.py=./py_filter.sh
# If the FILTER_SOURCE_FILES tag is set to YES, the input filter (if set using
# INPUT_FILTER) will also be used to filter the input files that are used for
@ -2079,12 +2085,6 @@ EXTERNAL_GROUPS = YES
EXTERNAL_PAGES = YES
# The PERL_PATH should be the absolute path and name of the perl script
# interpreter (i.e. the result of 'which perl').
# The default file (with absolute path) is: /usr/bin/perl.
PERL_PATH = /usr/bin/perl
#---------------------------------------------------------------------------
# Configuration options related to the dot tool
#---------------------------------------------------------------------------
@ -2098,15 +2098,6 @@ PERL_PATH = /usr/bin/perl
CLASS_DIAGRAMS = YES
# You can define message sequence charts within doxygen comments using the \msc
# command. Doxygen will then run the mscgen tool (see:
# http://www.mcternan.me.uk/mscgen/)) to produce the chart and insert it in the
# documentation. The MSCGEN_PATH tag allows you to specify the directory where
# the mscgen tool resides. If left empty the tool is assumed to be found in the
# default search path.
MSCGEN_PATH =
# You can include diagrams made with dia in doxygen documentation. Doxygen will
# then run dia to produce the diagram and insert it in the documentation. The
# DIA_PATH tag allows you to specify the directory where the dia binary resides.
@ -2328,7 +2319,7 @@ DIAFILE_DIRS =
# generate a warning when it encounters a \startuml command in this case and
# will not generate output for the diagram.
PLANTUML_JAR_PATH =
PLANTUML_JAR_PATH = $(PLANTUML_JAR_PATH)
# When using plantuml, the specified paths are searched for files specified by
# the !include statement in a plantuml block.

View File

@ -2,6 +2,11 @@ SHELL=/bin/sh
# makefile for PMSCO documentation
#
# requirements
#
# 1) doxygen
# 2) /usr/bin/doxypy
# 3) PLANTUML_JAR_PATH environment variable must point to plantUML jar.
.SUFFIXES:
.SUFFIXES: .c .cpp .cxx .exe .f .h .i .o .py .pyf .so .html
@ -11,6 +16,9 @@ DOX=doxygen
DOXOPTS=
LATEX_DIR=latex
REVISION=$(shell git describe --always --tags --dirty --long || echo "unknown, "`date +"%F %T %z"`)
export REVISION
all: docs
docs: doxygen pdf
@ -22,5 +30,6 @@ pdf: doxygen
-$(MAKE) -C $(LATEX_DIR)
clean:
-rm -rf latex/*
-rm -rf html/*
-rm -r latex/*
-rm -r html/*

2
docs/py_filter.sh Executable file
View File

@ -0,0 +1,2 @@
#!/bin/bash
python -m doxypypy.doxypypy -a -c $1

View File

@ -1,7 +1,17 @@
to compile the source code documentation, you need the following packages (naming according to Debian):
To compile the source code documentation in HTML format,
you need the following packages.
They are available from Linux distributions unless noted otherwise.
GNU make
doxygen
doxygen-gui (optional)
doxypy
python
doxypypy (pip)
graphviz
latex (optional)
java JRE
plantuml (download from plantuml.com)
export the location of plantuml.jar in the PLANTUML_JAR_PATH environment variable.
go to the `docs` directory and execute `make html`.
open `docs/html/index.html` in your browser.

View File

@ -11,16 +11,18 @@ it is recommended to adhere to the standard syntax described below.
The basic command line is as follows:
@code{.sh}
[mpiexec -np NPROCESSES] python path-to-project.py [common args] [project args]
[mpiexec -np NPROCESSES] python path/to/pmsco path/to/project.py [common args] [project args]
@endcode
Include the first portion between square brackets if you want to run parallel processes.
Specify the number of processes as the @c -np option.
@c path-to-project.py should be the path and name to your project module.
@c path/to/pmsco is the directory where <code>__main.py__</code> is located.
Do not include the extension <code>.py</code> or a trailing slash.
@c path/to/project.py should be the path and name to your project module.
Common args and project args are described below.
\subsection sec_common_args Common Arguments
\subsection sec_command_common Common Arguments
All common arguments are optional and default to more or less reasonable values if omitted.
They can be added to the command line in arbitrary order.
@ -30,41 +32,54 @@ The following table is ordered by importance.
| Option | Values | Description |
| --- | --- | --- |
| -h , --help | | Display a command line summary and exit. |
| -m , --mode | single (default), grid, swarm | Operation mode. |
| -m , --mode | single (default), grid, swarm, genetic | Operation mode. |
| -d, --data-dir | file system path | Directory path for experimental data files (if required by project). Default: current working directory. |
| -o, --output-file | file system path | Base path and/or name for intermediate and output files. Default: pmsco_data |
| -o, --output-file | file system path | Base path and/or name for intermediate and output files. Default: pmsco0 |
| -t, --time-limit | decimal number | Wall time limit in hours. The optimizers try to finish before the limit. Default: 24.0. |
| -k, --keep-files | list of file categories | Output file categories to keep after the calculation. Multiple values can be specified and must be separated by spaces. By default, cluster and model (simulated data) of a limited number of best models are kept. See @ref sec_file_categories below. |
| --log-level | DEBUG, INFO, WARNING (default), ERROR, CRITICAL | Minimum level of messages that should be added to the log. |
| --log-file | file system path | Name of the main log file. Under MPI, the rank of the process is inserted before the extension. Default: output-file + log, or pmsco.log. |
| --log-disable | | Disable logging. By default, logging is on. |
| --pop-size | integer | Population size (number of particles) in swarm optimization mode. The default value is the greater of 4 or two times the number of calculation processes. |
| -c, --code | edac (default) | Scattering code. At the moment, only edac is supported. |
| --pop-size | integer | Population size (number of particles) in swarm and genetic optimization mode. The default value is the greater of 4 or the number of parallel calculation processes. |
| --seed-file | file system path | Name of the population seed file. Population data of previous optimizations can be used to seed a new optimization. The file must have the same structure as the .pop or .dat files. See @ref pmsco.project.Project.seed_file. |
| --table-file | file system path | Name of the model table file in table scan mode. |
\subsubsection sec_file_categories File Categories
\subsubsection sec_command_files File Categories
The following category names can be used with the @c --keep-files option.
The following category names can be used with the `--keep-files` option.
Multiple names can be specified and must be separated by spaces.
| Category | Description | Default Action |
| --- | --- | --- |
| all | shortcut to include all categories | |
| input | raw input files for calculator, including cluster and phase files in custom format | delete |
| output | raw output files from calculator | delete |
| phase | phase files in portable format for report | delete |
| atomic | atomic scattering and emission files in portable format | delete |
| cluster | cluster files in portable XYZ format for report | keep |
| debug | debug files | delete |
| model | output files in ETPAI format: complete simulation (a_-1_-1_-1_-1) | keep |
| scan | output files in ETPAI format: scan (a_b_-1_-1_-1) | delete |
| symmetry | output files in ETPAI format: symmetry (a_b_c_-1_-1) | delete |
| scan | output files in ETPAI format: scan (a_b_-1_-1_-1) | keep |
| domain | output files in ETPAI format: domain (a_b_c_-1_-1) | delete |
| emitter | output files in ETPAI format: emitter (a_b_c_d_-1) | delete |
| region | output files in ETPAI format: region (a_b_c_d_e) | delete |
| report| final report of results | keep |
| report| final report of results | keep always |
| population | final state of particle population | keep |
| rfac | files related to models which give bad r-factors | delete |
| rfac | files related to models which give bad r-factors, see warning below | delete |
\note
The `report` category is always kept and cannot be turned off.
The `model` category is always kept in single calculation mode.
\warning
If you want to specify `rfac` with the `--keep-files` option,
you have to add the file categories that you want to keep, e.g.,
`--keep-files rfac cluster model scan population`
(to return the default categories for all calculated models).
Do not specify `rfac` alone as this will effectively not return any file.
\subsection sec_project_args Project Arguments
\subsection sec_command_project_args Project Arguments
The following table lists a few recommended options that are handled by the project code.
Project options that are not listed here should use the long form to avoid conflicts in future versions.
@ -75,7 +90,7 @@ Project options that are not listed here should use the long form to avoid confl
| -s, --scans | project-dependent | Nick names of scans to use in calculation. The nick name selects the experimental data file and the initial state of the photoelectron. Multiple values can be specified and must be separated by spaces. |
\subsection sec_scanfile Experimental Scan Files
\subsection sec_command_scanfile Experimental Scan Files
The recommended way of specifying experimental scan files is using nick names (dictionary keys) and the @c --scans option.
A dictionary in the module code defines the corresponding file name, chemical species of the emitter and initial state of the photoelectron.
@ -84,36 +99,11 @@ This way, the file names and photoelectron parameters are versioned with the cod
whereas command line arguments may easily get forgotten in the records.
\subsection sec_project_example Example Argument Handling
\subsection sec_command_example Argument Handling
An example for handling the command line in a project module can be found in the twoatom.py demo project.
The following code snippet shows how the common and project arguments are separated and handled.
@code{.py}
def main():
# have the pmsco module parse the common arguments.
args, unknown_args = pmsco.pmsco.parse_cli()
# pass any arguments not handled by pmsco
# to the project-defined parse_project_args function.
# unknown_args can be passed to argparse.ArgumentParser.parse_args().
if unknown_args:
project_args = parse_project_args(unknown_args)
else:
project_args = None
# create the project object
project = create_project()
# apply the common arguments on the project
pmsco.pmsco.set_common_args(project, args)
# apply the specific arguments on the project
set_project_args(project, project_args)
# run the project
pmsco.pmsco.run_project(project)
@endcode
To handle command line arguments in a project module,
the module must define a <code>parse_project_args</code> and a <code>set_project_args</code> function.
An example can be found in the twoatom.py demo project.
\section sec_slurm Slurm Job Submission
@ -122,23 +112,24 @@ The command line of the Slurm job submission script for the Ra cluster at PSI is
This script is specific to the configuration of the Ra cluster but may be adapted to other Slurm-based queues.
@code{.sh}
qpmsco.sh [NOSUB] JOBNAME NODES TASKS_PER_NODE WALLTIME:HOURS PROJECT MODE [ARGS [ARGS [...]]]
qpmsco.sh [NOSUB] DESTDIR JOBNAME NODES TASKS_PER_NODE WALLTIME:HOURS PROJECT MODE [ARGS [ARGS [...]]]
@endcode
Here, the first few arguments are positional and their order must be strictly adhered to.
After the positional arguments, optional arguments of the PMSCO project command line can be added in arbitrary order.
If you execute the script without arguments, it displays a short summary.
The job script is written to @c ~/jobs/\$JOBNAME.
The job script is written to @c $DESTDIR/$JOBNAME which is also the destination of calculation output.
| Argument | Values | Description |
| --- | --- | --- |
| NOSUB (optional) | NOSUB or omitted | If NOSUB is present as the first argument, create the job script but do not submit it to the queue. Otherwise, submit the job script. |
| DESTDIR | file system path | destination directory. must exist. a sub-dir $JOBNAME is created. |
| JOBNAME | text | Name of job. Use only alphanumeric characters, no spaces. |
| NODES | integer | Number of computing nodes. (1 node = 24 or 32 processors). Do not specify more than 2. |
| TASKS_PER_NODE | 1...24, or 32 | Number of processes per node. 24 or 32 for full-node allocation. 1...23 for shared node allocation. |
| WALLTIME:HOURS | integer | Requested wall time. 1...24 for day partition, 24...192 for week partition, 1...192 for shared partition. This value is also passed on to PMSCO as the @c --time-limit argument. |
| PROJECT | file system path | Python module (file path) that declares the project and starts the calculation. |
| MODE | single, swarm, grid | PMSCO operation mode. This value is passed on to PMSCO as the @c --mode argument. |
| MODE | single, swarm, grid, genetic | PMSCO operation mode. This value is passed on to PMSCO as the @c --mode argument. |
| ARGS (optional) | | Any further arguments are passed on verbatim to PMSCO. You don't need to specify the mode and time limit here. |
*/
*/

View File

@ -0,0 +1,114 @@
/*! @page pag_concepts_atomscat Atomic scattering
\section sec_atomscat Atomic scattering
\subsection sec_atomscat_intro Introduction
The process of calculating atomic scattering factors (phase shifts) can be customized in several ways.
1. Internal processing.
Some multiple scattering programs, like EDAC, contain a built-in facility to calculate phase shifts.
This is the most simple and default behaviour.
2. Automatic calculation in a separate program.
PMSCO has an interface to run the PHAGEN program from
the [MsSpec-1.0 package](https://ipr.univ-rennes1.fr/msspec) to calculate scattering factors.
Note that the PHAGEN code is not included in the public distribution of PMSCO.
3. Manual calculation.
Scattering files created manually using an external program can be used by providing the file names.
The files must have the format required by the multiple scattering code,
and they must be linked to the corresponding atoms of the cluster.
In the case of automatic calculation, the project code can optionally hook into the process
and modify clusters before and after scattering factors are calculated.
For instance, it may provide an extended cluster in order to reduce boundary effects,
or it may modify the assignment of scattering files to cluster atoms
so that the scattering factors of selected atom classes are used
(cf. section \ref sec_atomscat_atomclass).
\subsection sec_atomscat_usage Usage
\subsubsection sec_atomscat_internal Internal processing
This is the default behaviour selected in the inherited pmsco.project.Project class.
Make sure not to override the `atomic_scattering_factory` attribute.
Its default value is pmsco.calculators.calculator.InternalAtomicCalculator.
\subsubsection sec_atomscat_external Automatic calculation in a separate program
To select the atomic scattering calculator,
assign its interface class to the project's `atomic_scattering_factory` attribute.
For example, to use PHAGEN, add the following code to your project's `__init__` constructor:
@code{.py}
from pmsco.calculators.phagen import PhagenCalculator
self.atomic_scattering_factory = PhagenCalculator
@endcode
\subsubsection sec_atomscat_manual Manual calculation
If you want to keep the scattering factors constant during an optimization,
you should run PMSCO in _single_ mode and provide the model parameters and cluster
that will return the desired scattering files.
In the `create_params` method of your project,
you should then set the `phase_files` attribute,
which is a dictionary that maps atom classes to the names of the scattering files.
Unless you set specific values in the cluster object, the atom class defaults to the element number.
The file names should include a path relative to the working directory.
\subsection sec_atomscat_implement Implementation
\subsubsection sec_atomscat_atomclass Atom classes
Atomic scattering programs classify atoms based on chemical element, charge state and symmetry of the local environment.
This means that two atoms of the same chemical element may have different scattering factors.
For example, if you have EDAC output the cluster after calculation of the muffin tin potential,
you will find that the chemical element number has been replaced by an arbitrary integer.
By default, PMSCO will do the linking of atom classes and scattering files transparently.
However, if you want to reduce the number of atom classes,
or if you have the scattering factors calculated on a reference cluster,
you will have to provide project code to do the assignment.
This is described further below.
\subsubsection sec_atomscat_calculator Atomic scattering calculator
The project selects the atomic scattering calculation mode by specifying its `atomic_scattering_factory` attributed.
This is the name of a class that inherits from @ref pmsco.calculators.calculator.AtomicCalculator.
The following calculators are currently implemented:
| Class | Description |
| --- | --- |
| pmsco.calculators.calculator.InternalAtomicCalculator | Calculate the atomic scattering factors in the multiple-scattering program. |
| pmsco.calculators.phagen.PhagenCalculator | Calculate the atomic scattering factors in the PHAGEN program. |
An atomic calculator class essentially defines a `run` method that operates on a cluster and scattering parameters object.
It generates the necessary scattering files, updates the cluster with the new atom classes
and updates the parameters with the file names of the scattering files.
Note that the scattering files have to be in the correct format for the multiple scattering calculator.
\subsubsection sec_atomscat_hooks Project hooks
Before and after calculation of the scattering factors,
the project's `before_atomic_scattering` and `after_atomic_scattering` methods are called
with the cluster and input parameters.
The _before_ method provides the cluster to be used for atomic scattering calculations.
It may,
1. just return the original cluster,
2. modify the provided cluster to include additional atoms or modify the charge state of the emitter,
3. create a completely different cluster,
4. return None to suppress the atomic scattering calculation.
The method is called once at the beginning of the PMSCO job with model -1,
where it may return the global reference cluster.
Later on it is called once for each calculation task with the specific task index.
Similarly, the _after_ method collects the results and updates the `phase_files` dictionary of the input parameters.
It is free to consolidate atom classes and remove unwanted atoms.
However, it must make sure that for each atom class in the cluster,
there is a corresponding link to a scattering file.
*/

View File

@ -0,0 +1,185 @@
/*! @page pag_concepts_emitter Emitter configurations
\section sec_emitters Emitter configurations
\subsection sec_emit_intro Introduction
Since emitters contribute incoherently to the diffraction pattern,
it should make no difference how the emitters are grouped and calculated.
This fact can be used to distribute a calculation over multiple parallel processes
if each process calculates the diffraction pattern coming from one particular emitter atom.
In effect, some calculation codes are implemented for a single emitter per calculation.
With PMSCO, it is easy to distribute the emitters over parallel processes.
The project just declares the number of emitters and returns one specific cluster per emitter.
In the simplest case, this means that the emitter attribute of the cluster atoms is set differently,
while the atomic coordinates are the same for all clusters generated.
PMSCO takes care of dispatching the clusters to multiple calculation processes
depending on the number of allocated MPI processes
as well as summing up the resulting diffraction patterns.
In addition, the emitter framework also supports that clusters are tailored to a specific emitter configuration.
Suppose that the unit cell contains a large number of inequivalent emitters.
If all emitters had to be included in a single calculation,
the cluster would grow very large and the calculation would include many long scattering paths
that effectively did not contribute intensity to the final result.
Splitting a large cluster into small ones built locally around one emitter
can provide a significant performance gain in complex systems.
Note that the emitter framework does not require that an emitter _configuration_ contains only one emitter _atom_.
It is up to the project to define how many emitter configurations there are and what they encompass.
This should, however, normally not be necessary.
To avoid confusion, it is recommended to declare exactly one emitter atom per configuration.
\subsection sec_emit_implement Implementation
There are several implementation routes with varying complexity.
Which route to take can depend on the complexity of the system and/or the programming skills of the user.
The following class diagram illustrates the classes and packages involved in cluster generation.
@startuml "class diagram for cluster generation"
package pmsco {
class Project {
cluster_generator
export_cluster()
}
abstract class ClusterGenerator {
project
{abstract} count_emitters()
{abstract} create_cluster()
}
class LegacyClusterGenerator {
project
count_emitters()
create_cluster()
}
}
package "user project" {
class UserClusterGenerator {
project
count_emitters()
create_cluster()
}
note bottom : for complex cluster
class UserProject {
count_emitters()
create_cluster()
}
note bottom : for simple cluster
}
Project <|-- UserProject
ClusterGenerator <|-- LegacyClusterGenerator
ClusterGenerator <|-- UserClusterGenerator
Project *-- ClusterGenerator
UserProject .> LegacyClusterGenerator
UserProject .> UserClusterGenerator
@enduml
In general, the cluster is generated by calls to the project's cluster_generator object.
This can be either a custom generator class derived from pmsco.cluster.ClusterGenerator
or the default pmsco.cluster.LegacyClusterGenerator which calls the UserProject.
For simple clusters, it may be sufficient to implement the cluster directly in the user project class
(UserProject in the diagram).
For more complex systems, it is recommended to implement a custom cluster generator class
(UserClusterGenerator).
\subsubsection sec_emit_implement_legacy Static cluster implemented in project methods
This is the most simple route as it requires the implementation of one or two methods of the user project class.
It can be used for single-emitter and multi-emitter problems.
This implementation is active while a pmsco.cluster.LegacyClusterGenerator
is assigned to the project's cluster_generator attribute.
1. Implement a count_emitters method in your project class
if the project uses more than one emitter configurations.
It must have same method contract as pmsco.cluster.ClusterGenerator.count_emitters.
Specifically, it must return the number of emitter configurations of a given model, scan and domain.
If there is only one configuration, the method does not need to be implemented.
2. Implement a create_cluster method in your project class.
It must have same method contract as pmsco.cluster.ClusterGenerator.create_cluster.
Specifically, it must return a cluster.Cluster object for the given model, scan, domain and emitter configuration.
The emitter atoms must be marked according to the emitter configuration specified by the index argument.
Note that, depending on the index.emit argument, all emitter atoms must be marked
or only the ones of the corresponding emitter configuration.
3. (Optionally) override the pmsco.project.Project.combine_emitters method
if the emitters should be added with non-uniform weights.
Although it's possible to produce emitter-dependent clusters using this approach,
this is usually not recommended.
Rather, the generator approach described below should be followed in this case.
\subsubsection sec_emit_implement_generator Static cluster implemented by generator class
The preferred way of creating clusters is to implement a _generator_ class
because it is the most scalable way from simple to complex systems.
In addition, one cluster generator class can be quickly exchanged for another
if there are multiple possibilities.
1. Implement a cluster generator class which inherits from pmsco.cluster.ClusterGenerator
in your project module.
2. Implement the create_cluster and count_emitters methods of the generator.
The method contracts are the same as the ones described in the previous paragraph,
just in the context of a separate class.
3. Initialize an instance of the generator and assign it to the project.cluster_generator attribute
in the initialization of your project.
\subsubsection sec_emit_implement_local Local clusters implemented by generator class
The basic method contract outlined in the previous paragraph is equally applicable to the case
where a local cluster is generated for each emitter configuration.
Again, the generator class with the two methods (count_emitters and create_cluster) is the minimum requirement.
However, for ease of code maintenance and/or for improved performance of large clusters,
some internal structure may be helpful.
Suppose that the system consists of a large supercell containing many emitters
and that a small cluster shall be built for each emitter configuration.
During the calculations, the generator will receive several calls to the count_emitters and create_cluster methods.
Every time the model and index are the same, the functions must return the same result.
Thus, most importantly, the implementation must make sure that the results are fully deterministic.
Second, depending on the complexity, it could be more efficient to cache a cluster for later use.
One way to reduce the complexity is to introduce a _master cluster_
from which the emitter configurations and individual clusters are derived.
1. Implement a master_cluster method with the same arguments and result types as create_cluster.
The method returns a full cluster of the supercell and its neighbouring cells.
All inequivalent emitters are marked (which determines the number of emitter configurations).
2. Decorate the master_cluster with pmsco.dispatch.CachedCalculationMethod.
This pre-defined decorator transparently caches the cluster
so that subsequent calls with the same arguments do not re-create the cluster but return the cached one.
3. The count_emitters method can simply return the emitter count of the master cluster.
4. The create_cluster method calls master_cluster() and extracts the region
corresponding to the requested emitter configuration.
\subsection sec_emit_report Reporting
The pmsco.project.Project class implements a method that saves a cluster to two XYZ files,
one containing the coordinates of all atoms
and one containing only the coordinates of the emitters.
The method is called for each cluster that is passed to the calculator, i.e., each emitter index.
You may override the method in your project to alter the reporting.
*/

View File

@ -0,0 +1,3 @@
/*! @page pag_concepts_model Model
*/

View File

@ -0,0 +1,3 @@
/*! @page pag_concepts_region Region
*/

View File

@ -0,0 +1,31 @@
/*! @page pag_concepts_scan Scans
\section sec_scanning Scanning
PMSCO with EDAC currently supports the following scan axes.
- kinetic energy E
- polar angle theta T
- azimuthal angle phi P
- analyser angle alpha A
The following combinations of these scan axes are allowed (see pmsco.data.SCANTYPES).
- E
- E-T
- E-A
- T-P (hemispherical or hologram scan)
@attention The T and A axes cannot be combined.
If a scan of one of them is specified, the other is assumed to be fixed at zero!
This assumption may change in the future,
so it is best to explicitly set the fixed angle to zero in the scan file.
@remark According to the measurement geometry at PEARL,
alpha scans are implemented in EDAC as theta scans at phi = 90 in fixed cluster mode.
The switch to fixed cluster mode is made by PMSCO internally,
no change of angles or other parameters is necessary in the scan or project files
besides filling the alpha instead of the theta column.
*/

View File

@ -0,0 +1,32 @@
/*! @page pag_concepts_domain Domain
\section sec_domain Domain Averaging
A _domain_ under PMSCO is a discrete variant of a set of calculation parameters (including the atomic cluster)
that is derived from the same set of model parameters
and that contributes incoherently to the measured diffraction pattern.
A domain may be represented by special domain parameters that are not subject to optimization.
For instance, a real sample may have rotational domains that are not present in the cluster,
changing the symmetry from three-fold to six-fold.
Or, an adsorbate may be present in a number of different lateral configurations on the substrate.
In the first case, it may be sufficient to fold calculated data in the proper way to generate the same symmetry as in the measurement.
In the latter case, it may be necessary to execute a scattering calculation for each possible orientation or a representative number of possible orientations.
PMSCO provides the basic framework to spawn multiple calculations according to the number of domains (cf. \ref sec_tasks).
The actual data reduction from multiple domain to one measurement needs to be implemented on the project level.
This section explains the necessary steps.
1. Your project needs to populate the pmsco.project.Project.domains list.
For each domain, add a dictionary of domain parameters, e.g. <code>{'angle_azi': 15.0}</code>.
At least one domain must be declared in a project, otherwise no calculation is executed.
2. The project may use the domain index of a task to build the cluster and parameter file as necessary.
The pmsco.project.Project.create_cluster and pmsco.project.Project.create_params methods receive the index of the particular domain in addition to the model parameters.
3. The project combines the results of the calculations for the various domains into one dataset that can be compared to the measurement.
The default method implemented in pmsco.project.Project just adds up all calculations with customizable weight.
It uses the special model parameters `wdom1`, `wdom2`, ... (if defined, default 1) to weight each domain.
If you need more control, override the pmsco.project.Project.combine_domains method and implement your own algorithm.
*/

306
docs/src/concepts-tasks.dox Normal file
View File

@ -0,0 +1,306 @@
/*! @page pag_concepts_tasks Task concept
\section sec_tasks Calculation tasks
A _calculation task_ defines a concrete set of model parameters, atomic coordinates, emitter configuration,
experimental reference and meta-data (such as file names)
that completely defines how to produce the input data for the scattering program (the _calculator_).
For each task, the calculator is executed once and produces one result dataset.
In a typical optimization project, however, the calculator is executed multiple times for various reasons
mandated by the project but also efficient calculations in a multi-process environment:
1. The calculation must be repeated under variation of parameters.
A concrete set of parameters is called @ref sec_task_model.
2. The sample was measured multiple times or under different conditions (initial states, photon energy, emission angle).
Each contiguous measured dataset is called a @ref sec_task_scan.
3. The measurement averages over multiple inequivalent domains, cf. @ref sec_task_domain.
4. The measurement includes multiple geometrically inequivalent emitters, cf. @ref sec_task_emitter.
5. The calculation should be distributed over multiple processes that run in parallel to reduce the wall time, cf. @ref sec_task_region.
In PMSCO, these aspects are modelled as attributes of a calculation task
as shown schematically in the following diagram.
@startuml "attributes of a calculation task"
class CalculationTask {
model
scan
domain
emitter
region
..
files
}
class Model {
index
..
dlat
dAS
dS1S2
V0
Zsurf
Texp
rmax
}
class Scan {
index
..
filename
mode
initial_state
energies
thetas
phis
alphas
}
class Domain {
index
..
rotation
registry
}
class Emitter {
index
}
class Region {
index
..
range
}
CalculationTask *-- Model
CalculationTask *-- Scan
CalculationTask *-- Domain
CalculationTask *-- Emitter
CalculationTask *-- Region
class Project {
scans
domains
model_handler
cluster_generator
}
class ClusterGenerator {
count_emitters()
create_cluster()
}
class ModelHandler {
create_tasks()
add_result()
}
Model ..> ModelHandler
Scan ..> Project
Domain ..> Project
Emitter ..> ClusterGenerator
Region ..> Project
Project *-left- ModelHandler
Project *- ClusterGenerator
hide empty members
@enduml
Although the attributes may have quite different types (as detailed below),
each instance is also given a unique (per attribute) integer index,
where -1 means that the attribute is undefined.
The indices of the five attributes together (pmsco.dispatch.CalcID tuple)
serve internally to identify a task and the data belonging it.
The identifier appears, for instance, in input and output file names.
Normally, data files are deleted after the calculation, and only a few top-level files are kept
(can be overridden at the command line or in the project code).
At the top level, only the model ID is set, the other ones are undefined (-1).
\subsection sec_task_model Model
The _model_ attribute is a dictionary of continuously variable parameters of the system such as lattice constants, relaxation constants, rotation angles, etc.
It may also define non-structural or non-physical parameters such as temperature, inner potential or cluster radius.
The dictionary contains key-value pairs where the keys are up to the user project (the figure shows some examples).
The values are floating-point numbers that are chosen by the model handler within the domain specified by the user project.
Models are generated by the chosen optimizer according to a particular algorithm or, in single mode, directly by the project.
Each specific instance of model parameters is given a unique index that allows to identify related input and output files.
Model parameters are reported with the corresponding R-factors during the optimization process.
\subsection sec_task_scan Scan
The _scan_ attribute is an index into the list of scans defined by the user project.
Each scan refers to one experimental data file and, thus, defines the initial and final states of the photoelectron.
PMSCO runs a separate calculation for each scan file and compares the combined results to the experimental data.
This is sometimes called a _global fit_.
\subsection sec_task_domain Domain
A _domain_ is a discrete variant of a set of calculation parameters (including the atomic cluster)
that is independent of the _model_ and contributes incoherently to the measured diffraction pattern.
For instance, for a system that includes two inequivalent structural domains,
two separate clusters have to be generated and calculated for each model.
The domain parameter is not subject to optimization.
However, if the branching ratio is unknown a priori, a model parameter can be introduced
to control the relative contribution of a particular domain to the diffraction pattern.
The basic @ref pmsco.project.Project.combine_domains method reads the special model parameters `wdom1`, `wdom2`, etc. to weight the individual domains.
A domain is identified by its index which is an index into the project's domains table (pmsco.project.Project.domains).
It is up to the user project to give a physical description of the domain, e.g. a rotation angle,
by assigning a meaningful value (e.g. a dictionary with key-value pairs) to the domains table.
The cluster generator can then read the value from the table rather than from constants in the code.
The figure shows two examples of domain parameters.
The corresponding domains table could be set up like this:
@code{.py}
project.add_domain({'rotation': 0.0, 'registry': 0.0})
project.add_domain({'rotation': 30.0, 'registry': 0.0})
@endcode
\subsection sec_task_emitter Emitter
The _emitter_ component of the calculation task selects a specific emitter configuration of the cluster generator.
This is merely an index whose interpretation is up to the cluster generator.
The default emitter handler enumerates the emitter index from 1 to the emitter count reported by the cluster generator.
The emitter count and list of emitters may depend on model, scan and domain.
The cluster generator can tailor a cluster to the given model, scan, domain and emitter index.
For example, in a large unit cell with many inequivalent emitters,
the generator might return a small sub-cluster around the actual emitter for better calculation performance
since the distant atoms of the unit cell do not contribute to the diffraction pattern.
Emitter branching must be requested specifically by using a particular pattern in the code.
By default, it is disabled, which allows the cluster code to be written in a slightly easier way.
\subsection sec_task_region Region
The _region_ handler may split a scan region into several smaller chunks
so that the tasks can be distributed to multiple processes.
Chunking by energy regions is enabled automatically if the project contains an energy scan of at least 10 points
and the project is run in multiple processes.
It can be disabled by the user project.
\section sec_task_handler Task handlers
The previous section described the five important attributes of a calculation task.
These attributes span a five-dimensional index space
where each point maps to one task and, consequently, one calculation and one result dataset.
To populate the index space, however, calculation tasks are more adequately arranged in a tree-like hierarchy with five levels.
The code that defines attributes and processes results can then be separated into _handlers_.
Each level calls for a particular functional contract of the handler.
According to object-oriented principles the contracts at the five levels are defined by abstract base classes
which can be sub-classed for more specific behaviour.
For instance, the class of the model handler is chosen based on the execution mode (single, grid, swarm, etc.).
Though it is possible for a project to define its own handlers,
the PMSCO core declares handlers that should cover most calculation scenarios.
The following diagram shows the tree of calculation tasks and how handlers act on the task objects to populate the task attributes.
At the top of the tree, an empty task object (all attributes undefined) is fed into the model level handler which takes care of the model attribute.
The model handler generates a number of sub-tasks, one for each set of model parameters.
Each of these (incompletely defined) tasks is then passed to the next handler, and so on.
@startuml "calculation task hierarchy and task handler stack"
object "Root: CalculationTask" as Root {
index = (-1,-1,-1,-1,-1)
}
note right: all attributes undefined
object "Model: CalculationTask" as Model {
index = (i,-1,-1,-1,-1)
model
}
note right: model is defined\nother attributes undefined
object ModelHandler
object "Scan: CalculationTask" as Scan {
index = (i,j,-1,-1,-1)
model
scan
}
object ScanHandler
object "Domain: CalculationTask" as Domain {
index = (i,j,k,-1,-1)
model
scan
domain
}
object "DomainHandler" as DomainHandler
object "Emitter: CalculationTask" as Emitter {
index = (i,j,k,l,-1)
model
scan
domain
emitter
}
object EmitterHandler
object "Region: CalculationTask" as Region {
index = (i,j,k,l,m)
model
scan
domain
emitter
region
}
note right: all attributes well-defined
object RegionHandler
Root "1" o.. "1..*" Model
Model "1" o.. "1..*" Scan
Scan "1" o.. "1..*" Domain
Domain "1" o.. "1..*" Emitter
Emitter "1" o.. "1..*" Region
(Root, Model) .. ModelHandler
(Model, Scan) .. ScanHandler
(Scan, Domain) .. DomainHandler
(Domain, Emitter) .. EmitterHandler
(Emitter, Region) .. RegionHandler
@enduml
At the end of the stack, the tasks are fully specified and are passed to the calculation queue.
They are dispatched to the available processes of the MPI environment in which PMSCO was started,
which allows calculations to be run in parallel.
Only now that the model is broken down into multiple, fully specified tasks,
the cluster and input files are generated, and the calculation program is started.
At the end of a calculation, the output files are associated with their original task objects,
and the tasks are passed back through the task handler stack.
In this phase, each level joins the datasets from the sub-tasks to the data requested by the parent task.
For example, at the lowest level, one result file is present for each region.
The region handler gathers all files that correspond to the same parent task
(i.e. have the same emitter, domain, scan and model attributes),
joins them to one file which includes all regions,
links the file to the parent task and passes the result to the next higher level.
On the top level, the model handler compares the result to the experimental data.
Depending on the operation mode, it refines the model parameters and issues new tasks by passing them down the stack.
When the optimization is finished (according to a set of defined criteria),
The model handler returns the root task to the caller, which causes PMSCO to exit.
*/

View File

@ -1,153 +1,83 @@
/*! @page pag_concepts Design Concepts
\section sec_tasks Tasks
/*! @page pag_concepts Design
In an optimization project, a number of optimizable, high-level parameters generated by the optimization algorithm
must be mapped to the input parameters and atomic coordinates before the calculation program is executed.
Possibly, the calculation program is executed multiple times for inequivalent domains, emitters or scan geometries.
After the calculation, the output is collected, compared to the experimental data, and the model is refined.
In PMSCO, the optimization is broken down into a set of _tasks_ and assigned to a stack of task _handlers_ according to the following figure.
Each invocation of the scattering program (EDAC) runs a specific task,
i.e. a calculation for a set of specific parameters, a fully-qualified cluster of atoms, and a specific angle and/or energy scan.
\section sec_components Components
\dotfile tasks.dot "PMSCO task stack"
The code for a PMSCO job consists of the following components.
At the root, the _model handler_ proposes models that need to be calculated according to the operation mode specified at the command line.
A _model_ is the minimum set of variable parameters in the context of a custom project.
Other parameters that will not vary under optimization are set directly by the project code.
The model handler may generate models based on a fixed scheme, e.g. on a grid, or based on R-factors of previous results.
@startuml "top-level components of scattering and optimization code"
For each model, one task is passed to the task handling chain, starting with the scan handler.
The _scan handler_ generates sub-tasks for each experimental scan dataset.
This way, the model can be optimized for multiple experimental scans in the same run (see Sec. \ref sec_scanning).
skinparam componentStyle uml2
The _symmetry handler_ generates sub-tasks based on the number of symmetries contained in the experimental data (see Sec. \ref sec_symmetry).
For instance, for a system that includes two inequivalent structural domains, two separate calculations have to be run for each model.
The symmetry handler is implemented on the project level and may be customized for a specific system.
component "PMSCO" as pmsco
component "project" as project
component "scattering code\n(calculator)" as calculator
The _emitter handler_ generates a sub-task for each inequivalent emitter atom
so that the tasks can be distributed to multiple processes (see Sec. \ref sec_emitters).
In a single-process environment, all emitters are calculated in one task.
interface "command line" as cli
interface "experimental data" as data
interface "results" as results
interface "output files" as output
The _region handler_ may split a scan region into several smaller chunks
so that the tasks can be distributed to multiple processes.
With EDAC, only energy scans can benefit from chunking
since it always calculates the full angular distribution.
This layer has to be enabled specifically in the project module.
It is disabled by default.
cli --> pmsco
data -> project
pmsco ..> project
pmsco ..> calculator
calculator -> output
pmsco -> results
At the end of the stack, the tasks are fully specified and are passed to the calculation queue.
They are dispatched to the available processes of the MPI environment in which PMSCO was started,
which allows calculations to be run in parallel.
Only now that the model is broken down into multiple tasks,
the cluster and input files are generated, and the calculation program is started.
@enduml
At the end of a calculation, the output is passed back through the task handler stack.
In this phase, each level gathers the datasets from the sub-tasks to the data requested by the parent task
and passes the result to the next higher level.
The main entry point is the _PMSCO_ module.
It implements a task loop to carry out the structural optimization
and provides an interface between calculation programs and project-specific code.
It also provides common utility classes and functions for the handling project data.
On the top level, the calculation is compared to the experimental data.
Depending on the operation mode, the model parameters are refined, and new tasks issued.
If the optimization is finished according to a set of defined criteria, PMSCO exits.
The _project_ consists of program code and parameters
that are specific to a particular experiment and calculation job.
The project code reads experimental data, defines the parameter dictionary of the model,
and contains code to generate the cluster, parameter and phase files for the scattering code.
The project is also the main entry point of process execution.
As an implentation detail, each task is given a unique _identifier_ consisting of five integer numbers
which correspond to the five levels model, scan, symmetry, emitter and region.
The identifier appears in the file names in the communication with the scattering program.
Normally, the data files are deleted after the calculation, and only a few top-level files are kept
(can be overridden at the command line or in the project code).
At the top level, only the model ID is set, the other ones are undefined (-1).
The _scattering code_ on the other hand is a static calculation engine
which accepts detailed input files
(parameters, atomic coordinates, emitter specification, scattering phases)
and outputs an intensity distribution of photoelectrons versus energy and/or angle.
\section sec_symmetry Symmetry and Domain Averaging
\section sec_control_flow Control flow
A _symmetry_ under PMSCO is a discrete variant of a set of calculation parameters (including the atomic cluster)
that is derived from the same set of model parameters
and that contributes incoherently to the measured diffraction pattern.
A symmetry may be represented by a special symmetry parameter which is not subject to optimization.
The basic control flow of a optimization job is depicted schematically in the following figure.
For instance, a real sample may have additional rotational domains that are not present in the cluster,
increasing the symmetry from three-fold to six-fold.
Or, an adsorbate may be present in a number of different lateral configurations on the substrate.
In the first case, it may be sufficient to fold calculated data in the proper way to generate the same symmetry as in the measurement.
In the latter case, it may be necessary to execute a scattering calculation for each possible orientation or a representative number of possible orientations.
@startuml "top-level activity diagram"
PMSCO provides the basic framework to spawn multiple calculations according to the number of symmetries (cf. \ref sec_tasks).
The actual data reduction from multiple symmetries to one measurement needs to be implemented on the project level.
This section explains the necessary steps.
start
:initialize;
:import experimental data;
repeat
:define tasks;
fork
:calculate\ntask 1;
fork again
:calculate\ntask N;
end fork
:evaluate results;
repeat while
-> [finished];
:report results;
1. Your project needs to populate the pmsco.project.Project.symmetries list.
For each symmetry, add a dictionary of symmetry parameters, e.g. <code>{'angle_azi': 15.0}</code>.
There must be at least one symmetry in a project, otherwise no calculation is executed.
stop
2. The project may apply the symmetry of a task to the cluster and parameter file if necessary.
The pmsco.project.Project.create_cluster and pmsco.project.Project.create_params methods receive the index of the particular symmetry in addition to the model parameters.
@enduml
3. The project combines the results of the calculations for the various symmetries into one dataset that can be compared to the measurement.
The default method implemented in pmsco.project.Project just adds up all calculations with equal weight.
If you need more control, you need to override the pmsco.project.Project.combine_symmetries method and implement your own algorithm.
After importing experimental data and setting up the model dictionary and job parameters,
the calculation tasks are defined depending on the execution mode and system setup.
Each task consists of a specific set of model, experimental and calculation parameters
that describe an independent calculation step,
while several steps may be required to produce a dataset that can be compared to the experimental data.
The idea is that tasks can be defined quickly
and that the time-consuming operations are dispatched to slave processes which can run in parallel.
\section sec_scanning Scanning
PMSCO with EDAC currently supports the following scan axes.
- kinetic energy E
- polar angle theta T
- azimuthal angle phi P
- analyser angle alpha A
The following combinations of these scan axes are allowed (see pmsco.data.SCANTYPES).
- E
- E-T
- E-A
- T-P (hemispherical or hologram scan)
@attention The T and A axes cannot be combined.
If a scan of one of them is specified, the other is assumed to be fixed at zero!
This assumption may change in the future,
so it is best to explicitly set the fixed angle to zero in the scan file.
@remark According to the measurement geometry at PEARL,
alpha scans are implemented in EDAC as theta scans at phi = 90 in fixed cluster mode.
The switch to fixed cluster mode is made by PMSCO internally,
no change of angles or other parameters is necessary in the scan or project files
besides filling the alpha instead of the theta column.
\section sec_emitters Emitter Configurations
Since emitters contribute incoherently to the diffraction pattern,
it should make no difference how the emitters are grouped and calculated.
EDAC allows to specify multiple emitters in one calculation.
However, running EDAC multiple times for a single-emitter configuration or simply summing up the results
gives the same final diffraction pattern with no significant difference of used CPU time.
It is, thus, easy to distribute the emitters over parallel processes in a multi-process environment.
PMSCO can handle this transparently with a minimal effort.
Within the same framework, PMSCO also supports that clusters are tailored to a specific emitter configuration.
Suppose that the unit cell contains a large number of inequivalent emitters.
If all emitters had to be included in a single calculation,
the cluster would grow very large and the calculation would take a long time
because it would include many long scattering paths
that effectively do not contribute intensity to the final result.
Using single-emitters, a cluster can be built locally around the emitter and kept to a reasonable size.
Even when using this feature, PMSCO does not require that each configuration contains only one emitter.
The term _emitter_ effectively means _emitter configuration_.
A configuration can include multiple emitters which will not be broken up further.
It is up to the project, what is included in a particular configuration.
To enable emitter handling,
1. override the count_emitters method of your cluster generator
and return the number of emitter configurations of a given model, scan and symmetry.
2. handle the emitter index in your create_cluster method.
3. (optionally) override the pmsco.project.Project.combine_emitters method
if the emitters should not be added with equal weights.
For implementation details see the respective method descriptions.
As soon as all necessary results are available they are combined into one dataset and compared to the experimental data.
Depending on the execution mode, the process of task definition and calculation repeats until the model has converged
or the calculations are stopped for another reason.
*/

View File

@ -10,7 +10,7 @@ digraph G {
create_params;
calc_modf;
calc_rfac;
comb_syms;
comb_doms;
comb_scans;
}
*/
@ -24,11 +24,11 @@ digraph G {
model_handler -> model_creator [constraint=false, label="optimize"];
}
subgraph cluster_symmetry {
label = "symmetry handler";
subgraph cluster_domain {
label = "domain handler";
rank = same;
sym_creator [label="expand models", group=creators];
sym_handler [label="combine symmetries", group=handlers];
dom_creator [label="expand models", group=creators];
dom_handler [label="combine domains", group=handlers];
}
subgraph cluster_scan {
@ -47,15 +47,15 @@ digraph G {
calculator [label="calculator (EDAC)", shape=box];
model_creator -> sym_creator [label="model", style=bold];
sym_creator -> scan_creator [label="models", style=bold];
model_creator -> dom_creator [label="model", style=bold];
dom_creator -> scan_creator [label="models", style=bold];
scan_creator -> calc_creator [label="models", style=bold];
calc_creator -> calculator [label="clusters,\rparameters", style=bold];
calculator -> calc_handler [label="output files", style=bold];
calc_handler -> scan_handler [label="raw data files", style=bold];
scan_handler -> sym_handler [label="combined scans", style=bold];
sym_handler -> model_handler [label="combined symmetries", style=bold];
scan_handler -> dom_handler [label="combined scans", style=bold];
dom_handler -> model_handler [label="combined domains", style=bold];
mode [shape=parallelogram];
mode -> model_creator [lhead="cluster_model"];
@ -76,8 +76,8 @@ digraph G {
calc_rfac [shape=cds, label="R-factor function"];
calc_rfac -> model_handler [style=dashed];
comb_syms [shape=cds, label="symmetry combination rule"];
comb_syms -> sym_handler [style=dashed];
comb_doms [shape=cds, label="domain combination rule"];
comb_doms -> dom_handler [style=dashed];
comb_scans [shape=cds, label="scan combination rule"];
comb_scans -> scan_handler [style=dashed];

View File

@ -2,10 +2,15 @@
\section sec_run Running PMSCO
To run PMSCO you need the PMSCO code and its dependencies (cf. @ref pag_install),
a code module that contains the project-specific code,
a customized code module that contains the project-specific code,
and one or several files containing the scan parameters and experimental data.
Please check the <code>projects</code> folder for examples of project modules.
For a detailed description of the command line, see @ref pag_command.
The run-time arguments can either be passed on the command line
(@ref pag_command - the older and less flexible way)
or in a JSON-formatted run-file
(@ref pag_runfile - the recommended new and flexible way).
For beginners, it's also possible to hard-code all project parameters in the custom project module.
\subsection sec_run_single Single Process
@ -14,37 +19,28 @@ Run PMSCO from the command prompt:
@code{.sh}
cd work-dir
python project-dir/project.py [pmsco-arguments] [project-arguments]
python pmsco-dir -r run-file
@endcode
where <code>work-dir</code> is the destination directory for output files,
<code>project.py</code> is the specific project module,
and <code>project-dir</code> is the directory where the project file is located.
PMSCO is run in one process which handles all calculations sequentially.
<code>pmsco-dir</code> is the directory containing the <code>__main__.py</code> file,
<code>run-file</code> is a json-formatted configuration file that defines run-time parameters.
The format and content of the run-file is described in a separate section.
The command line arguments are usually divided into common arguments interpreted by the main pmsco code (pmsco.py),
and project-specific arguments interpreted by the project module.
However, it is ultimately up to the project module how the command line is interpreted.
In this form, PMSCO is run in one process which handles all calculations sequentially.
Example command line for a single EDAC calculation of the two-atom project:
@code{.sh}
cd work/twoatom
python pmsco/projects/twoatom/twoatom.py -s ea -o twoatom-demo -m single
python ../../pmsco -r twoatom-hemi.json
@endcode
The project file <code>twoatom.py</code> takes the lead of the project execution.
Usually, it contains only project-specific code and delegates common tasks to the main pmsco code.
This command line executes the main pmsco module <code>pmsco.py</code>.
The information which project to load is contained in the <code>twoatom-hemi.json</code> file,
along with all common and specific project arguments.
In the command line above, the <code>-o twoatom-demo</code> and <code>-m single</code> arguments
are interpreted by the pmsco module.
<code>-o</code> sets the base name of output files,
and <code>-m</code> selects the operation mode to a single calculation.
The scan argument is interpreted by the project module.
It refers to a dictionary entry that declares the scan file, the emitting atomic species, and the initial state.
In this example, the project looks for the <code>twoatom_energy_alpha.etpai</code> scan file in the project directory,
and calculates the modulation function for a N 1s initial state.
The kinetic energy and emission angles are contained in the scan file.
This example can be run for testing.
All necessary parameters and data files are included in the code repository.
\subsection sec_run_parallel Parallel Processes
@ -58,30 +54,46 @@ The slave processes will run the scattering calculations, while the master coord
and optimizes the model parameters (depending on the operation mode).
For optimum performance, the number of processes should not exceed the number of available processors.
To start a two-hour optimization job with multiple processes on an quad-core workstation with hyperthreading:
To start an optimization job with multiple processes on an quad-core workstation with hyperthreading:
@code{.sh}
cd work/my_project
mpiexec -np 8 project-dir/project.py -o my_job_0001 -t 2 -m swarm
mpiexec -np 8 --use-hwthread-cpus python pmsco-dir -r run-file
@endcode
The `--use-hwthread` option may be necessary on certain hyperthreading architectures.
\subsection sec_run_hpc High-Performance Cluster
The script @c bin/qpmsco.ra.sh takes care of submitting a PMSCO job to the slurm queue of the Ra cluster at PSI.
The script can be adapted to other machines running the slurm resource manager.
The script generates a job script based on @c pmsco.ra.template,
substituting the necessary environment and parameters,
and submits it to the queue.
PMSCO is ready to run with resource managers on cluster machines.
Code for submitting jobs to the slurm queue of the Ra cluster at PSI is included in the pmsco.schedule module
(see also the PEARL wiki pages in the PSI intranet).
The job parameters are entered in a separate section of the run file, cf. @pag_runfile for details.
Other machines can be supported by sub-classing pmsco.schedule.JobSchedule or pmsco.schedule.SlurmSchedule.
Execute @c bin/qpmsco.ra.sh without arguments to see a summary of the arguments.
If a schedule section is present and enabled in the run file,
the following command will submit a job to the cluster machine
rather than starting a calculation directly:
To submit a job to the PSI clusters (see also the PEARL-Wiki page MscCalcRa),
the analog command to the previous section would be:
@code{.sh}
bin/qpmsco.ra.sh my_job_0001 1 8 2 projects/my_project/project.py swarm
cd ~/pmsco
python pmsco -r run-file.json
@endcode
The command will copy the pmsco and project source trees as well as the run file and job script to a job directory
under the output directory specified in the project section of the run file.
The full path of the job directory is _output-dir/job-name.
The directory must be empty or not existing when you run the above command.
Be careful to specify correct project file paths.
The output and data directories should be specified as absolute paths.
The scheduling command will also load the project and scan files.
Many parameter errors can, thus, be caught and fixed before the job is submitted to the queue.
The run file also offers an option to stop just before submitting the job
so that you can inspect the job files and submit the job manually.
Be sure to consider the resource allocation policy of the cluster
before you decide on the number of processes.
Requesting less resources will prolong the run time but might increase the scheduling priority.
*/
*/

View File

@ -3,108 +3,223 @@
\subsection sec_general General Remarks
The PMSCO code is maintained under git.
The PMSCO code is maintained under [Git](https://git-scm.com/).
The central repository for PSI-internal projects is at https://git.psi.ch/pearl/pmsco,
the public repository at https://gitlab.psi.ch/pearl/pmsco.
For their own developments, users should clone the repository.
Changes to common code should be submitted via pull requests.
The program code of PMSCO and its external programs is written in Python 3.6, C++ and Fortran.
The code will run in any recent Linux environment on a workstation or in a virtual machine.
Scientific Linux, CentOS7, [Ubuntu](https://www.ubuntu.com/)
and [Lubuntu](http://lubuntu.net/) (recommended for virtual machine) have been tested.
For optimization jobs, a workstation with at least 4 processor cores
or cluster with 20-50 available processor cores is recommended.
The program requires about 2 GB of RAM per process.
The recommended IDE is [PyCharm (community edition)](https://www.jetbrains.com/pycharm).
[Spyder](https://docs.spyder-ide.org/index.html) is a good alternative with a better focus on scientific data.
The documentation in [Doxygen](http://www.stack.nl/~dimitri/doxygen/index.html) format is part of the source code.
The Doxygen compiler can generate separate documentation in HTML or LaTeX.
\subsection sec_requirements Requirements
The recommended IDE is [PyCharm (community edition)](https://www.jetbrains.com/pycharm).
The documentation in [Doxygen](http://www.stack.nl/~dimitri/doxygen/index.html) format is part of the source code.
The Doxygen compiler can generate separate documentation in HTML or LaTeX.
Please note that in some environments (particularly shared high-performance machines)
it may be important to choose specific compiler and library versions.
In order to maintain backward compatibility with some of these older machines,
code that requires new versions of compilers and libraries should be introduced carefully.
The MSC and EDAC codes compile with the GNU Fortran and C++ compilers on Linux.
Other compilers may work but have not been tested.
The code will run in any recent Linux environment on a workstation or in a virtual machine.
Scientific Linux, CentOS7, [Ubuntu](https://www.ubuntu.com/)
and [Lubuntu](http://lubuntu.net/) (recommended for virtual machine) have been tested.
For optimization jobs, a high-performance cluster with 20-50 available processor cores is recommended.
The code requires about 2 GB of RAM per process.
Please note that it may be important that the code remains compatible with earlier compiler and library versions.
Newer compilers or the latest versions of the libraries contain features that will break the compatibility.
The code can be used with newer versions as long they are backward compatible.
The code depends on the following libraries:
- GCC 4.8
- OpenMPI 1.10
- GCC >= 4.8
- OpenMPI >= 1.10
- F2PY
- F2C
- SWIG
- Python 2.7 (incompatible with Python 3.0)
- Numpy 1.11 (incompatible with Numpy 1.13 and later)
- MPI4PY (from PyPI)
- BLAS
- LAPACK
- periodictable
- Python 3.6
- Numpy >= 1.13
- Python packages listed in the requirements.txt file
Most of these requirements are available from the Linux distribution.
For an easily maintainable Python environment, [Miniconda](https://conda.io/miniconda.html) is recommended.
The Python environment distributed with the OS often contains outdated packages,
and it's difficult to switch between different Python versions.
Most of these requirements are available from the Linux distribution, or from PyPI (pip install), respectively.
If there are any issues with the packages installed by the distribution, try the ones from PyPI
(e.g. there is currently a bug in the Debian mpi4py package).
The F2C source code is contained in the repository for machines which don't have it installed.
On the PSI cluster machines, the environment must be set using the module system and conda (on Ra).
Details are explained in the PEARL Wiki.
\subsubsection sec_install_ubuntu Installation on Ubuntu 16.04
The following tools are required to compile the documentation:
The following instructions install the necessary dependencies on Ubuntu (or Lubuntu 16.04):
- doxygen
- doxypypy
- graphviz
- Java
- [plantUML](https://plantuml.com)
- LaTeX (optional, generally not recommended)
\subsection sec_install_instructions Instructions
\subsubsection sec_install_ubuntu Installation on Ubuntu
The following instructions install the necessary dependencies on Ubuntu, Debian or related distributions.
The Python environment is provided by [Miniconda](https://conda.io/miniconda.html).
@code{.sh}
sudo apt-get update
sudo apt update
sudo apt-get install \
sudo apt install \
binutils \
build-essential \
doxygen \
doxypy \
f2c \
g++ \
gcc \
gfortran \
git \
graphviz \
ipython \
libblas-dev \
liblapack-dev \
libopenmpi-dev \
make \
nano \
openmpi-bin \
openmpi-common \
python-all \
python-mock \
python-nose \
python-numpy \
python-pip \
python-scipy \
python2.7-dev \
swig
sqlite3 \
wget
@endcode
sudo pip install --system mpi4py periodictable
On systems where the link to libblas is missing (see @ref sec_compile below),
the following lines are necessary.
@code{.sh}
cd /usr/lib
sudo ln -s /usr/lib/libblas/libblas.so.3 libblas.so
@endcode
The following instructions install the PyCharm IDE and a few other useful utilities:
Download and install [Miniconda](https://conda.io/),
then configure the Python environment:
@code{.sh}
sudo sh -c 'echo "deb http://archive.getdeb.net/ubuntu xenial-getdeb apps" >> /etc/apt/sources.list.d/getdeb.list'
wget -q -O - http://archive.getdeb.net/getdeb-archive.key | sudo apt-key add -
sudo apt-get update
sudo apt-get install \
avogadro \
gitg \
meld \
openjdk-9-jdk \
pycharm
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O miniconda.sh
bash ~/miniconda.sh
conda create -q --yes -n pmsco python=3.6
conda activate pmsco
conda install -q --yes -n pmsco \
pip \
"numpy>=1.13" \
scipy \
ipython \
matplotlib \
nose \
mock \
future \
statsmodels \
swig \
gitpython
pip install periodictable attrdict commentjson fasteners mpi4py doxypypy
@endcode
To produce documentation in PDF format (not recommended on virtual machine), install LaTeX:
@note `mpi4pi` should be installed via pip, _not_ conda.
conda might install its own MPI libraries, which can cause a conflict with system libraries.
(cf. [mpi4py forum](https://groups.google.com/forum/#!topic/mpi4py/xpPKcOO-H4k))
\subsubsection sec_install_singularity Installation in Singularity container
A [Singularity](https://sylabs.io/singularity/) container
contains all OS and Python dependencies for running PMSCO.
Besides the Singularity executable, nothing else needs to be installed in the host system.
This may be the fastest way to get PMSCO running.
To get started with Singularity,
download it from [sylabs.io](https://www.sylabs.io/singularity/) and install it according to their instructions.
On Windows, Singularity can be installed in a virtual machine using the [Vagrant](https://www.vagrantup.com/)
script included under `extras/vagrant`.
After installing Singularity,
check out PMSCO as explained in the @ref sec_compile section:
@code{.sh}
sudo apt-get install texlive-latex-recommended
cd ~
mkdir containers
cd containers
git clone git@git.psi.ch:pearl/pmsco.git pmsco
cd pmsco
git checkout master
git checkout -b my_branch
@endcode
Then, either copy a pre-built container into `~/containers`,
or build one from the definition file included under extras/singularity.
You may need to customize the definition file to match the host OS
or to install compatible OpenMPI libraries,
cf. cf. [Singularity user guide](https://sylabs.io/guides/3.7/user-guide/mpi.html).
@code{.sh}
cd ~/containers
sudo singularity build pmsco.sif ~/containers/pmsco/extras/singularity/singularity_python3
@endcode
To work with PMSCO, start an interactive shell in the container and switch to the pmsco environment.
Note that the PMSCO code is outside the container and can be edited with the usual tools.
@code{.sh}
cd ~/containers
singularity shell pmsco.sif
. /opt/miniconda/etc/profile.d/conda.sh
conda activate pmsco
cd ~/containers/pmsco
make all
nosetests -w tests/
@endcode
Or call PMSCO from outside:
@code{.sh}
cd ~/containers
mkdir output
cd output
singularity run -e ../pmsco.sif ~/containers/pmsco/pmsco -r path/to/your-runfile
@endcode
For parallel processing, prepend `mpirun -np X` to the singularity command as needed.
Note that this requires "compatible" OpenMPI versions on the host and container to avoid runtime errors.
\subsubsection sec_install_extra Additional Applications
For working with the code and data, some other applications are recommended.
The PyCharm IDE (community edition) can be installed from the Ubuntu software center.
The following commands install other useful helper applications:
@code{.sh}
sudo apt install \
avogadro \
gitg \
meld
@endcode
To compile the documentation install the following tools.
The basic documentation is in HTML format and can be opened in any internet browser.
If you have a working LaTeX installation, a PDF document can be produced as well.
It is not recommended to install LaTeX just for this documentation, however.
@code{.sh}
sudo apt install \
doxygen \
graphviz \
default-jre
conda activate pmsco
conda install -q --yes -n pmsco doxypypy
wget -O plantuml.jar https://sourceforge.net/projects/plantuml/files/plantuml.jar/download
sudo mkdir /opt/plantuml/
sudo mv plantuml.jar /opt/plantuml/
echo "export PLANTUML_JAR_PATH=/opt/plantuml/plantuml.jar" | sudo tee /etc/profile.d/pmsco-env.sh
@endcode
@ -124,15 +239,18 @@ Private key authentication is usually recommended except on shared computers.
Clone the code repository using one of these repositiory addresses and switch to the desired branch:
@code{.sh}
cd ~
git clone git@git.psi.ch:pearl/pmsco.git pmsco
cd pmsco
git checkout master
git checkout -b my_branch
@endcode
The compilation of the various modules is started by <code>make all</code>.
The compilation step is necessary only once after installation.
Compile the code and run the unit tests to check that it worked.
@code{.sh}
make all
nosetests -w tests/
@endcode
If the compilation of _loess.so failes due to a missing BLAS library,
try to set a link to the BLAS library as follows (the actual file names may vary due to the actual distribution or version):
@ -150,7 +268,7 @@ Re-check from time to time.
@code{.sh}
cd ~/pmsco
nosetests
nosetests -w tests/
@endcode
Run the twoatom project to check the compilation of the calculation programs.
@ -161,8 +279,10 @@ mkdir work
cd work
mkdir twoatom
cd twoatom/
nice python ~/pmsco/projects/twoatom/twoatom.py -s ~/pmsco/projects/twoatom/twoatom_energy_alpha.etpai -o twoatom_energy_alpha -m single
nice python ~/pmsco/pmsco -r ~/pmsco/projects/twoatom/twoatom-energy.json
@endcode
Runtime warnings may appear because the twoatom project does not contain experimental data.
To learn more about running PMSCO, see @ref pag_run.
*/

View File

@ -9,53 +9,67 @@ The actual scattering calculation is done by code developed by other parties.
While the scattering program typically calculates a diffraction pattern based on a set of static parameters and a specific coordinate file in a single process,
PMSCO wraps around that program to facilitate parameter handling, cluster building, structural optimization and parallel processing.
In the current version, the [EDAC](http://garciadeabajos-group.icfo.es/widgets/edac/) code
developed by F. J. García de Abajo, M. A. Van Hove, and C. S. Fadley (1999) is used for scattering calculations.
Other code can be integrated as well.
Initially, support for the MSC program by Kaduwela, Friedman, and Fadley was planned but is currently not maintained.
PMSCO is written in Python 2.7.
EDAC is written in C++, MSC in Fortran.
PMSCO interacts with the calculation programs through Python wrappers for C++ or Fortran.
In the current version, PMSCO can make use of the following programs.
Other programs may be integrated as well.
The MSC and EDAC source code is contained in the same software repository.
The PMSCO, MSC, and EDAC programs may not be used outside the PEARL group without an explicit agreement by the respective original authors.
Users of the PMSCO code are requested to coordinate and share the development of the code with the original author.
Please read and respect the respective license agreements.
- [EDAC](http://garciadeabajos-group.icfo.es/widgets/edac/)
by F. J. García de Abajo, M. A. Van Hove, and C. S. Fadley,
[Phys. Rev. B 63 (2001) 075404](http://dx.doi.org/10.1103/PhysRevB.63.075404)
- PHAGEN from the [MsSpec package](https://ipr.univ-rennes1.fr/msspec)
by C. R. Natoli and D. Sébilleau,
[Comp. Phys. Comm. 182 (2011) 2567](http://dx.doi.org/10.1016/j.cpc.2011.07.012)
\section sec_intro_highlights Highlights
- angle or energy scanned XPD.
- various scanning modes including energy, polar angle, azimuthal angle, analyser angle.
- averaging over multiple symmetries (domains or emitters).
- averaging over multiple domains and emitters.
- global optimization of multiple scans.
- structural optimization algorithms: particle swarm optimization, grid search, gradient search.
- structural optimization algorithms: genetic, particle swarm, grid search.
- calculation of the modulation function.
- calculation of the weighted R-factor.
- automatic parallel processing using OpenMPI.
\section sec_project Optimization Projects
\section sec_intro_project Optimization Projects
To set up a new optimization project, you need to:
- create a new directory under projects.
- create a new Python module in this directory, e.g., my_project.py.
- implement a sub-class of project.Project in my_project.py.
- override the create_cluster, create_params, and create_domain methods.
- optionally, override the combine_symmetries and combine_scans methods.
- override the create_cluster, create_params, and create_model_space methods.
- optionally, override the combine_domains and combine_scans methods.
- add a global function create_project to my_project.py.
- provide experimental data files (intensity or modulation function).
For details, see the documentation of the Project class,
and the example projects.
For details, see @ref pag_project, the documentation of the pmsco.project.Project class and the example projects.
\section sec_intro_start Getting Started
- @ref pag_concepts
- @ref pag_concepts_tasks
- @ref pag_concepts_emitter
- @ref pag_install
- @ref pag_project
- @ref pag_run
- @ref pag_command
- @ref pag_opt
\section sec_license License Information
An open distribution of PMSCO is available under the [Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0) at <https://gitlab.psi.ch/pearl-public/pmsco>.
- Please read and respect the respective license agreements.
- Please acknowledge the use of the code.
- Please share your development of the code with the original author.
Due to different copyright terms, the third-party calculation programs are not contained in the public software repository.
These programs may not be used without an explicit agreement by the respective original authors.
\author Matthias Muntwiler, <mailto:matthias.muntwiler@psi.ch>
\version This documentation is compiled from version $(REVISION).
\copyright 2015-2021 by [Paul Scherrer Institut](http://www.psi.ch)
\copyright Licensed under the [Apache License, Version 2.0](http://www.apache.org/licenses/LICENSE-2.0)
*/

208
docs/src/optimizers.dox Normal file
View File

@ -0,0 +1,208 @@
/*! @page pag_opt Model optimizers
\section sec_opt Model optimizers
\subsection sec_opt_swarm Particle swarm optimization (PSO)
The particle swarm optimization (PSO) algorithm seeks to find a global optimum in a multi-dimensional model space
by employing the _swarm intelligence_ of a number of particles traversing space,
each at its own velocity and direction,
but adjusting its trajectory based on its own experience and the results of its peers.
The PSO algorithm is adapted from
D. A. Duncan et al., Surface Science 606, 278 (2012).
It is implemented in the @ref pmsco.optimizers.swarm module.
The general parameters of the algorithm are specified in the @ref Project.optimizer_params dictionary.
Some of them can be changed on the command line.
| Parameter | Command line | Range | Description |
| --- | --- | --- | --- |
| pop_size | --pop-size | &ge; 1 | Recommended 20..50 |
| position_constrain_mode | | default bounce | Resolution of domain limit violations. |
| seed_file | --seed-file | a file path, default none | |
| seed_limit | --seed-limit | 0..pop_size | |
| rfac_limit | | 0..1, default 0.8 | Accept only seed values that have a lower R-factor. |
| recalc_seed | | True or False, default True | |
The model space attributes have the following meaning:
| Parameter | Description |
| --- | --- |
| start | Start value of particle 0 in first iteration. |
| min | Lower limit of the parameter range. |
| max | Upper limit of the parameter range. |
| step | Not used. |
\subsubsection sec_opt_seed Seeding a population
By default, one particle is initialized with the start value declared with the model space,
and the other ones are initialized at random positions in the model space.
You may initialize more particles of the population with specific values by providing a seed file.
The seed file must have a similar format as the result `.dat` files
with a header line specifying the column names and data rows containing the values for each particle.
A good practice is to use a previous `.dat` file and remove unwanted rows.
The `.dat` file from a previous optimization job can be used as is to continue the optimization,
also in a different optimization mode.
The seeding procedure can be tweaked by several optimizer parameters (see above).
PMSCO normally loads the first rows up to population size - 1 or up to the `seed_limit` parameter,
whichever is lower.
If an `_rfac` column is present, the file is first sorted by R-factor and only the best models are loaded.
Models that resulted in an R-factor above the `rfac_limit` parameter are ignored in any case.
In the first iteration of the optimization run, the models loaded from the seed file are re-calculated by default.
This may waste CPU time if the calculation is run under the same conditions
and would result in exactly the same R-factor,
as is the case if the seed is used to continue a previous optimization, for example.
In these situations, the `recalc_seed` parameter can be set to False,
and PMSCO will use the R-factor value from the seed file rather than calculating the model again.
\subsubsection sec_opt_patch Patching a running optimization
While an optimization job is running, the user can manually patch the population with arbitrary values,
for instance, to kick the population out of a local optimum or to drive it to a less sampled parameter region.
To patch a running population, prepare a population file named `pmsco_patch.pop` and copy it to the work directory.
The patch file must have the same format as the result `.dat` files
with a header line specifying the column names and data rows containing the values.
It should contain as many rows as particles to be patched but not more than the size of the population.
The columns must include a `_particle` column and the model parameters to be changed.
The `_particle` column specifies the index of the particle that is patched (ranging from 0 to population size - 1).
Parameters that should remain unaffected can be left out,
extra columns including `_gen`, `_rfac` etc. are ignored.
PMSCO checks the file for syntax errors and ignores it if errors are present.
Individual parameter values that lie outside the domain boundary are silently ignored.
Successful or failed patching is logged at warning level.
PMSCO keeps track of the time stamp of the file and re-applies the patch whenever the time stamp has changed.
\attention Since each change of time stamp may trigger patching,
do not edit the patch file in the working directory
to prevent it from being read in an unfinished state or multiple times!
\subsection sec_opt_genetic Genetic optimization
The genetic algorithm evolves a population of individuals
by a combination of inheritance, crossover, mutation
and selection in analogy to biological evolution.
The _genes_ are in this case the model parameters,
and selection occurs based on R-factor.
The genetic algorithm is adapted from
D. A. Duncan et al., Surface Science 606, 278 (2012).
It is implemented in the @ref pmsco.optimizers.genetic module.
The genetic optimization is helpful in the first stage of an optimization
where a large parameter space needs to be sampled
and fast convergence on a small part of the parameter space is less desirable
as it might catch on a local optimum.
On the other hand, convergence near the optimum is slower than in the particle swarm.
The genetic optimization should be run with a large number of iterations
rather than a large population size.
The general parameters of the genetic algorithm are specified in the @ref Project.optimizer_params dictionary.
Some of them can be changed on the command line.
| Parameter | Command line | Range | Description |
| --- | --- | --- | --- |
| pop_size | --pop-size | &ge; 1 | Recommended 10..40 |
| mating_factor | | 1..pop_size, default 4 | |
| strong_mutation_probability | | 0..1, default 0.01 | Probability that a parameter undergoes a strong mutation. |
| weak_mutation_probability | | 0..1, default 1 | Probability that a parameter undergoes a weak mutation. This parameters should be left at 1. Lower values tend to produce discrete parameter values. Weak mutations can be tuned by the step domain parameters. |
| position_constrain_mode | | default random | Resolution of domain limit violations. |
| seed_file | --seed-file | a file path, default none | |
| seed_limit | --seed-limit | 0..pop_size | |
| rfac_limit | | 0..1, default 0.8 | Accept only seed values that have a lower R-factor. |
| recalc_seed | | True or False, default True | |
The model space attributes have the following meaning:
| Parameter | Description |
| --- | --- |
| start | Seed model. The start values are copied into particle 0 of the initial population. |
| min | Lower limit of the parameter range. |
| max | Upper limit of the parameter range. |
| step | Standard deviation of the Gaussian distribution of weak mutations. The step should not be much lower than the the parameter range divided by the population size and not greater than one third of the parameter range. |
The population of the genetic optimizer can be seeded and patched in the same way as the particle swarm,
cf. sections @ref sec_opt_seed and @ref sec_opt_swarm.
\subsection sec_opt_grid Grid search
The grid search algorithm samples the parameter space at equidistant steps.
It is implemented in the @ref pmsco.optimizers.grid module.
The model space attributes have the following meaning.
The order of calculations is random so that results from different parts of the model space become available early.
| Parameter | Description |
| --- | --- |
| start | Values of fixed parameters. |
| min | Lower limit of the parameter range. |
| max | Upper limit of the parameter range. If abs(max - min) < step/2 , the parameter is kept constant. |
| step | Step size (distance between two grid points). If step <= 0, the parameter is kept constant. |
\subsection sec_opt_gradient Gradient search
Currently not implemented.
\subsection sec_opt_table Table scan
The table scan calculates models from an explicit table of model parameters.
It can be used to recalculate models from a previous optimization run on other experimental data,
as an interface to external optimizers,
or as a simple input of manually edited model parameters.
It is implemented in the @ref pmsco.optimizers.table module.
The table can be stored in an external file that is specified on the command line,
or supplied in one of several forms by the custom project class.
The table can be left unchanged during the calculations,
or new models can be added on the go.
Duplicate models are ignored.
@attention Because it is not easily possible to know when the table file is read,
if you do modify the table file while calculations are running,
1. Do not keep the file locked for longer than a second.
2. Append new models to the end of the table rather than overwriting previous ones.
3. Delete lines only if you're sure that they are not needed any more.
The general parameters of the table scan are specified in the @ref Project.optimizer_params dictionary.
Some of them can be changed on the command line or in the project class (depending on how the project class is implemented).
| Parameter | Command line | Range | Description |
| --- | --- | --- | --- |
| pop_size | --pop-size | &ge; 1 | Number of models in a generation (calculated in parallel). In table mode, this parameter is not so important and can be left at the default. It has nothing to do with table size. |
| table_file | --table-file | a file path, default none | |
The model space attributes have the following meaning.
Models that violate the parameter range are not calculated.
| Parameter | Description |
| --- | --- |
| start | Not used. |
| min | Lower limit of the parameter range. |
| max | Upper limit of the parameter range. |
| step | Not used. |
\subsection sec_opt_single Single model
The single model optimizer calculates the model defined by domain.start.
| Parameter | Description |
| --- | --- |
| start | Values of model parameters. |
| min | Not used. |
| max | Not used. |
| step | Not used. |
*/

454
docs/src/project.dox Normal file
View File

@ -0,0 +1,454 @@
/*! @page pag_project Setting up a new project
\section sec_project Setting Up a New Project
This topic guides you through the setup of a new project.
Be sure to check out the examples in the projects folder
and the code documentation as well.
The basic steps are:
1. Create a new folder under `projects`.
2. In the new folder, create a Python module for the project (subsequently called _the project module_).
3. In the project module, define a cluster generator class which derives from pmsco.cluster.ClusterGenerator.
4. In the project module, define a project class which derives from pmsco.project.Project.
5. In the same folder as the project module, create a JSON run-file.
\subsection sec_project_module Project Module
A skeleton of the project module file (with some common imports) may look like this:
~~~~~~{.py}
import logging
import math
import numpy as np
import periodictable as pt
from pathlib import Path
import pmsco.cluster
import pmsco.data
import pmsco.dispatch
import pmsco.elements.bindingenergy
import pmsco.project
logger = logging.getLogger(__name__)
class MyClusterGenerator(pmsco.cluster.ClusterGenerator):
def create_cluster(self, model, index):
clu = pmsco.cluster.Cluster()
# ...
return clu
def count_emitters(self, model, index):
# ...
return 1
class MyProject(pmsco.project.Project):
def __init__(self):
super().__init__()
# ...
self.cluster_generator = MyClusterGenerator(self)
def create_model_space():
spa = pmsco.project.ModelSpace()
# ...
return spa
def create_params(self, model, index):
par = pmsco.project.CalculatorParams()
# ...
return par
~~~~~~
The main purpose of the `MyProject` class is to bundle the project-specific calculation parameters and code.
The purpose of the `MyClusterGenerator` class is to produce atomic clusters as a function of a number of model parameters.
For the project to be useful, some of the methods in the skeleton above need to be implemented.
The individual methods are discussed in the following.
Further descriptions can be found in the documentation of the code.
\subsection sec_project_cluster Cluster Generator
The cluster generator is a project-specific Python object that produces a cluster, i.e., a list of atomic coordinates,
based on a small number of model parameters whenever PMSCO requires it.
The most important member of a cluster generator is its `create_cluster` method.
At least this method must be implemented for a functional cluster generator.
A generic `count_emitters` method is implemented in the base class.
It needs to be overridden if you want to use parallel calculation of multiple emitters.
\subsubsection sec_project_cluster_create Cluster Definition
The `create_cluster` method takes the model parameters (a dictionary)
and the task index (a pmsco.dispatch.CalcID, cf. @ref pag_concepts_tasks) as arguments.
Given these arguments, it must create and fill a pmsco.cluster.Cluster object.
See pmsco.cluster.ClusterGenerator.create_cluster for details on the method contract.
As an example, have a look at the following simplified excerpt from the twoatom demo project.
~~~~~~{.py}
def create_cluster(self, model, index):
# access model parameters
# dAB - distance between atoms in Angstroms
# th - polar angle in degrees
# ph - azimuthal angle in degrees
r = model['dAB']
th = math.radians(model['th'])
ph = math.radians(model['ph'])
# prepare a cluster object
clu = pmsco.cluster.Cluster()
# the comment line is optional but can be useful
clu.comment = "{0} {1}".format(self.__class__, index)
# set the maximum radius of the cluster (outliers will be ignored)
clu.set_rmax(r * 2.0)
# calculate atomic vectors
dx = r * math.sin(th) * math.cos(ph)
dy = r * math.sin(th) * math.sin(ph)
dz = r * math.cos(th)
a_top = np.array((0.0, 0.0, 0.0))
a_bot = np.array((-dx, -dy, -dz))
# add an oxygen atom at a_top position and mark it as emitter
clu.add_atom('O', a_top, 1)
# add a copper atom at a_bot position
clu.add_atom('Cu', a_bot, 0)
# pass the created cluster to the calculator
return clu
~~~~~~
In this example, two atoms are added to the cluster.
The pmsco.cluster.Cluster class provides several methods to simplify the task,
such as adding layers or bulk regions, rotation, translation, trim, emitter selection, etc.
Please refer to the documentation of its code for details.
It may also be instructive to have a look at the demo projects.
The main purposes of the cluster object are to store an array of atoms and to read/write cluster files in a variety of formats.
For each atom, the following properties are stored:
- sequential atom index (1-based, maintained by cluster code)
- atom type (chemical element number)
- chemical element symbol from periodic table
- x coordinate of the atom position
- t coordinate of the atom position
- z coordinate of the atom position
- emitter flag (0 = scatterer, 1 = emitter, default 0)
- charge/ionicity (units of elementary charge, default 0)
- scatterer class (default 0)
All of these properties except the scatterer class can be set by the add methods of the cluster.
The scatterer class is used internally by the atomic scattering factor calculators.
Whether the charge/ionicity is used, depends on the particular calculators, EDAC does not use it, for instance.
Note: You do not need to take care how many emitters a calculator allows,
or whether the emitter needs to be at the origin or the first place of the array.
These technical aspects are handled by PMSCO code transparently.
\subsubsection sec_project_cluster_domains Domains
Domains refer to regions of inequivalent structure in the probing region.
This may include regions of different orientation, different lattice constant, or even different structure.
The cluster methods can read the selected domain from the `index.domain` argument.
This is an index into the pmsco.project.Project.domains list where each item is a dictionary
that holds additional, invariable structural parameters.
A common case are rotational domains.
In this case, the list of domains may look like `[{"zrot": 0.0}, {"zrot": 60.0}]`, for example,
and the `create_cluster` method would include additional code to rotate the cluster:
~~~~~~{.py}
def create_cluster(self, model, index):
# filling atoms here
# ...
dom = self.domains[index.domain]
try:
z_rot = dom['zrot']
except KeyError:
z_rot = 0.0
if z_rot:
clu.rotate_z(z_rot)
# selecting emitters
# ...
return clu
~~~~~~
Depending on the complexity of the system, it may, however, be necessary to write a specific sub-routine for each domain.
The pmsco.project.Project class includes generic code to add intensities of domains incoherently (cf. pmsco.project.Project.combine_domains).
If the model space contains parameters 'wdom0', 'wdom1', etc.,
these parameters are interpreted at weights of domain 0, 1, etc.
One domain must have a fixed weight to avoid correlated parameters.
Typically, 'wdom0' is left undefined and defaults to 1.
\subsubsection sec_project_cluster_emitters Emitter Configurations
If your project has a large cluster and/or many emitters, have a look at @ref pag_concepts_emitter.
In this case, you should override the `count_emitters` method and return the number of emitter configurations.
In the simplest case, this is the number of inequivalent emitters, and the implementation would be:
~~~~~~{.py}
def count_emitters(self, model, index):
index = index._replace(emit=-1)
clu = self.create_cluster(model, index)
return clu.get_emitter_count()
~~~~~~
Next, modify the `create_cluster` method to check the emitter index (`index.emit`).
If it is -1, the method must return the full cluster with all inequivalent emitters marked.
If it is positive, only the corresponding emitter must be marked.
The code could be similar to this example:
~~~~~~{.py}
def create_cluster(self, model, index):
# filling atoms here
# ...
# select all possible emitters (atoms of a specific element) in a cylindrical volume
# idx_emit is an array of atom numbers (0-based atom index)
idx_emit = clu.find_index_cylinder(origin, r_xy, r_z, self.project.scans[index.scan].emitter)
# if a specific emitter should be marked, restrict the array index.
if index.emit >= 0:
idx_emit = idx_emit[index.emit]
# mark the selected emitters
# if index.emit was < 0, all emitters are marked
clu.data['e'][idx_emit] = 1
return clu
~~~~~~
Now, the individual emitter configurations will be calculated in separate tasks
which can be run in parallel in a multi-process environment.
Note that the processing time of EDAC scales linearly with the number of emitters.
Thus, parallel execution is beneficial.
Advanced programmers may exploit more of the flexibility of emitter configurations, cf. @ref pag_concepts_emitter.
\subsection sec_project_project Project Class
Most commonly, a project class overrides the `__init__`, `create_model_space` and `create_params` methods.
Most other inherited methods can be overridden optionally,
for instance `validate`, `setup`, `calc_modulation`, `rfactor`,
as well as the combine methods `combine_rfactors`, `combine_domains`, `combine_emitters`, etc.
Int his introduction, we focus on the most basic three methods.
\subsubsection sec_project_project_init Initialization and Defaults
In the `__init__` method, you define and initialize (with default values) additional project properties.
You may also redefine properties of the base class.
The following code is just an example to give you some ideas.
~~~~~~{.py}
class MyProject(pmsco.project.Project):
def __init__(self):
# call the inherited method first
super().__init__()
# re-define an inherited property
self.directories["data"] = Path("/home/pmsco/data")
# define a scan dictionary
self.scan_dict = {}
# fill the scan dictionary
self.build_scan_dict()
# create the cluster generator
self.cluster_generator = MyClusterGenerator(self)
# declare the list of domains (at least one is required)
self.domains = [{"zrot": 0.}]
def build_scan_dict(self):
self.scan_dict["empty"] = {"filename": "{pmsco}/projects/common/empty-hemiscan.etpi",
"emitter": "Si", "initial_state": "2p3/2"}
self.scan_dict["Si2p"] = {"filename": "{data}/xpd-Si2p.etpis",
"emitter": "Si", "initial_state": "2p3/2"}
~~~~~~
The scan dictionary can come in handy if you want to select scans by a shortcut on the command line or in a run file.
Note that most of the properties can be assigned from a run file.
This happens after the `__init__` method.
The values set by `__init__` serve as default values.
\subsubsection sec_project_project_space Model Space
The model space defines the keys and value ranges of the model parameters.
There are three ways to declare the model space in order of priority:
1. Declare the model space in the run-file.
2. Assign a ModelSpace to the self.model_space property directly in the `__init__` method.
3. Implement the `create_model_space` method.
We begin the third way:
~~~~~~{.py}
# under class MyProject(pmsco.project.Project):
def create_model_space(self):
# create an empty model space
spa = pmsco.project.ModelSpace()
# add parameters
spa.add_param('dAB', 2.10, 2.00, 2.25, 0.05)
spa.add_param('th', 15.00, 0.00, 30.00, 1.00)
spa.add_param('ph', 90.00)
spa.add_param('V0', 21.96, 15.00, 25.00, 1.00)
spa.add_param('Zsurf', 1.50)
spa.add_param('wdom1', 0.5, 0.10, 10.00, 0.10)
# return the model space
return spa
~~~~~~
This code declares six model parameters: `dAB`, `th`, `ph`, `V0`, `Zsurf` and `wdom1`.
Three of them are structural parameters (used by the cluster generator above),
two are used by the `create_params` method (see below),
and `wdom1` is used in pmsco.project.Project.combine_domains while summing up contributions from different domains.
The values in the arguments list correspond to the start value (initial guess),
the lower and upper boundaries of the value range,
and the step size for optimizers that require it.
If just one value is given, like for `ph` and `Zsurf`, the parameter is held constant during the optimization.
The equivalent declaration in the run-file would look like (parameters after `th` omitted):
~~~~~~{.py}
{
"project": {
// ...
"model_space": {
"dAB": {
"start": 2.109,
"min": 2.0,
"max": 2.25,
"step": 0.05
},
"th": {
"start": 15.0,
"min": 0.0,
"max": 30.0,
"step": 1.0
},
// ...
}
}
}
~~~~~~
\subsubsection sec_project_project_params Calculation Parameters
Non-structural parameters that are needed for the input files of the calculators are passed
in a pmsco.project.CalculatorParams object.
This object should be created and filled in the `create_params` method of the project class.
The following example is from the twoatoms demo project:
~~~~~~{.py}
# under class MyProject(pmsco.project.Project):
def create_params(self, model, index):
params = pmsco.project.CalculatorParams()
# meta data
params.title = "two-atom demo"
params.comment = "{0} {1}".format(self.__class__, index)
# initial state and binding energy
initial_state = self.scans[index.scan].initial_state
params.initial_state = initial_state
emitter = self.scans[index.scan].emitter
params.binding_energy = pt.elements.symbol(emitter).binding_energy[initial_state]
# experimental setup
params.polarization = "H"
params.polar_incidence_angle = 60.0
params.azimuthal_incidence_angle = 0.0
params.experiment_temperature = 300.0
# material parameters
params.z_surface = model['Zsurf']
params.work_function = 4.5
params.inner_potential = model['V0']
params.debye_temperature = 356.0
# multiple-scattering parameters (EDAC)
params.emitters = []
params.lmax = 15
params.dmax = 5.0
params.orders = [25]
return params
~~~~~~
Most of the code is generic and can be copied to other projects.
Only the experimental and material parameters need to be adjusted.
Other properties can be changed as needed, see the documentation of pmsco.project.CalculatorParams for details.
\subsection sec_project_args Passing Runtime Parameters
Runtime parameters can be passed in one of three ways:
1. hard-coded in the project module,
2. on the command line, or
3. in a JSON run-file.
In the first way, all parameters are hard-coded in the `create_project` function of the project module.
This is the simplest way for a quick start to a small project.
However, as the project code grows, it's easy to loose track of revisions.
In programming it is usually best practice to separate code and data.
The command line is another option for passing parameters to a process.
It requires extra code for parsing the command line and is not very flexible.
It is difficult to pass complex data types.
Using the command line is no longer recommended and may become deprecated in a future version.
The recommended way of passing parameters is via run-files.
Run-files allow for complete separation of code and data in a generic and flexible way.
For example, run-files can be stored along with the results.
However, the semantics of the run-file may look intimidating at first.
\subsubsection sec_project_args_runfile Setting Up a Run-File
The usage and format of run-files is described in detail under @ref pag_runfile.
\subsubsection sec_project_args_code Hard-Coded Arguments
Hard-coded parameters are usually set in a `create_module` function of the project module.
At the end of the module, this function can easily be found.
The function has two purposes: to create the project object and to set parameters.
The parameters can be any attributes of the project class and its ancestors.
See the parent pmsco.project.Project class for a list of common attributes.
The `create_project` function may look like in the following example.
It must return a project object, i.e. an object instance of a class that inherits from pmsco.project.Project.
~~~~~~{.py}
def create_project():
project = MyProject()
project.optimizer_params["pop_size"] = 20
project_dir = Path(__file__).parent
scan_file = Path(project_dir, "hbnni_e156_int.etpi")
project.add_scan(filename=scan_file, emitter="N", initial_state="1s")
project.add_domain({"zrot": 0.0})
project.add_domain({"zrot": 60.0})
return project
~~~~~~
To have PMSCO call this function,
pass the file path of the containing module as the first command line argument of PMSCO, cf. @ref pag_command.
PMSCO calls this function in absence of a run-file.
\subsubsection sec_project_args_cmd Command Line
Since it is not recommended to pass calculation parameters on the command line,
this mechanism is not described in detail here.
It is, however, still available.
If you really need to use it,
have a look at the code of the pmsco.pmsco.main function
and how it calls the `create_project`, `parse_project_args` and `set_project_args` of the project module.
*/

333
docs/src/runfile.dox Normal file
View File

@ -0,0 +1,333 @@
/*! @page pag_runfile Run File
\section sec_runfile Run File
This section describes the format of a run-file.
Run-files are a new way of passing arguments to a PMSCO process which avoids cluttering up the command line.
It is more flexible than the command line
because run-files can assign a value to any property of the project object in an abstract way.
Moreover, there is no necessity for the project code to parse the command line.
\subsection sec_runfile_how How It Works
Run-files are text files in [JSON](https://en.wikipedia.org/wiki/JSON) format
which shares most syntax elements with Python.
JSON files contain nested dictionaries, lists, strings and numbers.
In PMSCO, run-files contain a dictionary of parameters for the project object
which is the main container for calculation parameters, model objects and links to data files.
An abstract run-file parser reads the run-file,
constructs the specified project object based on the custom project class
and assigns the attributes of the project object.
It's important to note that the parser does not recognize specific data types or classes.
All specific data handling is done by the instantiated objects, mainly the project class.
The parser can handle the following situations:
- Strings, numbers as well as dictionaries and lists of simple objects can be assigned directly to project attributes.
- If the project class defines an attribute as a _property_,
the class can execute custom code to import or validate data.
- The parser can instantiate an object from a class in the namespace of the project module
and assign its properties.
\subsection sec_runfile_general General File Format
Run-files must adhere to the [JSON](https://en.wikipedia.org/wiki/JSON) format,
which shares most syntax elements with Python.
Specifically, a JSON file can declare dictionaries, lists and simple objects
such as strings, numbers and `null`.
As one extension to plain JSON, PMSCO ignores line comments starting with a hash `#` or double-slash `//`.
This can be used to temporarily hide a parameter from the parser.
For example run-files, have a look at the twoatom demo project.
\subsection sec_runfile_project Project Specification
The following minimum run-file demonstrates how to specify the project at the top level:
~~~~~~{.py}
{
"project": {
"__module__": "projects.twoatom.twoatom",
"__class__": "TwoatomProject",
"mode": "single",
"output_file": "twoatom0001"
}
}
~~~~~~
Here, the `project` keyword denotes the dictionary that is used to construct the project object.
Within the project dictionary, the `__module__` key selects the Python module file that contains the project code,
and `__class__` refers to the name of the actual project class.
Further dictionary items correspond to attributes of the project class.
The module name is the same as would be used in a Python import statement.
It must be findable on the Python path.
PMSCO ensures that the directory containing the `pmsco` and `projects` sub-directories is on the Python path.
The class name must be in the namespace of the loaded module.
As PMSCO starts, it imports the specified module,
constructs an object of the specified project class,
and assigns any further items to project attributes.
In the example above, `twoatom0001` is assigned to the `output_file` property.
Any attributes not specified in the run-file will remain at their default values
that were set byt the `__init__` method of the project class.
Note that parameter names must start with an alphabetic character, else they are ignored.
This provides another way to temporarily ignore an item from the file besides line comments.
Also note that PMSCO does not spell-check parameter names.
The parameter values are just written to the corresponding object attribute.
If a name is misspelled, the value will be written under the wrong name and missed by the code eventually.
PMSCO carries out only some most important checks on the given parameter values.
Incorrect values may lead to improper operation or exceptions later in the calculations.
\subsection sec_runfile_common Common Arguments
The following table lists some important parameters controlling the calculations.
They are declared in the pmsco.projects.Project class.
| Key | Values | Description |
| --- | --- | --- |
| mode | `single` (default), `grid`, `swarm`, `genetic`, `table`, `test`, `validate` | Operation mode. `validate` can be used to check the syntax of the run-file, the process exits before starting calculations. |
| directories | dictionary | This dictionary lists common file paths used in the project. It contains keys such as `home`, `project`, `output` (see documentation of Project class in pmsco.project). Enclosed in curly braces, the keys can be used as placeholders in filenames. |
| output_dir | path | Shortcut for directories["output"] |
| data_dir | path | Shortcut for directories["data"] |
| job_name | string, must be a valid file name | Base name for all produced output files. It is recommended to set a unique name for each calculation run. Do not include a path. The path can be set in _output_dir_. |
| cluster_generator | dictionary | Class name and attributes of the cluster generator. See below. |
| atomic_scattering_factory | string<br>Default: InternalAtomicCalculator from pmsco.calculators.calculator | Class name of the atomic scattering calculator. This name must be in the namespace of the project module. |
| multiple_scattering_factory | string<br>Default: EdacCalculator from pmsco.calculators.edac | Class name of the multiple scattering calculator. This name must be in the namespace of the project module. |
| model_space | dictionary | See @ref sec_runfile_space below. |
| domains | list of dictionaries | See @ref sec_runfile_domains below. |
| scans | list of dictionaries | See @ref sec_runfile_scans below. |
| optimizer_params | dictionary | See @ref sec_runfile_optimizer below. |
The following table lists some common control parameters and metadata
that affect the behaviour of the program but do not affect the calculation results.
The job metadata is used to identify and describe a job in the results database if requested.
| Key | Values | Description |
| --- | --- | --- |
| job_tags | list of strings | User-specified job tags (metadata). |
| description | string | Description of the calculation job (metadata) |
| time_limit | decimal number<br>Default: 24. | Wall time limit in hours. The optimizers try to finish before the limit. This cannot be guaranteed, however. |
| keep_files | list of file categories | Output file categories to keep after the calculation. Multiple values can be specified and must be separated by spaces. By default, cluster and model (simulated data) of a limited number of best models are kept. See @ref sec_runfile_files below. |
| keep_best | integer number<br>Default: 10 | number of best models for which result files should be kept. |
| keep_level | integer number<br>Default: 1 | numeric task level down to which files are kept. 1 = scan level, 2 = domain level, etc. |
| log_level | DEBUG, INFO, WARNING, ERROR, CRITICAL | Minimum level of messages that should be added to the log. Empty string turns off logging. |
| log_file | file system path<br>Default: job_name + ".log". | Name of the main log file. Under MPI, the rank of the process is inserted before the extension. The log name is created in the working directory. |
\subsection sec_runfile_space Model Space
The `model_space` parameter is a dictionary of model parameters.
The key is the name of the parameter as used by the cluster and input-formatting code,
the value is a dictionary holding the `start`, `min`, `max`, `step` values to be used by the optimizer.
~~~~~~{.py}
{
"project": {
// ...
"model_space": {
"dAB": {
"start": 2.109,
"min": 2.0,
"max": 2.25,
"step": 0.05
},
"pAB": {
"start": 15.0,
"min": 0.0,
"max": 30.0,
"step": 1.0
},
// ...
}
}
}
~~~~~~
\subsection sec_runfile_domains Domains
Domains is a list of dictionaries.
Each dictionary holds keys describing the domain to the cluster and input-formatting code.
The meaning of these keys is up to the project.
~~~~~~{.py}
{
"project": {
// ...
"domains": [
{"surface": "Te", "doping": null, "zrot": 0.0},
{"surface": "Te", "doping": null, "zrot": 60.0}
],
}
}
~~~~~~
\subsection sec_runfile_scans Experimental Scan Files
The pmsco.project.Scan objects used in the calculation cannot be instantiated from the run-file directly.
Instead, the scans object is a list of scan creators/loaders which specify what to do to create a Scan object.
The pmsco.project module defines three scan creators: ScanLoader, ScanCreator and ScanKey.
The following code block shows an example of each of the three:
~~~~~~{.py}
{
"project": {
// ...
"scans": [
{
"__class__": "pmsco.project.ScanCreator",
"filename": "twoatom_energy_alpha.etpai",
"emitter": "N",
"initial_state": "1s",
"positions": {
"e": "np.arange(10, 400, 5)",
"t": "0",
"p": "0",
"a": "np.linspace(-30, 30, 31)"
}
},
{
"__class__": "pmsco.project.ScanLoader",
"filename": "{project}/twoatom_hemi_250e.etpi",
"emitter": "N",
"initial_state": "1s",
"is_modf": false
},
{
"__class__": "pmsco_project.ScanKey",
"key": "Ge3s113tp"
}
]
}
}
~~~~~~
The class name must be specified as it would be called in the custom project module.
`pmsco.project` must, thus, be imported in the custom project module.
The *ScanCreator* object creates a scan using Numpy array constructors in `positions`.
In the example above, a two-dimensional rectangular energy-alpha scan grid is created.
The values of the positions axes are passed to Python's `eval` function
and must return a one-dimensional Numpy `ndarray`.
The `emitter` and `initial_state` keys define the probed core level.
The *ScanLoader* object loads a data file, specified under `filename`.
The filename can include a placeholder which is replaced by the corresponding item from Project.directories.
Note that some of the directories (including `project`) are pre-set by PMSCO.
It is recommended to add a `data` key under `directories` in the run-file
if the data files are outside of the PMSCO directory tree.
The `is_modf` key indicates whether the file contains a modulation function (`true`) or intensity (`false`).
In the latter case, the modulation function is calculated after loading.
The *ScanKey* is the shortest scan specification in the run-file.
It is a shortcut to a complete scan description in `scan_dict` dictionary in the project object.
The `scan_dict` must be set up in the `__init__` method of the project class.
The `key` item specifies which key of `scan_dict` should be used to create the Scan object.
Each item of `scan_dict` holds a dictionary
that in turn holds the attributes for either a `ScanCreator` or a `ScanLoader`.
If it contains a `positions` key, it represents a `ScanCreator`, else a `ScanLoader`.
\subsection sec_runfile_optimizer Optimizer Parameters
The `optimizer_params` is a dictionary holding one or more of the following items.
| Key | Values | Description |
| --- | --- | --- |
| pop-size | integer<br>The default value is the greater of 4 or the number of parallel calculation processes. | Population size (number of particles) in swarm and genetic optimization mode. |
| seed-file | file system path | Name of the population seed file. Population data of previous optimizations can be used to seed a new optimization. The file must have the same structure as the .pop or .dat files. See @ref pmsco.project.Project.seed_file. |
| table-file | file system path | Name of the model table file in table scan mode. |
\subsubsection sec_runfile_files File Categories
The following category names can be used with the `keep_files` option.
Multiple names can be specified as a list.
| Category | Description | Default Action |
| --- | --- | --- |
| all | shortcut to include all categories | |
| input | raw input files for calculator, including cluster and phase files in custom format | delete |
| output | raw output files from calculator | delete |
| atomic | atomic scattering and emission files in portable format | delete |
| cluster | cluster files in portable XYZ format for report | keep |
| debug | debug files | delete |
| model | output files in ETPAI format: complete simulation (a_-1_-1_-1_-1) | keep |
| scan | output files in ETPAI format: scan (a_b_-1_-1_-1) | keep |
| domain | output files in ETPAI format: domain (a_b_c_-1_-1) | delete |
| emitter | output files in ETPAI format: emitter (a_b_c_d_-1) | delete |
| region | output files in ETPAI format: region (a_b_c_d_e) | delete |
| report| final report of results | keep always |
| population | final state of particle population | keep |
| rfac | files related to models which give bad r-factors, see warning below | delete |
\note
The `report` category is always kept and cannot be turned off.
The `model` category is always kept in single calculation mode.
\warning
If you want to specify `rfac` with the `keep_files` option,
you have to add the file categories that you want to keep, e.g.,
`"keep_files": ["rfac", "cluster", "model", "scan", "population"]`
(to return the default categories for all calculated models).
Do not specify `rfac` alone as this will effectively not return any file.
\subsection sec_runfile_schedule Job Scheduling
To submit a job to a resource manager such as Slurm, add a `schedule` section to the run file
(section ordering is not important):
~~~~~~{.py}
{
"schedule": {
"__module__": "pmsco.schedule",
"__class__": "PsiRaSchedule",
"nodes": 1,
"tasks_per_node": 24,
"walltime": "2:00",
"manual_run": true,
"enabled": true
},
"project": {
"__module__": "projects.twoatom.twoatom",
"__class__": "TwoatomProject",
"mode": "single",
"output_file": "{home}/pmsco/twoatom0001",
...
}
}
~~~~~~
In the same way as for the project, the `__module__` and `__class__` keys select the class that handles the job submission.
In this example, it is pmsco.schedule.PsiRaSchedule which is tied to the Ra cluster at PSI.
For other machines, you can sub-class one of the classes in the pmsco.schedule module and include it in your project module.
The parameters of pmsco.schedule.PsiRaSchedule are as follows.
Some of them are also used in other schedule classes or may have different types or ranges.
| Key | Values | Description |
| --- | --- | --- |
| nodes | integer: 1..2 | Number of compute nodes (main boards on Ra). The maximum number available for PEARL is 2. |
| tasks_per_node | integer: 1..24, 32 | Number of tasks (CPU cores on Ra) per node. Jobs with less than 24 tasks are assigned to the shared partition. |
| wall_time | string: [days-]hours[:minutes[:seconds]] <br> dict: with any combination of days, hours, minutes, seconds | Maximum run time (wall time) of the job. |
| manual | bool | Manual submission (true) or automatic submission (false). Manual submission allows you to inspect the job files before submission. |
| enabled | bool | Enable scheduling (true). Otherwise, the calculation is started directly (false).
@note The calculation job may run in a different working directory than the current one.
It is important to specify absolute data and output directories in the run file (project/directories section).
*/

View File

@ -38,15 +38,15 @@ custom_scan [label="scan\nconfiguration", shape=note];
{rank=same; custom_scan; create_scan; combine_scan;}
custom_scan -> create_scan [lhead=cluster_scan];
subgraph cluster_symmetry {
label="symmetry handler";
subgraph cluster_domain {
label="domain handler";
rank=same;
create_symmetry [label="define\nsymmetry\ntasks"];
combine_symmetry [label="gather\nsymmetry\nresults"];
create_model_space [label="define\ndomain\ntasks"];
combine_domain [label="gather\ndomain\nresults"];
}
custom_symmetry [label="symmetry\ndefinition", shape=cds];
{rank=same; create_symmetry; combine_symmetry; custom_symmetry;}
custom_symmetry -> combine_symmetry [lhead=cluster_symmetry];
custom_domain [label="domain\ndefinition", shape=cds];
{rank=same; create_model_space; combine_domain; custom_domain;}
custom_domain -> combine_domain [lhead=cluster_domain];
subgraph cluster_emitter {
label="emitter handler";
@ -80,11 +80,11 @@ create_cluster -> edac;
create_model -> create_scan [label="level 1 tasks"];
evaluate_model -> combine_scan [label="level 1 results", dir=back];
create_scan -> create_symmetry [label="level 2 tasks"];
combine_scan -> combine_symmetry [label="level 2 results", dir=back];
create_scan -> create_model_space [label="level 2 tasks"];
combine_scan -> combine_domain [label="level 2 results", dir=back];
create_symmetry -> create_emitter [label="level 3 tasks"];
combine_symmetry -> combine_emitter [label="level 3 results", dir=back];
create_model_space -> create_emitter [label="level 3 tasks"];
combine_domain -> combine_emitter [label="level 3 results", dir=back];
create_emitter -> create_region [label="level 4 tasks"];
combine_emitter -> combine_region [label="level 4 results", dir=back];

View File

@ -0,0 +1,38 @@
@startuml
class CalculationTask {
id : CalcID
parent : CalcID
model : dict
file_root : str
file_ext : str
result_filename : str
modf_filename : str
result_valid : bool
time : datetime.timedelta
files : dict
region : dict
__init__()
__eq__()
__hash__()
copy()
change_id()
format_filename()
get_mpi_message()
set_mpi_message()
add_task_file()
rename_task_file()
remove_task_file()
}
class CalcID {
model
scan
domain
emit
region
}
CalculationTask *-- CalcID
@enduml

View File

@ -0,0 +1,133 @@
@startuml
object Root {
id = -1, -1, -1, -1, -1
parent = -1, -1, -1, -1, -1
model = {}
}
Root o.. Model1
Root o.. Model2
object Model1 {
id = 1, -1, -1, -1, -1
parent = -1, -1, -1, -1, -1
model = {'d': 5}
}
object Model2 {
id = 2, -1, -1, -1, -1
parent = -1, -1, -1, -1, -1
model = {'d': 7}
}
Model1 o.. Scan11
Model1 o.. Scan12
Model2 o.. Scan21
object Scan11 {
id = 1, 1, -1, -1, -1
parent = 1, -1, -1, -1, -1
model = {'d': 5}
}
object Scan12 {
id = 1, 2, -1, -1, -1
parent = 1, -1, -1, -1, -1
model = {'d': 5}
}
object Scan21 {
id = 2, 1, -1, -1, -1
parent = 2, -1, -1, -1, -1
model = {'d': 7}
}
Scan11 o.. Dom111
object Dom111 {
id = 1, 1, 1, -1, -1
parent = 1, 1, -1, -1, -1
model = {'d': 5}
}
Dom111 o.. Emitter1111
object Emitter1111 {
id = 1, 1, 1, 1, -1
parent = 1, 1, 1, -1, -1
model = {'d': 5}
}
Emitter1111 o.. Region11111
object Region11111 {
id = 1, 1, 1, 1, 1
parent = 1, 1, 1, 1, -1
model = {'d': 5}
}
@enduml
@startuml
object "Root: CalculationTask" as Root {
}
note right: all attributes undefined
object "Model: CalculationTask" as Model {
model
}
note right: model is defined\nother attributes undefined
object ModelHandler
object "Scan: CalculationTask" as Scan {
model
scan
}
object ScanHandler
object "Domain: CalculationTask" as Domain {
model
scan
domain
}
object "DomainHandler" as DomainHandler
object "Emitter: CalculationTask" as Emitter {
model
scan
domain
emitter
}
object EmitterHandler
object "Region: CalculationTask" as Region {
model
scan
domain
emitter
region
}
note right: all attributes well-defined
object RegionHandler
Root "1" o.. "1..*" Model
Model "1" o.. "1..*" Scan
Scan "1" o.. "1..*" Domain
Domain "1" o.. "1..*" Emitter
Emitter "1" o.. "1..*" Region
(Root, Model) .. ModelHandler
(Model, Scan) .. ScanHandler
(Scan, Domain) .. DomainHandler
(Domain, Emitter) .. EmitterHandler
(Emitter, Region) .. RegionHandler
@enduml

View File

@ -0,0 +1,90 @@
@startuml
class CalculationTask {
model
scan
domain
emitter
region
..
files
}
class Model {
index
..
dlat
dAS
dS1S2
V0
Zsurf
Texp
rmax
}
class Scan {
index
..
filename
mode
initial_state
energies
thetas
phis
alphas
}
class Domain {
index
..
rotation
registry
}
class Emitter {
index
}
class Region {
index
..
range
}
CalculationTask *-- Model
CalculationTask *-- Scan
CalculationTask *-- Domain
CalculationTask *-- Emitter
CalculationTask *-- Region
class Project {
scans
domains
model_handler
cluster_generator
}
class ClusterGenerator {
count_emitters()
create_cluster()
}
class ModelHandler {
create_tasks()
add_result()
}
Model ..> ModelHandler
Scan ..> Project
Domain ..> Project
Emitter ..> ClusterGenerator
Region ..> Project
Project *-left- ModelHandler
Project *- ClusterGenerator
hide empty members
@enduml

View File

@ -0,0 +1,47 @@
@startuml
package pmsco {
class Project {
cluster_generator
export_cluster()
}
abstract class ClusterGenerator {
project
{abstract} count_emitters()
{abstract} create_cluster()
}
class LegacyClusterGenerator {
project
count_emitters()
create_cluster()
}
}
package "user project" {
class UserClusterGenerator {
project
count_emitters()
create_cluster()
}
note bottom : for complex cluster
class UserProject {
count_emitters()
create_cluster()
}
note bottom : for simple cluster
}
Project <|-- UserProject
ClusterGenerator <|-- LegacyClusterGenerator
ClusterGenerator <|-- UserClusterGenerator
Project *-- ClusterGenerator
UserProject .> LegacyClusterGenerator
UserProject .> UserClusterGenerator
@enduml

View File

@ -0,0 +1,90 @@
@startuml
class Project << (T,orchid) >> {
id
..
..
name
code
}
class Job << (T,orchid) >> {
id
..
project_id
..
name
mode
machine
git_hash
datetime
description
}
class Tag << (T,orchid) >> {
id
..
..
key
}
class JobTag << (T,orchid) >> {
id
..
tag_id
job_id
..
value
}
class Model << (T,orchid) >> {
id
..
job_id
..
model
gen
particle
}
class Result << (T,orchid) >> {
id
..
model_id
..
scan
domain
emit
region
rfac
}
class Param << (T,orchid) >> {
id
..
..
key
}
class ParamValue << (T,orchid) >> {
id
..
param_id
model_id
..
value
}
Project "1" *-- "*" Job
Job "1" *-- "*" JobTag
Tag "1" *-- "*" JobTag
Job "1" *-- "*" Model
Param "1" *-- "*" ParamValue
Model "1" *-- "*" ParamValue
Model "1" *-- "*" Result
hide empty members
@enduml

View File

@ -0,0 +1,45 @@
@startuml
start
repeat
:define model tasks;
:gather model results;
repeat while
stop
@enduml
@startuml
start
repeat
partition "generate tasks" {
:define model tasks;
:define scan tasks;
:define domain tasks;
:define emitter tasks;
:define region tasks;
}
fork
:calculate task 1;
fork again
:calculate task 2;
fork again
:calculate task N;
end fork
partition "collect results" {
:gather region results;
:gather emitter results;
:gather domain results;
:gather scan results;
:gather model results;
}
repeat while
stop
@enduml

View File

@ -0,0 +1,24 @@
@startuml{master-slave-messages.png}
== task execution ==
loop calculation tasks
hnote over Master : define task
Master -> Slave: TAG_NEW_TASK
activate Slave
hnote over Slave : calculation
alt successful
Slave --> Master: TAG_NEW_RESULT
else calculation failed
Slave --> Master: TAG_INVALID_RESULT
else critical error
Slave --> Master: TAG_ERROR_ABORTING
end
deactivate Slave
hnote over Master : collect results
end
...
== termination ==
Master -> Slave: TAG_FINISH
destroy Slave
@enduml

View File

@ -0,0 +1,31 @@
@startuml
package pmsco {
abstract class Project {
mode
code
scans
domains
{abstract} create_cluster()
{abstract} create_params()
{abstract} create_model_space()
}
}
package projects {
class UserProject {
__init__()
create_cluster()
create_params()
create_model_space()
}
}
Project <|-- UserProject
hide empty members
@enduml

View File

@ -0,0 +1,66 @@
@startuml
participant rank0 as "rank 0 (master)"
participant rank1 as "rank 1 (slave)"
participant rank2 as "rank 2 (slave)"
participant rankN as "rank N (slave)"
== initialization ==
rank0 ->> rank0
activate rank0
rnote over rank0: initialize project
== task loop ==
rnote over rank0: specify tasks
rank0 ->> rank1: task 1
activate rank1
rnote over rank1: execute task 1
rank0 ->> rank2: task 2
activate rank2
rnote over rank2: execute task 2
rank0 ->> rankN: task N
deactivate rank0
activate rankN
rnote over rankN: execute task N
rank0 <<-- rank1: result 1
deactivate rank1
rnote over rank0: process results\nspecify tasks
activate rank0
rank0 ->> rank1: task N+1
deactivate rank0
activate rank1
rnote over rank1: execute task N+1
rank0 <<-- rank2: result 2
deactivate rank2
activate rank0
rank0 ->> rank2: task N+2
deactivate rank0
activate rank2
rnote over rank2: execute task N+2
rank0 <<-- rankN: result N
deactivate rankN
activate rank0
rank0 ->> rankN: task 2N
deactivate rank0
activate rankN
rnote over rankN: execute task 2N
rank0 <<-- rank1: result N+1
deactivate rank1
rank0 <<-- rank2: result N+2
deactivate rank2
rank0 <<-- rankN: result 2N
deactivate rankN
rnote over rank0: process results
activate rank0
hnote over rank0: calculations complete
== termination ==
rnote over rank0: report results
rank0 ->> rank1: finish
destroy rank1
rank0 ->> rank2: finish
destroy rank2
rank0 ->> rankN: finish
destroy rankN
deactivate rank0
@enduml

View File

@ -0,0 +1,59 @@
@startuml
abstract class Project {
mode : str = "single"
code : str = "edac"
scans : Scan [1..*]
domains : dict [1..*]
cluster_generator : ClusterGenerator
handler_classes
files : FileTracker
{abstract} create_cluster() : Cluster
{abstract} create_params() : CalculatorParams
{abstract} create_model_space() : ModelSpace
}
class Scan {
filename
raw_data
dtype
modulation
mode
emitter
initial_state
energies
thetas
phis
alphas
import_scan_file()
}
class ModelSpace {
start : dict
min : dict
max : dict
step : dict
add_param(name, start, min, max, step)
get_param(name)
}
class CalculatorParams {
title
comment
cluster_file
output_file
scan_file
initial_state
polarization
angular_resolution
z_surface
inner_potential
work_function
polar_incidence_angle
azimuthal_incidence_angle
experiment_temperature
}
Project "1" *-- "1..*" Scan
@enduml

View File

@ -0,0 +1,26 @@
@startuml
:model task|
fork
partition "scan 0" {
:define scan;
:scan 0 task|
detach
:scan 0 result|
}
fork again
partition "scan 1" {
:define scan;
:scan 1 task|
detach
:scan 1 result|
}
fork again
partition "scan N" {
:define scan;
:scan N task|
detach
:scan N result|
}
end fork
:model result|
@enduml

View File

@ -0,0 +1,42 @@
@startuml
|user|
start
:setup;
|pmsco|
:initialize;
:import experimental data;
repeat
:define task;
|calculator|
:calculate\ntask;
|pmsco|
:evaluate results;
repeat while
-> [finished];
:report results;
stop
@enduml
@startuml
|pmsco|
start
:define task (model, scan, domain, emitter, region);
|project|
:create cluster;
:create parameters;
|calculator|
:scattering calculation;
|pmsco|
:combine results;
|project|
:calculate modulation function;
:calculate R-factor;
stop
@enduml

View File

@ -0,0 +1,21 @@
@startuml
start
:initialize;
:import experimental data|
repeat
:define tasks;
fork
:calculate\ntask 1;
fork again
:calculate\ntask N;
end fork
:evaluate results;
repeat while
-> [finished];
:report results|
stop
@enduml

View File

@ -0,0 +1,21 @@
@startuml
skinparam componentStyle uml2
component "PMSCO" as pmsco
component "project" as project
component "scattering code\n(calculator)" as calculator
interface "command line" as cli
interface "experimental data" as data
interface "results" as results
interface "output files" as output
cli --> pmsco
data -> project
pmsco ..> project
pmsco ..> calculator
calculator -> output
pmsco -> results
@enduml

View File

@ -0,0 +1,55 @@
@startuml
package pmsco {
abstract class Project {
mode
code
scans
domains
cluster_generator
handler_classes
__
{abstract} create_cluster()
{abstract} create_params()
{abstract} create_model_space()
..
combine_scans()
combine_domains()
combine_emitters()
calc_modulation()
calc_rfactor()
}
abstract class ClusterGenerator {
{abstract} count_emitters()
{abstract} create_cluster()
}
}
package projects {
class UserProject {
scan_dict
__
setup()
..
create_params()
create_model_space()
..
combine_domains()
}
class UserClusterGenerator {
count_emitters()
create_cluster()
}
}
Project <|-- UserProject
Project *-- ClusterGenerator
ClusterGenerator <|-- UserClusterGenerator
hide empty members
@enduml

View File

@ -0,0 +1,121 @@
BootStrap: debootstrap
OSVersion: bionic
MirrorURL: http://ch.archive.ubuntu.com/ubuntu/
%help
A singularity container for PMSCO.
singularity run -e pmsco.sif path/to/pmsco -r path/to/your-runfile
path/to/pmsco must point to the directory that contains the __main__.py file.
#%setup
# executed on the host system outside of the container before %post
#
# this will be inside the container
# touch ${SINGULARITY_ROOTFS}/tacos.txt
# this will be on the host
# touch avocados.txt
#%files
# files are copied before %post
#
# this copies to root
# avocados.txt
# this copies to /opt
# avocados.txt /opt
#
# this does not work
# ~/.ssh/known_hosts /etc/ssh/ssh_known_hosts
# ~/.ssh/id_rsa /etc/ssh/id_rsa
%labels
Maintainer Matthias Muntwiler
Maintainer_Email matthias.muntwiler@psi.ch
Python_Version 3
%environment
export LC_ALL=C
export PYTHON_VERSION=3
export CONDA_ROOT=/opt/miniconda
export PLANTUML_JAR_PATH=/opt/plantuml/plantuml.jar
export SINGULAR_BRANCH="singular"
%post
export LC_ALL=C
export PYTHON_VERSION=3
export CONDA_ROOT=/opt/miniconda
export PLANTUML_ROOT=/opt/plantuml
sed -i 's/$/ universe/' /etc/apt/sources.list
apt-get update
apt-get -y install \
binutils \
build-essential \
default-jre \
doxygen \
f2c \
g++ \
gcc \
gfortran \
git \
graphviz \
libblas-dev \
liblapack-dev \
libopenmpi-dev \
make \
openmpi-bin \
openmpi-common \
sqlite3 \
wget
apt-get clean
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh
bash ~/miniconda.sh -b -p ${CONDA_ROOT}
. ${CONDA_ROOT}/bin/activate
conda create -q --yes -n pmsco python=${PYTHON_VERSION}
conda activate pmsco
conda install -q --yes -n pmsco \
pip \
"numpy>=1.13" \
scipy \
ipython \
matplotlib \
nose \
mock \
future \
statsmodels \
swig \
gitpython
conda clean --all -y
pip install periodictable attrdict commentjson fasteners mpi4py doxypypy
mkdir ${PLANTUML_ROOT}
wget -O ${PLANTUML_ROOT}/plantuml.jar https://sourceforge.net/projects/plantuml/files/plantuml.jar/download
#%test
# test the image after build
%runscript
. ${CONDA_ROOT}/etc/profile.d/conda.sh
conda activate pmsco
exec python "$@"
%apprun install
. ${CONDA_ROOT}/etc/profile.d/conda.sh
conda activate pmsco
cd ~
git clone https://git.psi.ch/pearl/pmsco.git pmsco
cd pmsco
git checkout master
git checkout -b ${SINGULAR_BRANCH}
make all
nosetests -w tests/
%apprun compile
. ${CONDA_ROOT}/etc/profile.d/conda.sh
conda activate pmsco
make all
nosetests

76
extras/vagrant/Vagrantfile vendored Normal file
View File

@ -0,0 +1,76 @@
# -*- mode: ruby -*-
# vi: set ft=ruby :
# All Vagrant configuration is done below. The "2" in Vagrant.configure
# configures the configuration version (we support older styles for
# backwards compatibility). Please don't change it unless you know what
# you're doing.
Vagrant.configure("2") do |config|
# The most common configuration options are documented and commented below.
# For a complete reference, please see the online documentation at
# https://docs.vagrantup.com.
# Every Vagrant development environment requires a box. You can search for
# boxes at https://vagrantcloud.com/search.
config.vm.box = "sylabs/singularity-3.7-ubuntu-bionic64"
config.vm.box_version = "3.7"
# Disable automatic box update checking. If you disable this, then
# boxes will only be checked for updates when the user runs
# `vagrant box outdated`. This is not recommended.
# config.vm.box_check_update = false
# Create a forwarded port mapping which allows access to a specific port
# within the machine from a port on the host machine. In the example below,
# accessing "localhost:8080" will access port 80 on the guest machine.
# NOTE: This will enable public access to the opened port
# config.vm.network "forwarded_port", guest: 80, host: 8080
# Create a forwarded port mapping which allows access to a specific port
# within the machine from a port on the host machine and only allow access
# via 127.0.0.1 to disable public access
# config.vm.network "forwarded_port", guest: 80, host: 8080, host_ip: "127.0.0.1"
# Create a private network, which allows host-only access to the machine
# using a specific IP.
# config.vm.network "private_network", ip: "192.168.33.10"
# Create a public network, which generally matched to bridged network.
# Bridged networks make the machine appear as another physical device on
# your network.
# config.vm.network "public_network"
# Share an additional folder to the guest VM. The first argument is
# the path on the host to the actual folder. The second argument is
# the path on the guest to mount the folder. And the optional third
# argument is a set of non-required options.
# config.vm.synced_folder "../data", "/vagrant_data"
# Provider-specific configuration so you can fine-tune various
# backing providers for Vagrant. These expose provider-specific options.
# Example for VirtualBox:
#
config.vm.provider "virtualbox" do |vb|
# Display the VirtualBox GUI when booting the machine
# vb.gui = true
# Customize the amount of memory on the VM:
# Increase this number if you plan to run parallel processes.
vb.memory = "2048"
# Customize the number of CPUs:
# Increase as necessary but not more than physically available on the host.
vb.cpus = 2
end
#
# View the documentation for the provider you are using for more
# information on available options.
# Enable provisioning with a shell script. Additional provisioners such as
# Puppet, Chef, Ansible, Salt, and Docker are also available. Please see the
# documentation for more information about their specific syntax and use.
# config.vm.provision "shell", inline: <<-SHELL
# apt-get update
# apt-get install -y apache2
# SHELL
end

View File

@ -15,17 +15,36 @@ SHELL=/bin/sh
#
# the MSC and MUFPOT programs are currently not used.
# they are not built by the top-level targets all and bin.
#
# the make system uses the compiler executables of the current environment.
# to override the executables, you may set the following variables.
# to switch between python versions, however, the developers recommend miniconda.
#
# PYTHON = python executable (default: python)
# PYTHONOPTS = python options (default: none)
# CC = C and Fortran compiler executable (default: gcc)
# CCOPTS = C compiler options (default: none)
# CXX = C++ compiler executable (default: g++)
# CXXOPTS = C++ compiler options (default: none)
#
# make all PYTHON=/usr/bin/python2.7
#
# or:
#
# export PYTHON=/usr/bin/python2.7
# make all
#
.PHONY: all bin docs clean edac loess msc mufpot
.PHONY: all bin docs clean edac loess msc mufpot phagen
PMSCO_DIR = pmsco
DOCS_DIR = docs
all: edac loess docs
all: edac loess phagen docs
bin: edac loess
bin: edac loess phagen
edac loess msc mufpot:
edac loess msc mufpot phagen:
$(MAKE) -C $(PMSCO_DIR)
docs:

View File

@ -8,10 +8,14 @@ python pmsco [pmsco-arguments]
@endverbatim
"""
import pmsco
from pathlib import Path
import sys
pmsco_root = Path(__file__).resolve().parent.parent
if str(pmsco_root) not in sys.path:
sys.path.insert(0, str(pmsco_root))
if __name__ == '__main__':
args, unknown_args = pmsco.parse_cli()
pmsco.main_pmsco(args, unknown_args)
sys.exit(0)
import pmsco.pmsco
pmsco.pmsco.main()

View File

View File

@ -1,5 +1,5 @@
"""
@package pmsco.calculator
@package pmsco.calculators.calculator
abstract scattering program interface.
this module declares the basic interface to scattering programs.
@ -11,17 +11,21 @@ TestCalcInterface is provided for testing the PMSCO code quickly without calling
@author Matthias Muntwiler
@copyright (c) 2015 by Paul Scherrer Institut @n
@copyright (c) 2015-19 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import time
import numpy as np
import data as md
import cluster as mc
import pmsco.data as md
__author__ = 'matthias muntwiler'
@ -38,56 +42,37 @@ class Calculator(object):
or <code>output_file + '.etpai'</code> depending on scan mode.
all other intermediate files are deleted unless keep_temp_files is True.
@param params: a msco_project.Params() object with all necessary values except cluster and output files set.
@param params: a pmsco.project.CalculatorParams object with all necessary values except cluster and output files set.
@param cluster: a msco_cluster.Cluster() object with all atom positions set.
@param cluster: a pmsco.cluster.Cluster(format=FMT_EDAC) object with all atom positions set.
@param scan: a msco_project.Scan() object describing the experimental scanning scheme.
@param scan: a pmsco.project.Scan() object describing the experimental scanning scheme.
@param output_file: base name for all intermediate and output files
@return: result_file, files_cats
@arg result_file is the name of the main ETPI or ETPAI result file to be further processed.
@arg files_cats is a dictionary that lists the names of all created data files with their category.
@return: (str, dict) result_file, and dictionary of created files {filename: category}
@return: (str, dict) result_file, and dictionary of created files.
@arg the first element is the name of the main ETPI or ETPAI result file to be further processed.
@arg the second element is a dictionary that lists the names of all created data files with their category.
the dictionary key is the file name,
the value is the file category (cluster, phase, etc.).
the value is the file category (cluster, atomic, etc.).
"""
return None, None
def check_cluster(self, cluster, output_file):
"""
export the cluster in XYZ format for reference.
along with the complete cluster, the method also saves cuts in the xz (extension .y.xyz) and yz (.x.xyz) plane.
class AtomicCalculator(Calculator):
"""
abstract interface class to the atomic scattering calculation program.
"""
pass
@param cluster: a pmsco.cluster.Cluster() object with all atom positions set.
@param output_file: base name for all intermediate and output files
@return: dictionary listing the names of the created files with their category.
the dictionary key is the file name,
the value is the file category (cluster).
@warning experimental: this method may be moved elsewhere in a future version.
"""
xyz_filename = output_file + ".xyz"
cluster.save_to_file(xyz_filename, fmt=mc.FMT_XYZ)
files = {xyz_filename: 'cluster'}
clucut = mc.Cluster()
clucut.copy_from(cluster)
clucut.trim_slab("x", 0.0, 0.1)
xyz_filename = output_file + ".x.xyz"
clucut.save_to_file(xyz_filename, fmt=mc.FMT_XYZ)
files[xyz_filename] = 'cluster'
clucut.copy_from(cluster)
clucut.trim_slab("y", 0.0, 0.1)
xyz_filename = output_file + ".y.xyz"
clucut.save_to_file(xyz_filename, fmt=mc.FMT_XYZ)
files[xyz_filename] = 'cluster'
return files
class InternalAtomicCalculator(AtomicCalculator):
"""
dummy atomic scattering class if scattering factors are calculated internally by the multiple scattering calculator.
"""
pass
class TestCalculator(Calculator):
@ -127,5 +112,5 @@ class TestCalculator(Calculator):
md.save_data(etpi_filename, result_etpi)
files = {clu_filename: 'cluster', etpi_filename: 'energy'}
files = {clu_filename: 'cluster', etpi_filename: 'region'}
return etpi_filename, files

View File

@ -1,25 +1,30 @@
"""
@package pmsco.edac_calculator
@package pmsco.calculators.edac
Garcia de Abajo EDAC program interface.
@author Matthias Muntwiler
@copyright (c) 2015 by Paul Scherrer Institut @n
@copyright (c) 2015-18 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
import os
from __future__ import print_function
import logging
import math
import numpy as np
import calculator
import data as md
import cluster as mc
import edac.edac as edac
import os
import pmsco.calculators.calculator as calculator
from pmsco.compat import open
import pmsco.data as md
import pmsco.cluster as mc
import pmsco.edac.edac as edac
from pmsco.helpers import BraceMessage as BMsg
logger = logging.getLogger(__name__)
@ -44,18 +49,22 @@ class EdacCalculator(calculator.Calculator):
if alpha is defined, theta is implicitly set to normal emission! (to be generalized)
TODO: some parameters are still hard-coded.
@param params: a pmsco.project.CalculatorParams object with all necessary values except cluster and output files set.
@param scan: a pmsco.project.Scan() object describing the experimental scanning scheme.
@param filepath: (str) name and path of the file to be created.
@return dictionary of created files {filename: category}
"""
files = {}
with open(filepath, "w") as f:
f.write("verbose off\n")
f.write("cluster input %s\n" % (params.cluster_file))
f.write("emitters %u l(A)\n" % (len(params.emitters)))
f.write("cluster input {0}\n".format(params.cluster_file))
f.write("emitters {0:d} l(A)\n".format(len(params.emitters)))
for em in params.emitters:
f.write("%g %g %g %u\n" % em)
#for iat in range(params.atom_types):
#pf = params.phase_file[iat]
#pf = pf.replace(".pha", ".edac.pha")
#f.write("scatterer %u %s\n" % (params.atomic_number[iat], pf))
f.write("{0:f} {1:f} {2:f} {3:d}\n".format(*em))
en = scan.energies + params.work_function
en_min = en.min()
@ -106,7 +115,7 @@ class EdacCalculator(calculator.Calculator):
assert th_num < th.shape[0] * 10, \
"linearization of theta scan causes excessive oversampling {0}/{1}".format(th_num, th.shape[0])
f.write("beta {0}\n".format(params.polar_incidence_angle, params.azimuthal_incidence_angle))
f.write("beta {0}\n".format(params.polar_incidence_angle))
f.write("incidence {0} {1}\n".format(params.polar_incidence_angle, params.azimuthal_incidence_angle))
f.write("emission angle theta {th0:f} {th1:f} {nth:d}\n".format(th0=th_min, th1=th_max, nth=th_num))
@ -136,35 +145,67 @@ class EdacCalculator(calculator.Calculator):
f.write("initial state {0}\n".format(params.initial_state))
polarizations = {'H': 'LPx', 'V': 'LPy', 'L': 'LCP', 'R': 'RCP'}
f.write("polarization {0}\n".format(polarizations[params.polarization]))
f.write("muffin-tin\n")
f.write("V0 E(eV) {0}\n".format(params.inner_potential))
f.write("cluster surface l(A) {0}\n".format(params.z_surface))
scatterers = ["scatterer {at} {fi}\n".format(at=at, fi=fi)
for (at, fi) in params.phase_files.items()
if os.path.isfile(fi)]
rme = ["rmat {fi}\n".format(fi=fi)
for (at, fi) in params.rme_files.items()
if at == params.emitters[0][3] and os.path.isfile(fi)] or \
["rmat inline 1 regular1 {l0} {pv} {pd} {mv} {md}\n".format(l0=params.l_init,
pv=params.rme_plus_value, pd=params.rme_plus_shift,
mv=params.rme_minus_value, md=params.rme_minus_shift)]
if scatterers and rme:
for scat in scatterers:
f.write(scat)
f.write(rme[0])
else:
f.write("muffin-tin\n")
f.write("V0 E(eV) {0:f}\n".format(params.inner_potential))
f.write("cluster surface l(A) {0:f}\n".format(params.z_surface))
f.write("imfp SD-UC\n")
f.write("temperature %g %g\n" % (params.experiment_temperature, params.debye_temperature))
f.write("temperature {0:f} {1:f}\n".format(params.experiment_temperature, params.debye_temperature))
f.write("iteration recursion\n")
f.write("dmax l(A) %g\n" % (params.dmax))
f.write("lmax %u\n" % (params.lmax))
f.write("orders %u " % (len(params.orders)))
for order in params.orders:
f.write("%u " % (order))
f.write("\n")
f.write("emission angle window 1\n")
f.write("scan pd %s\n" % (params.output_file))
f.write("dmax l(A) {0:f}\n".format(params.dmax))
f.write("lmax {0:d}\n".format(params.lmax))
f.write("orders {0:d} ".format(len(params.orders)))
f.write(" ".join(format(order, "d") for order in params.orders) + "\n")
f.write("emission angle window {0:F}\n".format(params.angular_resolution / 2.0))
# scattering factor output (see project.CalculatorParams.phase_output_classes)
if params.phase_output_classes is not None:
fn = "{0}.clu".format(params.output_file)
f.write("cluster output l(A) {fn}\n".format(fn=fn))
files[fn] = "output"
try:
cls = (cl for cl in params.phase_output_classes)
except TypeError:
cls = range(params.phase_output_classes)
for cl in cls:
fn = "{of}.{cl}.scat".format(cl=cl, of=params.output_file)
f.write("scan scatterer {cl} phase-shifts {fn}\n".format(cl=cl, fn=fn))
files[fn] = "output"
f.write("scan pd {0}\n".format(params.output_file))
files[params.output_file] = "output"
f.write("end\n")
return files
def run(self, params, cluster, scan, output_file):
"""
run EDAC with the given parameters and cluster.
@param params: a msc_param.Params() object with all necessary values except cluster and output files set.
@param params: a pmsco.project.CalculatorParams object with all necessary values except cluster and output files set.
@param cluster: a msc_cluster.Cluster(format=FMT_EDAC) object with all atom positions set.
@param cluster: a pmsco.cluster.Cluster(format=FMT_EDAC) object with all atom positions set.
@param scan: a msco_project.Scan() object describing the experimental scanning scheme.
@param scan: a pmsco.project.Scan() object describing the experimental scanning scheme.
@param output_file: base name for all intermediate and output files
@return: result_file, files_cats
@return: (str, dict) result_file, and dictionary of created files {filename: category}
"""
# set up scan
@ -185,13 +226,13 @@ class EdacCalculator(calculator.Calculator):
params.cluster_file = clu_filename
params.output_file = out_filename
params.data_file = dat_filename
params.emitters = cluster.get_emitters()
params.emitters = cluster.get_emitters(['x', 'y', 'z', 'c'])
# save parameter files
logger.debug("writing cluster file %s", clu_filename)
cluster.save_to_file(clu_filename, fmt=mc.FMT_EDAC)
logger.debug("writing input file %s", par_filename)
self.write_input_file(params, scan, par_filename)
files = self.write_input_file(params, scan, par_filename)
# run EDAC
logger.info("calling EDAC with input file %s", par_filename)
@ -213,11 +254,20 @@ class EdacCalculator(calculator.Calculator):
pass
result_etpi = md.interpolate_hemi_scan(result_etpi, hemi_tpi)
if result_etpi.shape[0] != scan.raw_data.shape[0]:
logger.error("scan length mismatch: EDAC result: %u, scan data: %u", result_etpi.shape[0], scan.raw_data.shape[0])
if params.fixed_cluster:
expected_shape = max(scan.energies.shape[0], 1) * max(scan.alphas.shape[0], 1)
else:
expected_shape = max(scan.energies.shape[0], 1) * max(scan.phis.shape[0], scan.thetas.shape[0], 1)
if result_etpi.shape[0] != expected_shape:
logger.warning(BMsg("possible scan length mismatch: EDAC result: {result}, expected: {expected}",
result=result_etpi.shape[0], expected=expected_shape))
logger.debug("save result to file %s", etpi_filename)
md.save_data(etpi_filename, result_etpi)
files = {clu_filename: 'input', par_filename: 'input', dat_filename: 'output',
etpi_filename: 'region'}
files[clu_filename] = 'input'
files[par_filename] = 'input'
files[dat_filename] = 'output'
files[etpi_filename] = 'region'
return etpi_filename, files

View File

@ -13,9 +13,12 @@ Licensed under the Apache License, Version 2.0 (the "License"); @n
http://www.apache.org/licenses/LICENSE-2.0
"""
import calculator
import data as md
import msc.msc as msc
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import pmsco.calculators.calculator as calculator
import pmsco.data as md
import pmsco.msc.msc as msc
import logging
logger = logging.getLogger(__name__)
@ -32,7 +35,7 @@ class MscCalculator(calculator.Calculator):
f.write(" %s\n" % (params.polarization) )
f.write(" %4u\n" % (params.scattering_level) )
f.write(" %7.2f%7.2f\n" % (params.fcut, params.cut) )
f.write(" %12.6f\n" % (params.angular_broadening) )
f.write(" %12.6f\n" % (params.angular_resolution) )
f.write(" %12.6f\n" % (params.lattice_constant) )
f.write(" %12.6f\n" % (params.z_surface) )
f.write(" %4u\n" % (params.atom_types) )
@ -59,7 +62,7 @@ class MscCalculator(calculator.Calculator):
"""
run the MSC program with the given parameters and cluster.
@param params: a project.Params() object with all necessary values except cluster and output files set.
@param params: a project.CalculatorParams() object with all necessary values except cluster and output files set.
@param cluster: a cluster.Cluster(format=FMT_MSC) object with all atom positions set.

View File

View File

@ -0,0 +1,44 @@
SHELL=/bin/sh
# makefile for PHAGEN program and module
#
# the PHAGEN source code is not included in the public distribution.
# please obtain the PHAGEN code from the original author,
# and copy it to this directory before compilation.
#
# see the top-level makefile for additional information.
.SUFFIXES:
.SUFFIXES: .c .cpp .cxx .exe .f .h .i .o .py .pyf .so
.PHONY: all clean phagen
FC?=gfortran
FCOPTS?=-std=legacy
F2PY?=f2py
F2PYOPTS?=--f77flags=-std=legacy --f90flags=-std=legacy
CC?=gcc
CCOPTS?=
SWIG?=swig
SWIGOPTS?=
PYTHON?=python
PYTHONOPTS?=
PYTHONINC?=
PYTHON_CONFIG = ${PYTHON}-config
PYTHON_CFLAGS ?= $(shell ${PYTHON_CONFIG} --cflags)
PYTHON_EXT_SUFFIX ?= $(shell ${PYTHON_CONFIG} --extension-suffix)
all: phagen
phagen: phagen.exe phagen$(PYTHON_EXT_SUFFIX)
phagen.exe: phagen_scf.f msxas3.inc msxasc3.inc
$(FC) $(FCOPTS) -o phagen.exe phagen_scf.f
phagen.pyf: | phagen_scf.f
$(F2PY) -h phagen.pyf -m phagen phagen_scf.f only: libmain
phagen$(PYTHON_EXT_SUFFIX): phagen_scf.f phagen.pyf msxas3.inc msxasc3.inc
$(F2PY) -c $(F2PYOPTS) -m phagen phagen.pyf phagen_scf.f
clean:
rm -f *.so *.o *.exe

View File

@ -0,0 +1,102 @@
--- phagen_scf.orig.f 2019-06-05 16:45:52.977855859 +0200
+++ phagen_scf.f 2019-05-09 16:32:35.790286429 +0200
@@ -174,6 +174,99 @@
1100 format(//,1x,' ** phagen terminated normally ** ',//)
end
+
+c-----------------------------------------------------------------------
+ subroutine libmain(infile,outfile,etcfile)
+c main calculation routine
+c entry point for external callers
+c
+c infile: name of parameter input file
+c
+c outfile: base name of output files
+c output files with endings .list, .clu, .pha, .tl, .rad
+c will be created
+c-----------------------------------------------------------------------
+ implicit real*8 (a-h,o-z)
+c
+ include 'msxas3.inc'
+ include 'msxasc3.inc'
+
+ character*60 infile,outfile,etcfile
+ character*70 listfile,clufile,tlfile,radfile,phafile
+
+c
+c.. constants
+ antoau = 0.52917715d0
+ pi = 3.141592653589793d0
+ ev = 13.6058d0
+ zero = 0.d0
+c.. threshold for linearity
+ thresh = 1.d-4
+c.. fortran io units
+ idat = 5
+ iwr = 6
+ iphas = 30
+ iedl0 = 31
+ iwf = 32
+ iof = 17
+
+ iii=LnBlnk(outfile)+1
+ listfile=outfile
+ listfile(iii:)='.list'
+ clufile=outfile
+ clufile(iii:)='.clu'
+ phafile=outfile
+ phafile(iii:)='.pha'
+ tlfile=outfile
+ tlfile(iii:)='.tl'
+ radfile=outfile
+ radfile(iii:)='.rad'
+
+ open(idat,file=infile,form='formatted',status='old')
+ open(iwr,file=listfile,form='formatted',status='unknown')
+ open(10,file=clufile,form='formatted',status='unknown')
+ open(35,file=tlfile,form='formatted',status='unknown')
+ open(55,file=radfile,form='formatted',status='unknown')
+ open(iphas,file=phafile,form='formatted',status='unknown')
+
+ open(iedl0,form='unformatted',status='scratch')
+ open(iof,form='unformatted',status='scratch')
+ open(unit=21,form='unformatted',status='scratch')
+ open(60,form='formatted',status='scratch')
+ open(50,form='formatted',status='scratch')
+ open(unit=13,form='formatted',status='scratch')
+ open(unit=14,form='formatted',status='scratch')
+ open(unit=11,status='scratch')
+ open(unit=iwf,status='scratch')
+ open(unit=33,status='scratch')
+ open(unit=66,status='scratch')
+
+ call inctrl
+ call intit(iof)
+ call incoor
+ call calphas
+
+ close(idat)
+ close(iwr)
+ close(10)
+ close(35)
+ close(55)
+ close(iphas)
+ close(iedl0)
+ close(iof)
+ close(60)
+ close(50)
+ close(13)
+ close(14)
+ close(11)
+ close(iwf)
+ close(33)
+ close(66)
+ close(21)
+
+ endsubroutine
+
+
subroutine inctrl
implicit real*8 (a-h,o-z)
include 'msxas3.inc'

View File

@ -0,0 +1,163 @@
"""
@package pmsco.calculators.phagen.runner
Natoli/Sebilleau PHAGEN interface
this module runs the PHAGEN program to calculate scattering factors and radial matrix element.
@author Matthias Muntwiler
@copyright (c) 2015-19 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import os
import shutil
import tempfile
from pmsco.calculators.calculator import AtomicCalculator
from pmsco.calculators.phagen.phagen import libmain
from pmsco.calculators.phagen.translator import Translator
import pmsco.cluster
logger = logging.getLogger(__name__)
class PhagenCalculator(AtomicCalculator):
"""
use the PHAGEN program to calculate scattering factors and radial matrix element.
this produces scatterer, radial matrix element and cluster files for EDAC.
"""
def run(self, params, cluster, scan, output_file):
"""
create the input file, run PHAGEN, and translate the output to EDAC format.
the following files are created in the job work directory:
- scattering factor files in EDAC format.
their names are `output_file + "_{atomclass}.scat"`.
- radial matrix element file in EDAC format.
its name is `output_file + ".rme"`.
- cluster file in PMSCO format.
its name is `output_file + ".clu"`.
the cluster and params objects are updated and linked to the scattering files
so that they can be passed to EDAC without further modification.
the radial matrix element is currently not used.
note that the scattering files are numbered according to the atomic environment and not chemical element.
this means that the updated cluster (cluster object or ".clu" file)
must be used in the scattering calculation.
atomic index is not preserved - atoms in the input and output clusters can only be related by coordinate!
because PHAGEN generates a lot of files with hard-coded names,
the function creates a temporary directory for PHAGEN and deletes it before returning.
@param params: pmsco.project.CalculatorParams object.
the phase_files attribute is updated with the paths of the scattering files.
@param cluster: pmsco.cluster.Cluster object.
the cluster is updated with the one returned from PHAGEN.
the atom classes are linked to the scattering files.
@param scan: pmsco.project.Scan object.
the scan object is used to determine the kinetic energy range.
@param output_file: base path and name of the output files.
@return (None, dict) where dict is a list of output files with their category.
the category is "atomic" for all output files.
"""
assert cluster.get_emitter_count() == 1, "PHAGEN cannot handle more than one emitter at a time"
transl = Translator()
transl.params.set_params(params)
transl.params.set_cluster(cluster)
transl.params.set_scan(scan)
phagen_cluster = pmsco.cluster.Cluster()
files = {}
prev_wd = os.getcwd()
try:
with tempfile.TemporaryDirectory() as temp_dir:
os.chdir(temp_dir)
os.mkdir("div")
os.mkdir("div/wf")
os.mkdir("plot")
os.mkdir("data")
# prepare input for phagen
infile = "phagen.in"
outfile = "phagen.out"
try:
transl.write_input(infile)
report_infile = os.path.join(prev_wd, output_file + ".phagen.in")
shutil.copy(infile, report_infile)
files[report_infile] = "input"
except IOError:
logger.warning("error writing phagen input file {fi}.".format(fi=infile))
# call phagen
libmain(infile, outfile)
# collect results
try:
phafile = outfile + ".pha"
transl.parse_phagen_phase(phafile)
report_phafile = os.path.join(prev_wd, output_file + ".phagen.pha")
shutil.copy(phafile, report_phafile)
files[report_phafile] = "output"
except IOError:
logger.error("error loading phagen phase file {fi}".format(fi=phafile))
try:
radfile = outfile + ".rad"
transl.parse_radial_file(radfile)
report_radfile = os.path.join(prev_wd, output_file + ".phagen.rad")
shutil.copy(radfile, report_radfile)
files[report_radfile] = "output"
except IOError:
logger.error("error loading phagen radial file {fi}".format(fi=radfile))
try:
clufile = outfile + ".clu"
phagen_cluster.load_from_file(clufile, pmsco.cluster.FMT_PHAGEN_OUT)
except IOError:
logger.error("error loading phagen cluster file {fi}".format(fi=clufile))
try:
listfile = outfile + ".list"
report_listfile = os.path.join(prev_wd, output_file + ".phagen.list")
shutil.copy(listfile, report_listfile)
files[report_listfile] = "log"
except IOError:
logger.error("error loading phagen list file {fi}".format(fi=listfile))
finally:
os.chdir(prev_wd)
# write edac files
scatfile = output_file + "_{}.scat"
scatfiles = transl.write_edac_scattering(scatfile)
params.phase_files = {c: scatfiles[c] for c in scatfiles}
files.update({scatfiles[c]: "atomic" for c in scatfiles})
rmefile = output_file + ".rme"
transl.write_edac_emission(rmefile)
files[rmefile] = "atomic"
cluster.update_atoms(phagen_cluster, {'c'})
clufile = output_file + ".pmsco.clu"
cluster.save_to_file(clufile, pmsco.cluster.FMT_PMSCO)
files[clufile] = "cluster"
return None, files

View File

@ -0,0 +1,476 @@
"""
@package pmsco.calculators.phagen.translator
Natoli/Sebilleau PHAGEN interface
this module provides conversion between input/output files of PHAGEN and EDAC.
@author Matthias Muntwiler
@copyright (c) 2015-19 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from pmsco.cluster import Cluster
from pmsco.compat import open
## rydberg energy in electron volts
ERYDBERG = 13.6056923
def state_to_edge(state):
"""
translate spectroscopic notation to edge notation.
@param state: spectroscopic notation: "1s", "2s", "2p1/2", etc.
@return: edge notation: "k", "l1", "l2", etc.
note: if the j-value is not given, the lower j edge is returned.
"""
jshells = ['s', 'p1/2', 'p3/2', 'd3/2', 'd5/2', 'f5/2', 'f7/2']
lshells = [s[0] for s in jshells]
shell = int(state[0])
try:
subshell = jshells.index(state[1:]) + 1
except ValueError:
subshell = lshells.index(state[1]) + 1
except IndexError:
subshell = 1
edge = "klmnop"[shell-1]
if shell > 1:
edge += str(subshell)
return edge
class TranslationParams(object):
"""
project parameters needed for translation.
energy unit is eV.
"""
def __init__(self):
self.initial_state = "1s"
self.binding_energy = 0.
self.cluster = None
self.kinetic_energies = np.empty(0, dtype=np.float)
@property
def l_init(self):
return "spdf".index(self.initial_state[1])
@property
def edge(self):
return state_to_edge(self.initial_state)
def set_params(self, params):
"""
set the translation parameters.
@param params: a pmsco.project.CalculatorParams object or
a dictionary containing some or all public fields of this class.
@return: None
"""
try:
self.initial_state = params.initial_state
self.binding_energy = params.binding_energy
except AttributeError:
for key in params:
self.__setattr__(key, params[key])
def set_scan(self, scan):
"""
set the scan parameters.
@param scan: a pmsco.project.Scan object
@return: None
"""
try:
energies = scan.energies
except AttributeError:
try:
energies = scan['e']
except KeyError:
energies = scan
if not isinstance(energies, np.ndarray):
energies = np.array(energies)
self.kinetic_energies = np.resize(self.kinetic_energies, energies.shape)
self.kinetic_energies = energies
def set_cluster(self, cluster):
"""
set the initial cluster.
@param cluster: a pmsco.cluster.Cluster object
@return: None
"""
self.cluster = cluster
class Translator(object):
"""
data conversion to/from phagen input/output files.
usage:
1. set the translation parameters self.params.
2. call write_input_file to create the phagen input files.
3. call phagen on the input file.
4. call parse_phagen_phase.
5. call parse_radial_file.
6. call write_edac_scattering to produce the EDAC scattering matrix files.
7. call write_edac_emission to produce the EDAC emission matrix file.
"""
## @var params
#
# project parameters needed for translation.
#
# fill the attributes of this object before using any translator methods.
## @var scattering
#
# t-matrix storage
#
# the t-matrix is stored in a flat, one-dimensional numpy structured array consisting of the following fields:
# @arg e (float) energy (eV)
# @arg a (int) atom index (1-based)
# @arg l (int) angular momentum quantum number l
# @arg t (complex) scattering matrix element, t = exp(-i * delta) * sin delta
#
# @note PHAGEN uses the convention t = exp(-i * delta) * sin delta,
# whereas EDAC uses t = exp(i * delta) * sin delta (complex conjugate).
# this object stores the t-matrix according to the PHAGEN convention.
# the conversion to the EDAC convention occurs in write_edac_scattering_file().
## @var emission
#
# radial matrix element storage
#
# the radial matrix elemnts are stored in a flat, one-dimensional numpy structured array
# consisting of the following fields:
# @arg e (float) energy (eV)
# @arg dw (complex) matrix element for the transition to l-1
# @arg up (complex) matrix element for the transition to l+1
## @var cluster
#
# cluster object for PHAGEN
#
# this object is created by translate_cluster().
def __init__(self):
"""
initialize the object instance.
"""
self.params = TranslationParams()
dt = [('e', 'f4'), ('a', 'i4'), ('l', 'i4'), ('t', 'c16')]
self.scattering = np.empty(0, dtype=dt)
dt = [('e', 'f4'), ('dw', 'c16'), ('up', 'c16')]
self.emission = np.empty(0, dtype=dt)
self.cluster = None
def translate_cluster(self):
"""
translate the cluster into a form suitable for PHAGEN.
specifically, move the (first and hopefully only) emitter to the first atom position.
the method copies the cluster from self.params into a new object
and stores it under self.cluster.
@return: None
"""
self.cluster = Cluster()
self.cluster.copy_from(self.params.cluster)
ems = self.cluster.get_emitters(['i'])
self.cluster.move_to_first(idx=ems[0][0]-1)
def write_cluster(self, f):
"""
write the cluster section of the PHAGEN input file.
@param f: file or output stream (an object with a write method)
@return: None
"""
for atom in self.cluster.data:
d = {k: atom[k] for k in atom.dtype.names}
f.write("{s} {t} {x} {y} {z}\n".format(**d))
f.write("-1 -1 0. 0. 0.\n")
def write_ionicity(self, f):
"""
write the ionicity section of the PHAGEN input file.
ionicity is read from the 'q' column of the cluster.
all atoms of a chemical element must have the same charge state
because ionicity has to be specified per element.
this function writes the average of all charge states of an element.
@param f: file or output stream (an object with a write method)
@return: None
"""
data = self.cluster.data
elements = np.unique(data['t'])
for element in elements:
idx = np.where(data['t'] == element)
charge = np.mean(data['q'][idx])
f.write("{t} {q}\n".format(t=element, q=charge))
f.write("-1\n")
def write_input(self, f):
"""
write the PHAGEN input file.
@param f: file path or output stream (an object with a write method).
@return: None
"""
phagen_params = {}
self.translate_cluster()
phagen_params['absorber'] = 1
phagen_params['emin'] = self.params.kinetic_energies.min() / ERYDBERG
phagen_params['emax'] = self.params.kinetic_energies.max() / ERYDBERG
if self.params.kinetic_energies.shape[0] > 1:
phagen_params['delta'] = (phagen_params['emax'] - phagen_params['emin']) / \
(self.params.kinetic_energies.shape[0] - 1)
else:
phagen_params['delta'] = 0.1
phagen_params['edge'] = state_to_edge(self.params.initial_state)
phagen_params['edge1'] = 'm4' # auger not supported
phagen_params['edge2'] = 'm4' # auger not supported
phagen_params['cip'] = self.params.binding_energy / ERYDBERG
if phagen_params['cip'] < 0.001:
raise ValueError("binding energy parameter is zero.")
if np.sum(np.abs(self.cluster.data['q'])) > 0.:
phagen_params['ionzst'] = 'ionic'
else:
phagen_params['ionzst'] = 'neutral'
if hasattr(f, "write") and callable(f.write):
f.write("&job\n")
f.write("calctype='xpd',\n")
f.write("coor='angs',\n")
f.write("cip={cip},\n".format(**phagen_params))
f.write("absorber={absorber},\n".format(**phagen_params))
f.write("edge='{edge}',\n".format(**phagen_params))
f.write("edge1='{edge1}',\n".format(**phagen_params))
f.write("edge2='{edge1}',\n".format(**phagen_params))
f.write("gamma=0.03,\n")
f.write("lmax_mode=2,\n")
f.write("lmaxt=50,\n")
f.write("emin={emin},\n".format(**phagen_params))
f.write("emax={emax},\n".format(**phagen_params))
f.write("delta={delta},\n".format(**phagen_params))
f.write("potgen='in',\n")
f.write("potype='hedin',\n")
f.write("norman='stdcrm',\n")
f.write("ovlpfac=0.0,\n")
f.write("ionzst='{ionzst}',\n".format(**phagen_params))
f.write("charelx='ex',\n")
f.write("l2h=4\n")
f.write("&end\n")
f.write("comment 1\n")
f.write("comment 2\n")
f.write("\n")
self.write_cluster(f)
self.write_ionicity(f)
else:
with open(f, "w") as fi:
self.write_input(fi)
def parse_phagen_phase(self, f):
"""
parse the phase output file from PHAGEN.
the phase file is written to div/phases.dat.
it contains the following columns:
@arg e energy (Ry)
@arg x1 unknown 1
@arg x2 unknown 2
@arg na atom index (1-based)
@arg nl angular momentum quantum number l
@arg tr real part of the scattering matrix element
@arg ti imaginary part of the scattering matrix element
@arg ph phase shift
the data is translated into the self.scattering array.
@arg e energy (eV)
@arg a atom index (1-based)
@arg l angular momentum quantum number l
@arg t complex scattering matrix element
@note PHAGEN uses the convention t = exp(-i * delta) * sin delta,
whereas EDAC uses t = exp(i * delta) * sin delta (complex conjugate).
this class stores the t-matrix according to the PHAGEN convention.
the conversion to the EDAC convention occurs in write_edac_scattering_file().
@param f: file or path (any file-like or path-like object that can be passed to numpy.genfromtxt).
@return: None
"""
dt = [('e', 'f4'), ('x1', 'f4'), ('x2', 'f4'), ('na', 'i4'), ('nl', 'i4'),
('tr', 'f8'), ('ti', 'f8'), ('ph', 'f4')]
data = np.atleast_1d(np.genfromtxt(f, dtype=dt))
self.scattering = np.resize(self.scattering, data.shape)
scat = self.scattering
scat['e'] = data['e'] * ERYDBERG
scat['a'] = data['na']
scat['l'] = data['nl']
scat['t'] = data['tr'] + 1j * data['ti']
def write_edac_scattering(self, filename_format, phases=False):
"""
write scatterer files for EDAC.
produces one file for each atom class in self.scattering.
@param filename_format: file name including a placeholder {} for the atom class.
@param phases: write phase files instead of t-matrix files.
@return: dictionary that maps atom classes to file names
"""
if phases:
write = self.write_edac_phase_file
else:
write = self.write_edac_scattering_file
scat = self.scattering
atoms = np.unique(scat['a'])
files = {}
for atom in atoms:
f = filename_format.format(atom)
sel = scat['a'] == atom
idx = np.where(sel)
atom_scat = scat[idx]
write(f, atom_scat)
files[atom] = f
return files
def write_edac_scattering_file(self, f, scat):
"""
write a scatterer file for EDAC.
@param f: file path or output stream (an object with a write method).
@param scat: a slice of the self.scattering array belonging to the same atom class.
@return: None
"""
if hasattr(f, "write") and callable(f.write):
energies = np.unique(scat['e'])
ne = energies.shape[0]
lmax = scat['l'].max()
if ne == 1:
f.write("1 {lmax} regular tl\n".format(lmax=lmax))
else:
f.write("{nk} E(eV) {lmax} regular tl\n".format(nk=ne, lmax=lmax))
for energy in energies:
sel = scat['e'] == energy
idx = np.where(sel)
energy_scat = scat[idx]
if ne > 1:
f.write("{0:.3f} ".format(energy))
for item in energy_scat:
f.write(" {0:.6f} {1:.6f}".format(item['t'].real, -item['t'].imag))
for i in range(len(energy_scat), lmax + 1):
f.write(" 0 0")
f.write("\n")
else:
with open(f, "w") as fi:
self.write_edac_scattering_file(fi, scat)
def write_edac_phase_file(self, f, scat):
"""
write a phase file for EDAC.
@param f: file path or output stream (an object with a write method).
@param scat: a slice of the self.scattering array belonging to the same atom class.
@return: None
"""
if hasattr(f, "write") and callable(f.write):
energies = np.unique(scat['e'])
ne = energies.shape[0]
lmax = scat['l'].max()
if ne == 1:
f.write("1 {lmax} regular real\n".format(lmax=lmax))
else:
f.write("{nk} E(eV) {lmax} regular real\n".format(nk=ne, lmax=lmax))
for energy in energies:
sel = scat['e'] == energy
idx = np.where(sel)
energy_scat = scat[idx]
if ne > 1:
f.write("{0:.3f} ".format(energy))
for item in energy_scat:
pha = np.sign(item['t'].real) * np.arcsin(np.sqrt(np.abs(item['t'].imag)))
f.write(" {0:.6f}".format(pha))
for i in range(len(energy_scat), lmax + 1):
f.write(" 0")
f.write("\n")
else:
with open(f, "w") as fi:
self.write_edac_phase_file(fi, scat)
def parse_radial_file(self, f):
"""
parse the radial matrix element output file from phagen.
@param f: file or path (any file-like or path-like object that can be passed to numpy.genfromtxt).
@return: None
"""
dt = [('ar', 'f8'), ('ai', 'f8'), ('br', 'f8'), ('bi', 'f8')]
data = np.atleast_1d(np.genfromtxt(f, dtype=dt))
self.emission = np.resize(self.emission, data.shape)
emission = self.emission
emission['dw'] = data['ar'] + 1j * data['ai']
emission['up'] = data['br'] + 1j * data['bi']
def write_edac_emission(self, f):
"""
write the radial photoemission matrix element in EDAC format.
requires self.emission, self.params.kinetic_energies and self.params.initial_state.
@param f: file path or output stream (an object with a write method).
@return: None
"""
if hasattr(f, "write") and callable(f.write):
l0 = self.params.l_init
energies = self.params.kinetic_energies
emission = self.emission
emission['e'] = energies
ne = energies.shape[0]
if ne == 1:
f.write("1 regular2 {l0}\n".format(l0=l0))
else:
f.write("{nk} E(eV) regular2 {l0}\n".format(nk=ne, l0=l0))
for item in emission:
if ne > 1:
f.write("{0:.3f} ".format(item['e']))
f.write(" {0:.6f} {1:.6f}".format(item['up'].real, item['up'].imag))
f.write(" {0:.6f} {1:.6f}".format(item['dw'].real, item['dw'].imag))
f.write("\n")
else:
with open(f, "w") as of:
self.write_edac_emission(of)

776
pmsco/cluster.py Normal file → Executable file

File diff suppressed because it is too large Load Diff

40
pmsco/compat.py Normal file
View File

@ -0,0 +1,40 @@
"""
@package pmsco.compat
compatibility code
code bits to provide compatibility for different python versions.
currently supported 2.7 and 3.6.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from io import open as io_open
def open(fname, mode='r', encoding='latin1'):
"""
open a data file for read/write/append using the default str type
this is a drop-in for io.open
where data is exchanged via the built-in str type of python,
whether this is a byte string (python 2) or unicode string (python 3).
the file is assumed to be a latin-1 encoded binary file.
@param fname: file name and path
@param mode: 'r', 'w' or 'a'
@param encoding: 'latin1' (default), 'ascii' or 'utf-8'
@return file handle
"""
if isinstance(b'b', str):
# python 2
mode += 'b'
kwargs = {}
else:
# python 3
mode += 't'
kwargs = {'encoding': encoding}
return io_open(fname, mode, **kwargs)

120
pmsco/config.py Normal file
View File

@ -0,0 +1,120 @@
"""
@package pmsco.config
infrastructure for configurable objects
@author Matthias Muntwiler
@copyright (c) 2021 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
import collections.abc
import functools
import inspect
import logging
from pathlib import Path
logger = logging.getLogger(__name__)
def resolve_path(path, dirs):
"""
resolve a file path by replacing placeholders
placeholders are enclosed in curly braces.
values for all possible placeholders are provided in a dictionary.
@param path: str, Path or other path-like.
example: '{work}/test/testfile.dat'.
@param dirs: dictionary mapping placeholders to project paths.
the paths can be str, Path or other path-like
example: {'work': '/home/user/work'}
@return: pathlib.Path object
"""
return Path(*(p.format(**dirs) for p in Path(path).parts))
class ConfigurableObject(object):
"""
Parent class for objects that can be configured by a run file
the run file is a JSON file that contains object data in a nested dictionary structure.
in the dictionary structure the keys are property or attribute names of the object to be initialized.
keys starting with a non-alphabetic character (except for some special keys like __class__) are ignored.
these can be used as comments, or they protect private attributes.
the values can be numeric values, strings, lists or dictionaries.
simple values are simply assigned using setattr.
this may call a property setter if defined.
lists are iterated. each item is appended to the attribute.
the attribute must implement an append method in this case.
if an item is a dictionary and contains the special key '__class__',
an object of that class is instantiated and recursively initialized with the dictionary elements.
this requires that the class can be found in the module scope passed to the parser methods,
and that the class inherits from this class.
cases that can't be covered easily using this mechanism
should be implemented in a property setter.
value-checking should also be done in a property setter (or the append method in sequence-like objects).
"""
def __init__(self):
pass
def set_properties(self, module, data_dict, project):
"""
set properties of this class.
@param module: module reference that should be used to resolve class names.
this is usually the project module.
@param data_dict: dictionary of properties to set.
see the class description for details.
@param project: reference to the project object.
@return: None
"""
for key in data_dict:
if key[0].isalpha():
self.set_property(module, key, data_dict[key], project)
def set_property(self, module, key, value, project):
obj = self.parse_object(module, value, project)
if hasattr(self, key):
if obj is not None:
if isinstance(obj, collections.abc.MutableSequence):
attr = getattr(self, key)
for item in obj:
attr.append(item)
elif isinstance(obj, collections.abc.Mapping):
d = getattr(self, key)
if d is not None and isinstance(d, collections.abc.MutableMapping):
d.update(obj)
else:
setattr(self, key, obj)
else:
setattr(self, key, obj)
else:
setattr(self, key, obj)
else:
logger.warning(f"class {self.__class__.__name__} does not have attribute {key}.")
def parse_object(self, module, value, project):
if isinstance(value, collections.abc.MutableMapping) and "__class__" in value:
cn = value["__class__"].split('.')
c = functools.reduce(getattr, cn, module)
s = inspect.signature(c)
if 'project' in s.parameters:
o = c(project=project)
else:
o = c()
o.set_properties(module, value, project)
elif isinstance(value, collections.abc.MutableSequence):
o = [self.parse_object(module, i, project) for i in value]
else:
o = value
return o

View File

@ -1,21 +1,29 @@
"""
@package pmsco.data
import, export, evaluation of msc data
import, export, evaluation of msc data.
this module provides common functions for loading/saving and manipulating PED scan data sets.
@author Matthias Muntwiler
@copyright (c) 2015 by Paul Scherrer Institut @n
@copyright (c) 2015-17 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
import os
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import numpy as np
import os
import scipy.optimize as so
import loess.loess as loess
from pmsco.compat import open
import pmsco.loess.loess as loess
logger = logging.getLogger(__name__)
@ -109,7 +117,7 @@ def load_plt(filename, int_column=-1):
data[i]['p'] = phi
data[i]['i'] = selected intensity column
"""
data = np.genfromtxt(filename, usecols=(0, 2, 3, int_column), dtype=DTYPE_ETPI)
data = np.atleast_1d(np.genfromtxt(filename, usecols=(0, 2, 3, int_column), dtype=DTYPE_ETPI))
sort_data(data)
return data
@ -149,7 +157,7 @@ def load_edac_pd(filename, int_column=-1, energy=0.0, theta=0.0, phi=0.0, fixed_
data[i]['i'] = selected intensity column
@endverbatim
"""
with open(filename, 'r') as f:
with open(filename, "r") as f:
header1 = f.readline().strip()
header2 = f.readline().strip()
if not header1 == '--- scan PD':
@ -181,7 +189,7 @@ def load_edac_pd(filename, int_column=-1, energy=0.0, theta=0.0, phi=0.0, fixed_
logger.warning("unexpected EDAC output file column name")
break
cols = tuple(cols)
raw = np.genfromtxt(filename, usecols=cols, dtype=dtype, skip_header=2)
raw = np.atleast_1d(np.genfromtxt(filename, usecols=cols, dtype=dtype, skip_header=2))
if fixed_cluster:
etpi = np.empty(raw.shape, dtype=DTYPE_ETPAI)
@ -259,19 +267,38 @@ def load_data(filename, dtype=None):
DTYPE_EI, DTYPE_ETPI, DTYPE_ETPIS, DTYPE_ETPAI, or DTYPE_ETPAIS.
by default, the function uses the extension to determine the data type.
the actual type can be read from the dtype attribute of the returned array.
if the extension is missing, DTYPE_EI is assumed.
@return one-dimensional numpy structured ndarray with data
@raise IOError if the file cannot be read.
@raise IndexError if the number of columns is lower than expected based on the dtype or extension.
"""
if not dtype:
(root, ext) = os.path.splitext(filename)
datatype = ext[1:].upper()
dtype = DTYPES[datatype]
ext_type = ext[1:].upper()
try:
dtype = DTYPES[ext_type]
except KeyError:
dtype = DTYPE_EI
data = np.loadtxt(filename, dtype=dtype)
sort_data(data)
return data
def format_extension(data):
"""
format the file extension based on the contents of an array.
@param data ETPI-like structured numpy.ndarray.
@return: file extension string including the leading period.
"""
return "." + "".join(data.dtype.names)
def save_data(filename, data):
"""
save column data (ETPI, and the like) to a text file.
@ -331,20 +358,24 @@ def restructure_data(data, dtype=DTYPE_ETPAIS, defaults=None):
undefined fields are initialized to zero.
if the parameter is unspecified, all fields are initialized to zero.
@return: re-structured numpy array
@return: re-structured numpy array or
@c data if the new and original data types are the same.
"""
new_data = np.zeros(data.shape, dtype=dtype)
fields = [dt[0] for dt in dtype if dt[0] in data.dtype.names]
if data.dtype == dtype:
return data
else:
new_data = np.zeros(data.shape, dtype=dtype)
fields = [dt[0] for dt in dtype if dt[0] in data.dtype.names]
if defaults is not None:
for field, value in defaults.iteritems():
if field in new_data.dtype.names:
new_data[field] = value
if defaults is not None:
for field, value in defaults.items():
if field in new_data.dtype.names:
new_data[field] = value
for field in fields:
new_data[field] = data[field]
for field in fields:
new_data[field] = data[field]
return new_data
return new_data
def common_dtype(scans):
@ -584,7 +615,7 @@ def calc_modfunc_mean(data):
return modf
def calc_modfunc_loess(data):
def calc_modfunc_loess(data, smth=0.4):
"""
calculate the modulation function using LOESS (locally weighted regression) smoothing.
@ -609,9 +640,11 @@ def calc_modfunc_loess(data):
the modulation function is calculated for the finite-valued scan points.
NaNs are ignored and do not affect the finite values.
@return copy of the data array with the modulation function in the 'i' column.
@param smth: size of the smoothing window relative to the size of the scan.
reasonable values are between 0.2 and 0.5.
the default value 0.4 has been found to work in many cases.
@todo is a fixed smoothing factor of 0.5 okay?
@return copy of the data array with the modulation function in the 'i' column.
"""
sel = np.isfinite(data['i'])
_data = data[sel]
@ -626,7 +659,7 @@ def calc_modfunc_loess(data):
factors = [_data[axis] for axis in scan_mode]
lo.set_x(np.hstack(tuple(factors)))
lo.set_y(_data['i'])
lo.model.span = 0.5
lo.model.span = smth
loess.loess(lo)
modf['i'][sel] = lo.get_fitted_residuals() / lo.get_fitted_values()

1657
pmsco/database.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -4,14 +4,13 @@ calculation dispatcher.
@author Matthias Muntwiler
@copyright (c) 2015 by Paul Scherrer Institut @n
@copyright (c) 2015-21 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import division
import os
import os.path
import datetime
@ -19,8 +18,21 @@ import signal
import collections
import copy
import logging
from mpi4py import MPI
from helpers import BraceMessage as BMsg
from attrdict import AttrDict
try:
from mpi4py import MPI
mpi_comm = MPI.COMM_WORLD
mpi_size = mpi_comm.Get_size()
mpi_rank = mpi_comm.Get_rank()
except ImportError:
MPI = None
mpi_comm = None
mpi_size = 1
mpi_rank = 0
from pmsco.helpers import BraceMessage as BMsg
logger = logging.getLogger(__name__)
@ -48,7 +60,99 @@ TAG_INVALID_RESULT = 3
## the message is empty
TAG_ERROR_ABORTING = 4
CalcID = collections.namedtuple('CalcID', ['model', 'scan', 'sym', 'emit', 'region'])
## levels of calculation tasks
#
CALC_LEVELS = ('model', 'scan', 'domain', 'emit', 'region')
## intermediate sub-class of CalcID
#
# this class should not be instantiated.
# instead, use CalcID which provides some useful helper methods.
#
_CalcID = collections.namedtuple('_CalcID', CALC_LEVELS)
class CalcID(_CalcID):
"""
named tuple class to uniquely identify a calculation task.
this is a 5-tuple of indices, one index per task level.
a positive index refers to a specific instance in the task hierarchy.
the ID is defined as a named tuple so that it can be used as key of a dictionary.
cf. @ref CalculationTask for further detail.
compared to a plain named tuple, the CalcID class provides additional helper methods and properties.
example constructor: CalcID(1, 2, 3, 4, 5).
"""
@property
def levels(self):
"""
level names.
this property returns the defined level names in a tuple.
this is the same as @ref CALC_LEVELS.
@return: tuple of level names
"""
return self._fields
@property
def level(self):
"""
specific level of a task, dictionary key form.
this corresponds to the name of the last positive component.
@return: attribute name corresponding to the task level.
empty string if all members are negative (the root task).
"""
for k in reversed(self._fields):
if self.__getattribute__(k) >= 0:
return k
return ''
@property
def numeric_level(self):
"""
specific level of a task, numeric form.
this corresponds to the last positive value in the sequence of indices.
@return: index corresponding to the significant task level component of the id.
the value ranges from -1 to len(CalcID) - 1.
it is -1 if all indices are negative (root task).
"""
for k in reversed(range(len(self))):
if self[k] >= 0:
return k
return -1
def collapse_levels(self, level):
"""
return a new CalcID that is collapsed at a specific level.
the method returns a new CalcID object where the indices below the given level are -1 (undefined).
this can be seen as collapsing the tree at the specified node (level).
@note because a CalcID is immutable, this method returns a new instance.
@param level: level at which to collapse.
the index at this level remains unchanged, lower ones are set to -1.
the level can be specified by attribute name (str) or numeric index (-1..4).
@raise ValueError if level is not numeric and not in CALC_LEVELS.
@return: new CalcID instance.
"""
try:
level = int(level)
except ValueError:
level = CALC_LEVELS.index(level)
assert -1 <= level < len(CALC_LEVELS)
mask = {l: -1 for (i, l) in enumerate(CALC_LEVELS) if i > level}
return self._replace(**mask)
class CalculationTask(object):
@ -64,18 +168,18 @@ class CalculationTask(object):
@arg @c id.model structure number or iteration (handled by the mode module)
@arg @c id.scan scan number (handled by the project)
@arg @c id.sym symmetry number (handled by the project)
@arg @c id.domain domain number (handled by the project)
@arg @c id.emit emitter number (handled by the project)
@arg @c id.region region number (handled by the region handler)
specified members must be greater or equal to zero.
-1 is the wildcard which is used in parent tasks,
where, e.g., no specific symmetry is chosen.
the root task has the ID (-1, -1, -1, -1).
where, e.g., no specific domain is chosen.
the root task has the ID (-1, -1, -1, -1, -1).
"""
## @var id (CalcID)
# named tuple CalcID containing the 4-part calculation task identifier.
# named tuple CalcID containing the 5-part calculation task identifier.
## @var parent_id (CalcID)
# named tuple CalcID containing the task identifier of the parent task.
@ -105,6 +209,21 @@ class CalculationTask(object):
## @var modf_filename (string)
# name of the ETPI or ETPAI file that contains the resulting modulation function.
## @var result_valid (bool)
# validity status of the result file @ref result_filename.
#
# if True, the file must exist and contain valid data according to the task specification.
# the value is set True when a calculation task completes successfully.
# it may be reset later to invalidate the data if an error occurs during processing.
#
# validity of a parent task requires validity of all child tasks.
## @var rfac (float)
# r-factor value of the task result.
#
# the rfac field is written by @ref pmsco.project.Project.evaluate_result.
# the initial value is Not A Number.
## @var time (timedelta)
# execution time of the task.
#
@ -117,7 +236,7 @@ class CalculationTask(object):
# files generated by the task and their category
#
# dictionary key is the file name,
# value is the file category, e.g. 'cluster', 'phase', etc.
# value is the file category, e.g. 'cluster', 'atomic', etc.
#
# this information is used to automatically clean up unnecessary data files.
@ -125,7 +244,7 @@ class CalculationTask(object):
# scan positions to substitute the ones from the original scan.
#
# this is used to distribute scans over multiple calculator processes,
# cf. e.g. @ref EnergyRegionHandler.
# cf. e.g. @ref pmsco.handlers.EnergyRegionHandler.
#
# dictionary key must be the scan dimension 'e', 't', 'p', 'a'.
# the value is a numpy.ndarray containing the scan positions.
@ -147,6 +266,7 @@ class CalculationTask(object):
self.time = datetime.timedelta()
self.files = {}
self.region = {}
self.rfac = float('nan')
def __eq__(self, other):
"""
@ -192,7 +312,7 @@ class CalculationTask(object):
msg['id'] = CalcID(**msg['id'])
if isinstance(msg['parent_id'], dict):
msg['parent_id'] = CalcID(**msg['parent_id'])
for k, v in msg.iteritems():
for k, v in msg.items():
self.__setattr__(k, v)
def format_filename(self, **overrides):
@ -200,23 +320,19 @@ class CalculationTask(object):
format input or output file name including calculation index.
@param overrides optional keyword arguments override object fields.
the following keywords are handled: @c root, @c model, @c scan, @c sym, @c emit, @c region, @c ext.
the following keywords are handled:
`root`, `model`, `scan`, `domain`, `emit`, `region`, `ext`.
@return a string consisting of the concatenation of the base name, the ID, and the extension.
"""
parts = {}
parts = self.id._asdict()
parts['root'] = self.file_root
parts['model'] = self.id.model
parts['scan'] = self.id.scan
parts['sym'] = self.id.sym
parts['emit'] = self.id.emit
parts['region'] = self.id.region
parts['ext'] = self.file_ext
for key in overrides.keys():
parts[key] = overrides[key]
filename = "{root}_{model}_{scan}_{sym}_{emit}_{region}{ext}".format(**parts)
filename = "{root}_{model}_{scan}_{domain}_{emit}_{region}{ext}".format(**parts)
return filename
def copy(self):
@ -237,6 +353,30 @@ class CalculationTask(object):
"""
self.id = self.id._replace(**kwargs)
@property
def level(self):
"""
specific level of a task, dictionary key form.
this corresponds to the name of the last positive component of self.id.
@return: attribute name corresponding to the task level.
empty string for the root task.
"""
return self.id.level
@property
def numeric_level(self):
"""
specific level of a task, numeric form.
this corresponds to the index of the last positive component of self.id.
@return: index corresponding to the significant task level component of the id.
-1 for the root task.
"""
return self.id.numeric_level
def add_task_file(self, name, category):
"""
register a file that was generated by the calculation task.
@ -244,7 +384,7 @@ class CalculationTask(object):
this information is used to automatically clean up unnecessary data files.
@param name: file name (optionally including a path).
@param category: file category, e.g. 'cluster', 'phase', etc.
@param category: file category, e.g. 'cluster', 'atomic', etc.
@return: None
"""
self.files[name] = category
@ -284,6 +424,82 @@ class CalculationTask(object):
logger.warning("CalculationTask.remove_task_file: could not remove file {0}".format(filename))
class CachedCalculationMethod(object):
"""
decorator to cache results of expensive calculation functions.
this decorator can be used to transparently cache any expensive calculation result
that depends in a deterministic way on the calculation index.
for example, each cluster gets a unique calculation index.
if a cluster needs to be calculated repeatedly, it may be more efficient to cache it.
the method to decorate must have the following signature:
result = func(self, model, index).
the index (neglecting emitter and region) identifies the result (completely and uniquely).
the number of cached results is limited by the ttl (time to live) attribute.
the items' ttl values are decreased each time a requested calculation is not found in the cache (miss).
on a cache hit, the corresponding item's ttl is reset.
the target ttl (time to live) can be specified as an optional parameter of the decorator.
time increases with every cache miss.
"""
## @var _cache (dict)
#
# key = calculation index,
# value = function result
## @var _ttl (dict)
#
# key = calculation index,
# value (int) = remaining time to live
# where time is the number of subsequent cache misses.
## @var ttl (int)
#
# target time to live of cache items.
# time is given by the number cache misses.
def __init__(self, ttl=10):
super(CachedCalculationMethod, self).__init__()
self._cache = {}
self._ttl = {}
self.ttl = ttl
def __call__(self, func):
def wrapped_func(inst, model, index):
# note: _replace returns a new instance of the namedtuple
index = index._replace(emit=-1, region=-1)
cache_index = (id(inst), index.model, index.scan, index.domain)
try:
result = self._cache[cache_index]
except KeyError:
result = func(inst, model, index)
self._expire()
self._cache[cache_index] = result
self._ttl[cache_index] = self.ttl
return result
return wrapped_func
def _expire(self):
"""
decrease the remaining ttl of cache items and delete items whose ttl has fallen below 0.
@return: None
"""
for index in self._ttl:
self._ttl[index] -= 1
old_items = [index for index in self._ttl if self._ttl[index] < 0]
for index in old_items:
del self._ttl[index]
del self._cache[index]
class MscoProcess(object):
"""
code shared by MscoMaster and MscoSlave.
@ -312,10 +528,10 @@ class MscoProcess(object):
#
# the default is 2 days after start.
def __init__(self, comm):
self._comm = comm
def __init__(self):
self._project = None
self._calculator = None
self._atomic_scattering = None
self._multiple_scattering = None
self._running = False
self._finishing = False
self.stop_signal = False
@ -323,7 +539,8 @@ class MscoProcess(object):
def setup(self, project):
self._project = project
self._calculator = project.calculator_class()
self._atomic_scattering = project.atomic_scattering_factory()
self._multiple_scattering = project.multiple_scattering_factory()
self._running = False
self._finishing = False
self.stop_signal = False
@ -357,11 +574,11 @@ class MscoProcess(object):
"""
clean up after all calculations.
this method calls the clean up function of the project.
this method must be called after run() has finished.
@return: None
"""
self._project.cleanup()
pass
def calc(self, task):
"""
@ -387,14 +604,35 @@ class MscoProcess(object):
logger.info("model %s", s_model)
start_time = datetime.datetime.now()
# create parameter and cluster structures
clu = self._project.cluster_generator.create_cluster(task.model, task.id)
par = self._project.create_params(task.model, task.id)
# generate file names
clu = self._create_cluster(task)
par = self._create_params(task)
scan = self._define_scan(task)
output_file = task.format_filename(ext="")
# determine scan range
# check parameters and call the calculators
if clu.get_atom_count() >= 1:
self._calc_atomic(task, par, clu, scan, output_file)
else:
logger.error("empty cluster in calculation %s", s_id)
task.result_valid = False
if clu.get_emitter_count() >= 1:
self._calc_multiple(task, par, clu, scan, output_file)
else:
logger.error("no emitters in cluster of calculation %s.", s_id)
task.result_valid = False
task.time = datetime.datetime.now() - start_time
return task
def _define_scan(self, task):
"""
define the scan range.
@param task: CalculationTask with all attributes set for the calculation.
@return: pmsco.project.Scan object for the calculator.
"""
scan = self._project.scans[task.id.scan]
if task.region:
scan = scan.copy()
@ -419,27 +657,112 @@ class MscoProcess(object):
except KeyError:
pass
# check parameters and call the msc program
if clu.get_atom_count() < 2:
logger.error("empty cluster in calculation %s", s_id)
task.result_valid = False
elif clu.get_emitter_count() < 1:
logger.error("no emitters in cluster of calculation %s.", s_id)
task.result_valid = False
else:
files = self._calculator.check_cluster(clu, output_file)
return scan
def _create_cluster(self, task):
"""
generate the cluster for the given calculation task.
cluster generation is delegated to the project's cluster_generator object.
if the current task has region == 0,
the method also exports diagnostic clusters via the project's export_cluster() method.
the file name is formatted with the given task index except that region is -1.
if (in addition to region == 0) the current task has emit == 0 and cluster includes multiple emitters,
the method also exports the master cluster and full emitter list.
the file name is formatted with the given task index except that emitter and region are -1.
@param task: CalculationTask with all attributes set for the calculation.
@return: pmsco.cluster.Cluster object for the calculator.
"""
nem = self._project.cluster_generator.count_emitters(task.model, task.id)
clu = self._project.cluster_generator.create_cluster(task.model, task.id)
# overwrite atom classes only if they are at their default value
clu.init_atomclasses(field_or_value='t', default_only=True)
if task.id.region == 0:
file_index = task.id._replace(region=-1)
filename = task.format_filename(region=-1)
files = self._project.export_cluster(file_index, filename, clu)
task.files.update(files)
task.result_filename, files = self._calculator.run(par, clu, scan, output_file)
# master cluster
if nem > 1 and task.id.emit == 0:
master_index = task.id._replace(emit=-1, region=-1)
filename = task.format_filename(emit=-1, region=-1)
master_cluster = self._project.cluster_generator.create_cluster(task.model, master_index)
files = self._project.export_cluster(master_index, filename, master_cluster)
task.files.update(files)
return clu
def _create_params(self, task):
"""
generate the parameters list.
parameters generation is delegated to the project's create_params method.
@param task: CalculationTask with all attributes set for the calculation.
@return: pmsco.project.CalculatorParams object for the calculator.
"""
par = self._project.create_params(task.model, task.id)
return par
def _calc_atomic(self, task, par, clu, scan, output_file):
"""
calculate the atomic scattering factors if necessary and link them to the cluster.
the method first calls the `before_atomic_scattering` project hook,
the atomic scattering calculator,
and finally the `after_atomic_scattering` hook.
this process updates the par and clu objects to link to the created files.
if any of the functions returns None, the par and clu objects are left unchanged.
@param task: CalculationTask with all attributes set for the calculation.
@param par: pmsco.project.CalculatorParams object for the calculator.
its phase_files attribute is updated with the created scattering files.
the radial matrix elements are not changed (but may be in a future version).
@param clu: pmsco.cluster.Cluster object for the calculator.
the cluster is overwritten with the one returned by the calculator,
so that atom classes match the phase_files.
@return: None
"""
_par = copy.deepcopy(par)
_clu = copy.deepcopy(clu)
_par, _clu = self._project.before_atomic_scattering(task, _par, _clu)
if _clu is not None:
filename, files = self._atomic_scattering.run(_par, _clu, scan, output_file)
if files:
task.files.update(files)
_par, _clu = self._project.after_atomic_scattering(task, _par, _clu)
if _clu is not None:
par.phase_files = _par.phase_files
clu.copy_from(_clu)
def _calc_multiple(self, task, par, clu, scan, output_file):
"""
calculate the multiple scattering intensity.
@param task: CalculationTask with all attributes set for the calculation.
@param par: pmsco.project.CalculatorParams object for the calculator.
@param clu: pmsco.cluster.Cluster object for the calculator.
@return: None
"""
task.result_filename, files = self._multiple_scattering.run(par, clu, scan, output_file)
if task.result_filename:
(root, ext) = os.path.splitext(task.result_filename)
task.file_ext = ext
task.result_valid = True
if files:
task.files.update(files)
task.time = datetime.datetime.now() - start_time
return task
class MscoMaster(MscoProcess):
"""
@ -505,27 +828,19 @@ class MscoMaster(MscoProcess):
# it defines the initial model and the output file name.
# it is passed to the model handler during the main loop.
# @var _model_handler
# (ModelHandler) model handler instance
## @var task_handlers
# (AttrDict) dictionary of task handler objects
#
# the keys are the task levels 'model', 'scan', 'domain', 'emit' and 'region'.
# the values are handlers.TaskHandler objects.
# the objects can be accessed in attribute or dictionary notation.
# @var _scan_handler
# (ScanHandler) scan handler instance
# @var _symmetry_handler
# (SymmetryHandler) symmetry handler instance
# @var _emitter_handler
# (EmitterHandler) emitter handler instance
# @var _region_handler
# (RegionHandler) region handler instance
def __init__(self, comm):
super(MscoMaster, self).__init__(comm)
def __init__(self):
super().__init__()
self._pending_tasks = collections.OrderedDict()
self._running_tasks = collections.OrderedDict()
self._complete_tasks = collections.OrderedDict()
self._slaves = self._comm.Get_size() - 1
self._slaves = mpi_size - 1
self._idle_ranks = []
self.max_calculations = 1000000
self._calculations = 0
@ -534,11 +849,8 @@ class MscoMaster(MscoProcess):
self._min_queue_len = self._slaves + 1
self._root_task = None
self._model_handler = None
self._scan_handler = None
self._symmetry_handler = None
self._emitter_handler = None
self._region_handler = None
self.task_levels = list(CalcID._fields)
self.task_handlers = AttrDict()
def setup(self, project):
"""
@ -553,41 +865,54 @@ class MscoMaster(MscoProcess):
the method notifies the handlers of the number of available slave processes (slots).
some of the tasks handlers adjust their branching according to the number of slots.
this mechanism may be used to balance the load between the task levels.
however, the current implementation is very coarse in this respect.
it advertises all slots to the model handler but a reduced number to the remaining handlers
depending on the operation mode.
the region handler receives a maximum of 4 slots except in single calculation mode.
in single calculation mode, all slots can be used by all handlers.
this mechanism may be used to adjust the priorities of the task levels,
i.e., whether one slot handles all calculations of one model
so that all models of a generation finish around the same time,
or whether a model is finished completely before the next one is calculated
so that a result is returned as soon as possible.
the current algorithm tries to pass as many slots as available
down to the lowest level (region) in order to minimize wall time.
the lowest level is restricted to the minimum number of splits
only if the intermediate levels create a lot of branches,
in which case splitting scans would not offer a performance benefit.
"""
super(MscoMaster, self).setup(project)
logger.debug("master entering setup")
self._running_slaves = self._slaves
self._idle_ranks = range(1, self._running_slaves + 1)
self._idle_ranks = list(range(1, self._running_slaves + 1))
self._root_task = CalculationTask()
self._root_task.file_root = project.output_file
self._root_task.model = project.create_domain().start
self._root_task.file_root = str(project.output_file)
self._root_task.model = project.model_space.start
self._model_handler = project.handler_classes['model']()
self._scan_handler = project.handler_classes['scan']()
self._symmetry_handler = project.handler_classes['symmetry']()
self._emitter_handler = project.handler_classes['emitter']()
self._region_handler = project.handler_classes['region']()
for level in self.task_levels:
self.task_handlers[level] = project.handler_classes[level]()
self._model_handler.datetime_limit = self.datetime_limit
self.task_handlers.model.datetime_limit = self.datetime_limit
slaves_adj = max(self._slaves, 1)
self._model_handler.setup(project, slaves_adj)
if project.mode != "single":
slaves_adj = max(slaves_adj / 2, 1)
self._scan_handler.setup(project, slaves_adj)
self._symmetry_handler.setup(project, slaves_adj)
self._emitter_handler.setup(project, slaves_adj)
if project.mode != "single":
n_models = self.task_handlers.model.setup(project, slaves_adj)
if n_models > 1:
slaves_adj = max(int(slaves_adj / 2), 1)
n_scans = self.task_handlers.scan.setup(project, slaves_adj)
if n_scans > 1:
slaves_adj = max(int(slaves_adj / 2), 1)
n_doms = self.task_handlers.domain.setup(project, slaves_adj)
if n_doms > 1:
slaves_adj = max(int(slaves_adj / 2), 1)
n_emits = self.task_handlers.emit.setup(project, slaves_adj)
if n_emits > 1:
slaves_adj = max(int(slaves_adj / 2), 1)
n_extra = max(n_scans, n_doms, n_emits)
if n_extra > slaves_adj * 2:
slaves_adj = min(slaves_adj, 4)
self._region_handler.setup(project, slaves_adj)
logger.debug(BMsg("{regions} slots available for region handler", regions=slaves_adj))
self.task_handlers.region.setup(project, slaves_adj)
project.setup(self.task_handlers)
def run(self):
"""
@ -611,20 +936,40 @@ class MscoMaster(MscoProcess):
else:
self._dispatch_tasks()
self._receive_result()
self._cleanup_tasks()
self._check_finish()
logger.debug("master exiting main loop")
self._running = False
self._save_report()
def cleanup(self):
"""
clean up after all calculations.
this method must be called after run() has finished.
in the master process, this calls cleanup() of each task handler and of the project.
@return: None
"""
logger.debug("master entering cleanup")
self._region_handler.cleanup()
self._emitter_handler.cleanup()
self._symmetry_handler.cleanup()
self._scan_handler.cleanup()
self._model_handler.cleanup()
for level in reversed(self.task_levels):
self.task_handlers[level].cleanup()
self._project.cleanup()
super(MscoMaster, self).cleanup()
def _cleanup_tasks(self):
"""
periodic clean-up in the main loop.
once per iteration of the main loop, this method cleans up unnecessary files.
this is done by the project's cleanup_files() method.
@return: None
"""
self._project.cleanup_files()
def _dispatch_results(self):
"""
pass results through the post-processing modules.
@ -632,29 +977,25 @@ class MscoMaster(MscoProcess):
logger.debug("dispatching results of %u tasks", len(self._complete_tasks))
while self._complete_tasks:
__, task = self._complete_tasks.popitem(last=False)
self._dispatch_result(task)
logger.debug("passing task %s to region handler", str(task.id))
task = self._region_handler.add_result(task)
def _dispatch_result(self, task):
"""
pass a result through the post-processing modules.
@param task: a CalculationTask object.
@return None
"""
level = task.level
if level:
logger.debug(BMsg("passing task {task} to {level} handler", task=str(task.id), level=level))
task = self.task_handlers[level].add_result(task)
if task:
logger.debug("passing task %s to emitter handler", str(task.id))
task = self._emitter_handler.add_result(task)
if task:
logger.debug("passing task %s to symmetry handler", str(task.id))
task = self._symmetry_handler.add_result(task)
if task:
logger.debug("passing task %s to scan handler", str(task.id))
task = self._scan_handler.add_result(task)
if task:
logger.debug("passing task %s to model handler", str(task.id))
task = self._model_handler.add_result(task)
if task:
logger.debug("root task %s complete", str(task.id))
self._finishing = True
self._dispatch_result(task)
else:
self._finishing = True
logger.debug(BMsg("root task {task} complete", task=str(task.id)))
def _create_tasks(self):
"""
@ -668,7 +1009,7 @@ class MscoMaster(MscoProcess):
"""
logger.debug("creating new tasks from root")
while len(self._pending_tasks) < self._min_queue_len:
tasks = self._model_handler.create_tasks(self._root_task)
tasks = self.task_handlers.model.create_tasks(self._root_task)
logger.debug("model handler returned %u new tasks", len(tasks))
if not tasks:
self._model_done = True
@ -698,7 +1039,7 @@ class MscoMaster(MscoProcess):
else:
logger.debug("assigning task %s to rank %u", str(task.id), rank)
self._running_tasks[task.id] = task
self._comm.send(task.get_mpi_message(), dest=rank, tag=TAG_NEW_TASK)
mpi_comm.send(task.get_mpi_message(), dest=rank, tag=TAG_NEW_TASK)
self._calculations += 1
else:
if not self._finishing:
@ -720,7 +1061,7 @@ class MscoMaster(MscoProcess):
while self._idle_ranks:
rank = self._idle_ranks.pop()
logger.debug("send finish tag to rank %u", rank)
self._comm.send(None, dest=rank, tag=TAG_FINISH)
mpi_comm.send(None, dest=rank, tag=TAG_FINISH)
self._running_slaves -= 1
def _receive_result(self):
@ -730,7 +1071,7 @@ class MscoMaster(MscoProcess):
if self._running_slaves > 0:
logger.debug("waiting for calculation result")
s = MPI.Status()
data = self._comm.recv(source=MPI.ANY_SOURCE, tag=MPI.ANY_TAG, status=s)
data = mpi_comm.recv(source=MPI.ANY_SOURCE, tag=MPI.ANY_TAG, status=s)
if s.tag == TAG_NEW_RESULT:
task_id = self._accept_task_done(data)
@ -786,19 +1127,19 @@ class MscoMaster(MscoProcess):
@return: self._finishing
"""
if not self._finishing and (self._model_done and not self._pending_tasks and not self._running_tasks):
logger.info("finish: model handler is done")
logger.warning("finish: model handler is done")
self._finishing = True
if not self._finishing and (self._calculations >= self.max_calculations):
logger.warning("finish: max. calculations (%u) exeeded", self.max_calculations)
self._finishing = True
if not self._finishing and self.stop_signal:
logger.info("finish: stop signal received")
logger.warning("finish: stop signal received")
self._finishing = True
if not self._finishing and (datetime.datetime.now() > self.datetime_limit):
logger.warning("finish: time limit exceeded")
self._finishing = True
if not self._finishing and os.path.isfile("finish_pmsco"):
logger.info("finish: finish_pmsco file detected")
logger.warning("finish: finish_pmsco file detected")
self._finishing = True
if self._finishing and not self._running_slaves and not self._running_tasks:
@ -807,6 +1148,17 @@ class MscoMaster(MscoProcess):
return self._finishing
def _save_report(self):
"""
generate a final report.
this method is called at the end of the master loop.
it passes the call to @ref pmsco.handlers.ModelHandler.save_report.
@return: None
"""
self.task_handlers.model.save_report(self._root_task)
def add_model_task(self, task):
"""
add a new model task including all of its children to the task queue.
@ -814,13 +1166,13 @@ class MscoMaster(MscoProcess):
@param task (CalculationTask) task identifier and model parameters.
"""
scan_tasks = self._scan_handler.create_tasks(task)
scan_tasks = self.task_handlers.scan.create_tasks(task)
for scan_task in scan_tasks:
sym_tasks = self._symmetry_handler.create_tasks(scan_task)
for sym_task in sym_tasks:
emitter_tasks = self._emitter_handler.create_tasks(sym_task)
dom_tasks = self.task_handlers.domain.create_tasks(scan_task)
for dom_task in dom_tasks:
emitter_tasks = self.task_handlers.emit.create_tasks(dom_task)
for emitter_task in emitter_tasks:
region_tasks = self._region_handler.create_tasks(emitter_task)
region_tasks = self.task_handlers.region.create_tasks(emitter_task)
for region_task in region_tasks:
self._pending_tasks[region_task.id] = region_task
@ -839,8 +1191,8 @@ class MscoSlave(MscoProcess):
#
# typically, a task is aborted when an exception is encountered.
def __init__(self, comm):
super(MscoSlave, self).__init__(comm)
def __init__(self):
super().__init__()
self._errors = 0
self._max_errors = 5
@ -853,7 +1205,7 @@ class MscoSlave(MscoProcess):
self._running = True
while self._running:
logger.debug("waiting for message")
data = self._comm.recv(source=0, tag=MPI.ANY_TAG, status=s)
data = mpi_comm.recv(source=0, tag=MPI.ANY_TAG, status=s)
if s.tag == TAG_NEW_TASK:
logger.debug("received new task")
self.accept_task(data)
@ -883,17 +1235,17 @@ class MscoSlave(MscoProcess):
logger.exception(BMsg("unhandled exception in calculation task {0}", task.id))
self._errors += 1
if self._errors <= self._max_errors:
self._comm.send(data, dest=0, tag=TAG_INVALID_RESULT)
mpi_comm.send(data, dest=0, tag=TAG_INVALID_RESULT)
else:
logger.error("too many exceptions, aborting")
self._running = False
self._comm.send(data, dest=0, tag=TAG_ERROR_ABORTING)
mpi_comm.send(data, dest=0, tag=TAG_ERROR_ABORTING)
else:
logger.debug(BMsg("sending result of task {0} to master", result.id))
self._comm.send(result.get_mpi_message(), dest=0, tag=TAG_NEW_RESULT)
mpi_comm.send(result.get_mpi_message(), dest=0, tag=TAG_NEW_RESULT)
def run_master(mpi_comm, project):
def run_master(project):
"""
initialize and run the master calculation loop.
@ -905,25 +1257,25 @@ def run_master(mpi_comm, project):
if an unhandled exception occurs, this function aborts the MPI communicator, killing all MPI processes.
the caller will not have a chance to handle the exception.
@param mpi_comm: MPI communicator (mpi4py.MPI.COMM_WORLD).
@param project: project instance (sub-class of project.Project).
"""
try:
master = MscoMaster(mpi_comm)
master = MscoMaster()
master.setup(project)
master.run()
master.cleanup()
except (SystemExit, KeyboardInterrupt):
mpi_comm.Abort()
if mpi_comm:
mpi_comm.Abort()
raise
except Exception:
logger.exception("unhandled exception in master calculation loop.")
mpi_comm.Abort()
if mpi_comm:
mpi_comm.Abort()
raise
def run_slave(mpi_comm, project):
def run_slave(project):
"""
initialize and run the slave calculation loop.
@ -936,12 +1288,10 @@ def run_slave(mpi_comm, project):
unless it is a SystemExit or KeyboardInterrupt (where we expect that the master also receives the signal),
the MPI communicator is aborted, killing all MPI processes.
@param mpi_comm: MPI communicator (mpi4py.MPI.COMM_WORLD).
@param project: project instance (sub-class of project.Project).
"""
try:
slave = MscoSlave(mpi_comm)
slave = MscoSlave()
slave.setup(project)
slave.run()
slave.cleanup()
@ -949,7 +1299,8 @@ def run_slave(mpi_comm, project):
raise
except Exception:
logger.exception("unhandled exception in slave calculation loop.")
mpi_comm.Abort()
if mpi_comm:
mpi_comm.Abort()
raise
@ -961,12 +1312,9 @@ def run_calculations(project):
@param project: project instance (sub-class of project.Project).
"""
mpi_comm = MPI.COMM_WORLD
mpi_rank = mpi_comm.Get_rank()
if mpi_rank == 0:
logger.debug("MPI rank %u setting up master loop", mpi_rank)
run_master(mpi_comm, project)
run_master(project)
else:
logger.debug("MPI rank %u setting up slave loop", mpi_rank)
run_slave(mpi_comm, project)
run_slave(project)

View File

@ -1,3 +1,2 @@
edac_all_wrap.*
edac.py
edac_wrap.cxx
revision.py

15224
pmsco/edac/edac_all.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,8 +1,18 @@
*** /home/muntwiler_m/mnt/pearl_data/software/edac/edac_all.cpp 2011-04-14 23:38:44.000000000 +0200
--- edac_all.cpp 2016-02-11 12:15:45.322049772 +0100
--- edac_all.cpp 2018-02-05 17:30:17.347373088 +0100
***************
*** 3085,3090 ****
--- 3085,3091 ----
numero Vxc_Barth_Hedin(numero den, numero denup)
{
if(den<1e-10) return 0;
+ if(denup<0) denup=0;
numero rs=1/pow(4*pi/3*den, 1/3.0);
numero x=denup/den;
numero alpha0=pow(4/(9*pi), 1/3.0);
***************
*** 10117,10122 ****
--- 10117,10123 ----
--- 10118,10124 ----
void scan_imfp(char *name);
void scan_imfp(FILE *fout);
numero iimfp_TPP(numero kr);
@ -12,7 +22,7 @@
int scattering_so;
***************
*** 10230,10235 ****
--- 10231,10237 ----
--- 10232,10238 ----
int n_th;
int n_fi;
@ -22,7 +32,7 @@
numero *th_out,
***************
*** 10239,10244 ****
--- 10241,10247 ----
--- 10242,10248 ----
void free(void);
void init_th(numero thi, numero thf, int nth);
void init_phi(numero fii, numero fif, int nfi);
@ -31,8 +41,121 @@
numero refraction);
void init_transmission(
***************
*** 10905,10942 ****
}
numero calculation::IIIthfi(int no, numero th, numero fi)
{
! numero ii,ii0, xth,xfi;
! numero th0=final.th[0], th1=final.th[final.n_th-1];
numero fi0=final.fi[0], fi1=final.fi[final.n_fi-1];
int ith,ifi,ij;
while(fi<0) fi+=2*pi;
while(fi>2*pi) fi-=2*pi;
! xth=(final.n_th-1)*(th-th0)/(th1-th0); ith=int(floor(xth-0.001));
! xfi=(final.n_fi-1)*(fi-fi0)/(fi1-fi0); ifi=int(floor(xfi-0.001));
if(ifi==-1) ifi=0;
if(0<=ith && ith<final.n_th-1 && 0<=ifi && ifi<final.n_fi-1) {
ij=no*n_ang+ith*final.n_fi+ifi;
! ii0=III0[ij];
! ii=ii0 + (xth-ith)*(III0[ij+final.n_fi]-ii0) + (xfi-ifi)*(III0[ij+1]-ii0);
} else ii=0;
if(ii<0) ii=0;
return ii;
}
! numero calculation::IIIave(int no, numero th, numero fi)
{
! if(thave<=1e-6) return IIIthfi(no,th,fi);
int i,j, nn=10, mm=50;
! numero tth,ffi,val=0, r,f;
for(i=0; i<nn; i++)
for(j=0; j<mm; j++) {
! r=i*thave/nn;
! f=j*2*pi/mm;
! tth=th+r*cos(f);
! ffi=fi+r*sin(f)/cos(pi*th/180);
! val+=IIIthfi(no,tth,ffi);
}
! return val/(nn*mm);
}
void calculation::write_ang(FILE *fout_, int ik)
{
int no,nno,i,j;
--- 10909,10963 ----
}
numero calculation::IIIthfi(int no, numero th, numero fi)
{
! numero ii,xth,xfi;
! numero th0=final.th_out[0], th1=final.th_out[final.n_th-1];
numero fi0=final.fi[0], fi1=final.fi[final.n_fi-1];
int ith,ifi,ij;
while(fi<0) fi+=2*pi;
while(fi>2*pi) fi-=2*pi;
! xth=(final.n_th-1)*(th-th0)/(th1-th0); ith=int(floor(xth-0.0001));
! xfi=(final.n_fi-1)*(fi-fi0)/(fi1-fi0); ifi=int(floor(xfi-0.0001));
if(ifi==-1) ifi=0;
+ if(ith==-1) ith=0;
if(0<=ith && ith<final.n_th-1 && 0<=ifi && ifi<final.n_fi-1) {
ij=no*n_ang+ith*final.n_fi+ifi;
! xth = xth-ith;
! xfi = xfi-ifi;
! ii=III0[ij]*(1-xth)*(1-xfi) + III0[ij+final.n_fi]*xth*(1-xfi) + III0[ij+1]*(1-xth)*xfi + III0[ij+final.n_fi+1]*xth*xfi;
} else ii=0;
if(ii<0) ii=0;
return ii;
}
! numero calculation::IIIave(int no, numero th, numero ph)
{
! if(thave<=1e-6) return IIIthfi(no,th,ph);
int i,j, nn=10, mm=50;
! numero tth, ffi, val=0, th1, ph1, cf, nw=0, x0, y0, z0, x1, y1, th2, ph2;
for(i=0; i<nn; i++)
for(j=0; j<mm; j++) {
! th1=i*2*thave/(nn-1); //2*sigma range
! ph1=j*2*pi/mm;
! //rotation of (001) around Y by th1 and around Z by ph1
! x0 = cos(ph1)*sin(th1);
! y1 = sin(ph1)*sin(th1);
! z0 = cos(th1);
! //rotation around Y by th
! x1 = x0*cos(th) + z0*sin(th);
! z0 = -x0*sin(th) + z0*cos(th);
! //rotation around Z by ph
! x0 = x1*cos(ph) - y1*sin(ph);
! y0 = x1*sin(ph) + y1*cos(ph);
!
! th2 = acos(z0);
! ph2 = atan2(y0,x0);
!
! cf = exp(-(th1*th1/thave*thave))*(i>0.1?i:0.1); //gauss weight * radial weight
! nw += cf; //sum of weights
! val+=IIIthfi(no,th2,ph2)*cf;
}
! return val/nw;
}
+
void calculation::write_ang(FILE *fout_, int ik)
{
int no,nno,i,j;
***************
*** 10961,10967 ****
for(no=0; no<nno; no++)
for(i=0; i<final.n_th; i++)
for(j=0; j<final.n_fi; j++)
! III[no*n_ang+i*final.n_fi+j]=IIIave(no, final.th[i], final.fi[j]);
delete [] III0;
}
for(i=0; i<final.n_th; i++)
--- 10982,10988 ----
for(no=0; no<nno; no++)
for(i=0; i<final.n_th; i++)
for(j=0; j<final.n_fi; j++)
! III[no*n_ang+i*final.n_fi+j]=IIIave(no, final.th_out[i], final.fi[j]);
delete [] III0;
}
for(i=0; i<final.n_th; i++)
***************
*** 12485,12490 ****
--- 12488,12494 ----
--- 12506,12512 ----
else {
kr=sqrt(sqr(calc.k[ik])+2*V0);
if(iimfp_flag==0) ki=iimfp.val(kr)/2;
@ -42,7 +165,7 @@
} } else if(calc.k_flag==2) set_k(calc.kc[ik]);
***************
*** 12507,12512 ****
--- 12511,12522 ----
--- 12529,12540 ----
numero imfp=E/(TPP_Ep*TPP_Ep*(beta*log(gamma*E)-C/E+D/(E*E)))/a0_au;
return 1/imfp;
}
@ -64,7 +187,7 @@
n_1=n_2=0;
Ylm0_th_flag=Ylm0_fi_flag=0;
mesh_flag=0;
--- 13212,13218 ----
--- 13230,13236 ----
}
final_state::final_state(void)
{
@ -74,7 +197,7 @@
mesh_flag=0;
***************
*** 13233,13238 ****
--- 13243,13271 ----
--- 13261,13289 ----
if(n_fi==1) fi[0]=fii;
else for(j=0; j<n_fi; j++) fi[j]=fii+j*(fif-fii)/(n_fi-1);
} }
@ -106,7 +229,7 @@
int i;
***************
*** 14743,14748 ****
--- 14776,14783 ----
--- 14794,14801 ----
|| scat.TPP_Ep<=0 || scat.TPP_Eg<0)
on_error(foutput,"(input) imfp TPP-2M", "wrong parameters");
scat.iimfp_flag=1;
@ -117,7 +240,7 @@
scat.iimfp_flag=0;
***************
*** 15162,15164 ****
--- 15197,15206 ----
--- 15215,15224 ----
fprintf(foutput,"That's all, folks!\n");
return 0;
}

View File

@ -13,28 +13,23 @@ SHELL=/bin/sh
.SUFFIXES: .c .cpp .cxx .exe .f .h .i .o .py .pyf .so
.PHONY: all clean edac
FC=gfortran
FCCOPTS=
F2PY=f2py
F2PYOPTS=
CC=g++
CCOPTS=-Wno-write-strings
SWIG=swig
SWIGOPTS=
PYTHON=python
PYTHONOPTS=
FC?=gfortran
FCCOPTS?=
F2PY?=f2py
F2PYOPTS?=
CXX?=g++
CXXOPTS?=-Wno-write-strings
PYTHON?=python
PYTHONOPTS?=
all: edac
edac: edac.exe _edac.so edac.py
edac.exe: edac_all.cpp
$(CC) $(CCOPTS) -o edac.exe edac_all.cpp
$(CXX) $(CXXOPTS) -o edac.exe edac_all.cpp
edac_wrap.cxx: edac_all.cpp edac.i
$(SWIG) $(SWIGOPTS) -c++ -python edac.i
edac.py _edac.so: edac_wrap.cxx setup.py
edac.py _edac.so: edac_all.cpp edac_all.i setup.py
$(PYTHON) $(PYTHONOPTS) setup.py build_ext --inplace
revision.py: _edac.so
@ -46,7 +41,7 @@ revision.txt: _edac.so edac.exe
echo "" >> revision.txt
clean:
rm -f *.so *.o *.exe
rm -f *_wrap.cxx
rm -f revision.py
rm -f revision.txt
rm -f *.so *.o *.exe *.pyc
rm -f edac.py edac_all_wrap.*
rm -f revision.*

View File

@ -8,7 +8,8 @@ from distutils.core import setup, Extension
edac_module = Extension('_edac',
sources=['edac_wrap.cxx', 'edac_all.cpp'],
sources=['edac_all.cpp', 'edac_all.i'],
swig_opts=['-c++']
)
setup (name = 'edac',
@ -16,5 +17,7 @@ setup (name = 'edac',
author = "Matthias Muntwiler",
description = """EDAC module in Python""",
ext_modules = [edac_module],
py_modules = ["edac"], requires=['numpy']
py_modules = ["edac"],
requires=['numpy']
)

View File

@ -0,0 +1,41 @@
"""
@package pmsco.elements
extended properties of the elements
this package extends the element table of the `periodictable` package
(https://periodictable.readthedocs.io/en/latest/index.html)
by additional attributes like the electron binding energies.
the package requires the periodictable package (https://pypi.python.org/pypi/periodictable).
@author Matthias Muntwiler
@copyright (c) 2020 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
import periodictable.core
def _load_binding_energy():
"""
delayed loading of the binding energy table.
"""
from . import bindingenergy
bindingenergy.init(periodictable.core.default_table())
def _load_photoionization():
"""
delayed loading of the binding energy table.
"""
from . import photoionization
photoionization.init(periodictable.core.default_table())
periodictable.core.delayed_load(['binding_energy'], _load_binding_energy)
periodictable.core.delayed_load(['photoionization'], _load_photoionization)

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,212 @@
"""
@package pmsco.elements.bindingenergy
electron binding energies of the elements
extends the element table of the `periodictable` package
(https://periodictable.readthedocs.io/en/latest/index.html)
by the electron binding energies.
the binding energies are compiled from Gwyn Williams' web page
(https://userweb.jlab.org/~gwyn/ebindene.html).
please refer to the original web page or the x-ray data booklet
for original sources, definitions and remarks.
binding energies of gases are replaced by respective values of a common compound
from the 'handbook of x-ray photoelectron spectroscopy' (physical electronics, inc., 1995).
usage
-----
this module requires the periodictable package (https://pypi.python.org/pypi/periodictable).
~~~~~~{.py}
import periodictable as pt
import pmsco.elements.bindingenergy
# read any periodictable's element interfaces, e.g.
print(pt.gold.binding_energy['4f7/2'])
print(pt.elements.symbol('Au').binding_energy['4f7/2'])
print(pt.elements.name('gold').binding_energy['4f7/2'])
print(pt.elements[79].binding_energy['4f7/2'])
~~~~~~
note that attributes are writable.
you may assign refined values in your instance of the database.
the query_binding_energy() function queries all terms with a particular binding energy.
@author Matthias Muntwiler
@copyright (c) 2020 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
import json
import numpy as np
import os
import periodictable as pt
from pmsco.compat import open
index_energy = np.zeros(0)
index_number = np.zeros(0)
index_term = []
default_data_path = os.path.join(os.path.dirname(__file__), "bindingenergy.json")
def load_data(data_path=None):
"""
load binding energy data from json file
the data file must be in the same format as generated by save_data.
@param file path of the data file. default: "bindingenergy.json" next to this module file
@return dictionary
"""
if data_path is None:
data_path = default_data_path
with open(data_path) as fp:
data = json.load(fp)
return data
def save_data(data_path=None):
"""
save binding energy data to json file
@param file path of the data file. default: "bindingenergy.json" next to this module file
@return None
"""
if data_path is None:
data_path = default_data_path
data = {}
for element in pt.elements:
element_data = {}
for term, energy in element.binding_energy.items():
element_data[term] = energy
if element_data:
data[element.number] = element_data
with open(data_path, 'w', 'utf8') as fp:
json.dump(data, fp, sort_keys=True, indent='\t')
def init(table, reload=False):
if 'binding_energy' in table.properties and not reload:
return
table.properties.append('binding_energy')
pt.core.Element.binding_energy = {}
pt.core.Element.binding_energy_units = "eV"
data = load_data()
for el_key, el_data in data.items():
try:
el = table[int(el_key)]
except ValueError:
el = table.symbol(el_key)
el.binding_energy = el_data
def build_index():
"""
build an index for query_binding_energy().
the index is kept in global variables of the module.
@return None
"""
global index_energy
global index_number
global index_term
n = 0
for element in pt.elements:
n += len(element.binding_energy)
index_energy = np.zeros(n)
index_number = np.zeros(n)
index_term = []
for element in pt.elements:
for term, energy in element.binding_energy.items():
index_term.append(term)
i = len(index_term) - 1
index_energy[i] = energy
index_number[i] = element.number
def query_binding_energy(energy, tol=1.0):
"""
search the periodic table for a specific binding energy and return all matching terms.
@param energy: binding energy in eV.
@param tol: tolerance in eV.
@return: list of dictionaries containing element and term specification.
the list is ordered arbitrarily.
each dictionary contains the following keys:
@arg 'number': element number
@arg 'symbol': element symbol
@arg 'term': spectroscopic term
@arg 'energy': actual binding energy
"""
if len(index_energy) == 0:
build_index()
sel = np.abs(index_energy - energy) < tol
idx = np.where(sel)
result = []
for i in idx[0]:
el_num = int(index_number[i])
d = {'number': el_num,
'symbol': pt.elements[el_num].symbol,
'term': index_term[i],
'energy': index_energy[i]}
result.append(d)
return result
def export_flat_text(f):
"""
export the binding energies to a flat general text file.
the file has four space-separated columns `number`, `symbol`, `term`, `energy`.
column names are included in the first row.
@param f: file path or open file object
@return: None
"""
if hasattr(f, "write") and callable(f.write):
f.write("number symbol term energy\n")
for element in pt.elements:
for term, energy in element.binding_energy.items():
f.write(f"{element.number} {element.symbol} {term} {energy}\n")
else:
with open(f, "w") as fi:
export_flat_text(fi)
def import_flat_text(f):
"""
import binding energies from a flat general text file.
data is in space-separated columns.
the first row contains column names.
at least the columns `number`, `term`, `energy` must be present.
the function updates existing entries and appends entries of non-existing terms.
existing terms that are not listed in the file remain unchanged.
@param f: file path or open file object
@return: None
"""
data = np.atleast_1d(np.genfromtxt(f, names=True, dtype=None, encoding="utf8"))
for d in data:
pt.elements[d['number']].binding_energy[d['term']] = d['energy']

Binary file not shown.

View File

@ -0,0 +1,248 @@
"""
@package pmsco.elements.photoionization
photoionization cross-sections of the elements
extends the element table of the `periodictable` package
(https://periodictable.readthedocs.io/en/latest/index.html)
by a table of photoionization cross-sections.
the data is available from (https://vuo.elettra.eu/services/elements/)
or (https://figshare.com/articles/dataset/Digitisation_of_Yeh_and_Lindau_Photoionisation_Cross_Section_Tabulated_Data/12389750).
both sources are based on the original atomic data tables by Yeh and Lindau (1985).
the Elettra data includes interpolation at finer steps,
whereas the Kalha data contains only the original data points by Yeh and Lindau
plus an additional point at 8 keV.
the tables go up to 1500 eV photon energy and do not resolve spin-orbit splitting.
usage
-----
this module requires python 3.6, numpy and the periodictable package (https://pypi.python.org/pypi/periodictable).
~~~~~~{.py}
import numpy as np
import periodictable as pt
import pmsco.elements.photoionization
# read any periodictable's element interfaces as follows.
# eph and cs are numpy arrays of identical shape that hold the photon energies and cross sections.
eph, cs = pt.gold.photoionization.cross_section['4f']
eph, cs = pt.elements.symbol('Au').photoionization.cross_section['4f']
eph, cs = pt.elements.name('gold').photoionization.cross_section['4f']
eph, cs = pt.elements[79].photoionization.cross_section['4f']
# interpolate for specific photon energy
print(np.interp(photon_energy, eph, cs)
~~~~~~
the data is loaded from the cross-sections.dat file which is a python-pickled data file.
to switch between data sources, use one of the load functions defined here
and dump the data to the cross-sections.dat file.
@author Matthias Muntwiler
@copyright (c) 2020 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
import numpy as np
from pathlib import Path
import periodictable as pt
import pickle
import urllib.request
import urllib.error
from . import bindingenergy
def load_kalha_data():
"""
load all cross-sections from csv-files by Kalha et al.
the files must be placed in the 'kalha' directory next to this file.
@return: cross-section data in a nested dictionary, cf. load_pickled_data().
"""
data = {}
p = Path(Path(__file__).parent, "kalha")
for entry in p.glob('*_*.csv'):
if entry.is_file():
try:
element = int(entry.stem.split('_')[0])
except ValueError:
pass
else:
data[element] = load_kalha_file(entry)
return data
def load_kalha_file(path):
"""
load the cross-sections of an element from a csv-file by Kalha et al.
@param path: file path
@return: (dict) dictionary of 'nl' terms.
the data items are tuples (photon_energy, cross_sections) of 1-dimensional numpy arrays.
"""
a = np.genfromtxt(path, delimiter=',', names=True)
b = ~np.isnan(a['Photon_Energy__eV'])
a = a[b]
eph = a['Photon_Energy__eV'].copy()
data = {}
for n in range(1, 8):
for l in 'spdf':
col = f"{n}{l}"
try:
data[col] = (eph, a[col].copy())
except ValueError:
pass
return data
def load_kalha_configuration(path):
"""
load the electron configuration from a csv-file by Kalha et al.
@param path: file path
@return: (dict) dictionary of 'nl' terms mapping to number of electrons in the sub-shell.
"""
p = Path(path)
subshells = []
electrons = []
config = {}
with p.open() as f:
for l in f.readlines():
s = l.split(',')
k_eph = "Photon Energy"
k_el = "#electrons"
if s[0][0:len(k_eph)] == k_eph:
subshells = s[1:]
elif s[0][0:len(k_el)] == k_el:
electrons = s[1:]
for i, sh in enumerate(subshells):
if sh:
config[sh] = electrons[i]
return config
def load_elettra_file(symbol, nl):
"""
download the cross sections of one level from the Elettra webelements web site.
@param symbol: (str) element symbol
@param nl: (str) nl term, e.g. '2p' (no spin-orbit)
@return: (photon_energy, cross_section) tuple of 1-dimensional numpy arrays.
"""
url = f"https://vuo.elettra.eu/services/elements/data/{symbol.lower()}{nl}.txt"
try:
data = urllib.request.urlopen(url)
except urllib.error.HTTPError:
eph = None
cs = None
else:
a = np.genfromtxt(data)
try:
eph = a[:, 0]
cs = a[:, 1]
except IndexError:
eph = None
cs = None
return eph, cs
def load_elettra_data():
"""
download the cross sections from the Elettra webelements web site.
@return: cross-section data in a nested dictionary, cf. load_pickled_data().
"""
data = {}
for element in pt.elements:
element_data = {}
for nlj in element.binding_energy:
nl = nlj[0:2]
eb = element.binding_energy[nlj]
if nl not in element_data and eb <= 2000:
eph, cs = load_elettra_file(element.symbol, nl)
if eph is not None and cs is not None:
element_data[nl] = (eph, cs)
if len(element_data):
data[element.symbol] = element_data
return data
def save_pickled_data(path, data):
"""
save a cross section data dictionary to a python-pickled file.
@param path: file path
@param data: cross-section data in a nested dictionary, cf. load_pickled_data().
@return: None
"""
with open(path, "wb") as f:
pickle.dump(data, f)
def load_pickled_data(path):
"""
load the cross section data from a python-pickled file.
the file can be generated by the save_pickled_data() function.
@param path: file path
@return: cross-section data in a nested dictionary.
the first-level keys are element symbols.
the second-level keys are 'nl' terms (e.g. '2p').
note that the Yeh and Lindau tables do not resolve spin-orbit splitting.
the data items are (photon_energy, cross_sections) tuples
of 1-dimensional numpy arrays holding the data table.
cross section values are given in Mb.
"""
with open(path, "rb") as f:
data = pickle.load(f)
return data
class Photoionization(object):
def __init__(self):
self.cross_section = {}
self.cross_section_units = "Mb"
def init(table, reload=False):
"""
loads cross section data into the periodic table.
this function is called by the periodictable to load the data on demand.
@param table:
@param reload:
@return:
"""
if 'photoionization' in table.properties and not reload:
return
table.properties.append('photoionization')
# default value
pt.core.Element.photoionization = Photoionization()
p = Path(Path(__file__).parent, "cross-sections.dat")
data = load_pickled_data(p)
for el_key, el_data in data.items():
try:
el = table[int(el_key)]
except ValueError:
el = table.symbol(el_key)
pi = Photoionization()
pi.cross_section = el_data
pi.cross_section_units = "Mb"
el.photoionization = pi

208
pmsco/elements/spectrum.py Normal file
View File

@ -0,0 +1,208 @@
"""
@package pmsco.elements.spectrum
photoelectron spectrum simulator
this module calculates the basic structure of a photoelectron spectrum.
it calculates positions and approximate amplitude of elastic peaks
based on photon energy, binding energy, photoionization cross section, and stoichiometry.
escape depth, photon flux, analyser transmission are not accounted for.
usage
-----
this module requires python 3.6, numpy, matplotlib and
the periodictable package (https://pypi.python.org/pypi/periodictable).
~~~~~~{.py}
import numpy as np
import periodictable as pt
import pmsco.elements.spectrum as spec
# for working with the data
labels, energy, intensity = spec.build_spectrum(800., {"Ti": 1, "O": 2})
# for plotting
spec.plot_spectrum(800., {"Ti": 1, "O": 2})
~~~~~~
@author Matthias Muntwiler
@copyright (c) 2020 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from matplotlib import pyplot as plt
import numpy as np
import periodictable as pt
from . import bindingenergy
from . import photoionization
def get_element(number_or_symbol):
"""
return the given Element object of the periodic table.
@param number_or_symbol: atomic number (int) or chemical symbol (str).
@return: Element object.
"""
try:
el = pt.elements[number_or_symbol]
except KeyError:
el = pt.elements.symbol(number_or_symbol)
return el
def get_binding_energy(photon_energy, element, nlj):
"""
look up the binding energy of a core level and check whether it is smaller than the photon energy.
@param photon_energy: photon energy in eV.
@param element: Element object of the periodic table.
@param nlj: (str) spectroscopic term, e.g. '4f7/2'.
@return: (float) binding energy or numpy.nan.
"""
try:
eb = element.binding_energy[nlj]
except KeyError:
return np.nan
if eb < photon_energy:
return eb
else:
return np.nan
def get_cross_section(photon_energy, element, nlj):
"""
look up the photoionization cross section.
since the Yeh/Lindau tables do not resolve the spin-orbit splitting,
this function applies the normal relative weights of a full sub-shell.
the result is a linear interpolation between tabulated values.
@param photon_energy: photon energy in eV.
@param element: Element object of the periodic table.
@param nlj: (str) spectroscopic term, e.g. '4f7/2'.
@return: (float) cross section in Mb.
"""
nl = nlj[0:2]
if not hasattr(element, "photoionization"):
element = get_element(element)
try:
pet, cst = element.photoionization.cross_section[nl]
except KeyError:
return np.nan
# weights of spin-orbit peaks
d_wso = {"p1/2": 1./3.,
"p3/2": 2./3.,
"d3/2": 2./5.,
"d5/2": 3./5.,
"f5/2": 3./7.,
"f7/2": 4./7.}
wso = d_wso.get(nlj[1:], 1.)
cst = cst * wso
# todo: consider spline
return np.interp(photon_energy, pet, cst)
def build_spectrum(photon_energy, elements, binding_energy=False, work_function=4.5):
"""
calculate the positions and amplitudes of core-level photoemission lines.
the function looks up the binding energies and cross sections of all photoemission lines in the energy range
given by the photon energy and returns an array of expected spectral lines.
@param photon_energy: (numeric) photon energy in eV.
@param elements: list or dictionary of elements.
elements are identified by their atomic number (int) or chemical symbol (str).
if a dictionary is given, the (float) values are stoichiometric weights of the elements.
@param binding_energy: (bool) return binding energies (True) rather than kinetic energies (False, default).
@param work_function: (float) work function of the instrument in eV.
@return: tuple (labels, positions, intensities) of 1-dimensional numpy arrays representing the spectrum.
labels are in the format {Symbol}{n}{l}{j}.
"""
ekin = []
ebind = []
intens = []
labels = []
for element in elements:
el = get_element(element)
for n in range(1, 8):
for l in "spdf":
for j in ['', '1/2', '3/2', '5/2', '7/2']:
nlj = f"{n}{l}{j}"
eb = get_binding_energy(photon_energy, el, nlj)
cs = get_cross_section(photon_energy, el, nlj)
try:
cs = cs * elements[element]
except (KeyError, TypeError):
pass
if not np.isnan(eb) and not np.isnan(cs):
ekin.append(photon_energy - eb - work_function)
ebind.append(eb)
intens.append(cs)
labels.append(f"{el.symbol}{nlj}")
ebind = np.array(ebind)
ekin = np.array(ekin)
intens = np.array(intens)
labels = np.array(labels)
if binding_energy:
return labels, ebind, intens
else:
return labels, ekin, intens
def plot_spectrum(photon_energy, elements, binding_energy=False, work_function=4.5, show_labels=True):
"""
plot a simple spectrum representation of a material.
the function looks up the binding energies and cross sections of all photoemission lines in the energy range
given by the photon energy and returns an array of expected spectral lines.
the spectrum is plotted using matplotlib.pyplot.stem.
@param photon_energy: (numeric) photon energy in eV.
@param elements: list or dictionary of elements.
elements are identified by their atomic number (int) or chemical symbol (str).
if a dictionary is given, the (float) values are stoichiometric weights of the elements.
@param binding_energy: (bool) return binding energies (True) rather than kinetic energies (False, default).
@param work_function: (float) work function of the instrument in eV.
@param show_labels: (bool) show peak labels (True, default) or not (False).
@return: (figure, axes)
"""
labels, energy, intensity = build_spectrum(photon_energy, elements, binding_energy=binding_energy,
work_function=work_function)
fig, ax = plt.subplots()
ax.stem(energy, intensity, basefmt=' ', use_line_collection=True)
if show_labels:
for sxy in zip(labels, energy, intensity):
ax.annotate(sxy[0], xy=(sxy[1], sxy[2]), textcoords='data')
ax.grid()
if binding_energy:
ax.set_xlabel('binding energy')
else:
ax.set_xlabel('kinetic energy')
ax.set_ylabel('intensity')
ax.set_title(elements)
return fig, ax
def plot_cross_section(el, nlj):
energy = np.arange(100, 1500, 140)
cs = get_cross_section(energy, el, nlj)
fig, ax = plt.subplots()
ax.set_yscale("log")
ax.plot(energy, cs)

View File

@ -1,16 +1,19 @@
"""
@package pmsco.files
manage files produced by pmsco.
manage the lifetime of files produced by pmsco.
@author Matthias Muntwiler
@copyright (c) 2016 by Paul Scherrer Institut @n
@copyright (c) 2016-18 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import logging
import mpi4py
@ -24,28 +27,28 @@ logger = logging.getLogger(__name__)
#
# each string of this set marks a category of files.
#
# @arg @c 'input' : raw input files for calculator, including cluster and phase files in custom format
# @arg @c 'output' : raw output files from calculator
# @arg @c 'phase' : phase files in portable format for report
# @arg @c 'cluster' : cluster files in portable XYZ format for report
# @arg @c 'log' : log files
# @arg @c 'debug' : debug files
# @arg @c 'model': output files in ETPAI format: complete simulation (a_-1_-1_-1_-1)
# @arg @c 'scan' : output files in ETPAI format: scan (a_b_-1_-1_-1)
# @arg @c 'symmetry' : output files in ETPAI format: symmetry (a_b_c_-1_-1)
# @arg @c 'emitter' : output files in ETPAI format: emitter (a_b_c_d_-1)
# @arg @c 'region' : output files in ETPAI format: region (a_b_c_d_e)
# @arg @c 'report': final report of results
# @arg @c 'population': final state of particle population
# @arg @c 'rfac': files related to models which give bad r-factors (dynamic category, see below).
# @arg 'input' : raw input files for calculator, including cluster and atomic files in custom format
# @arg 'output' : raw output files from calculator
# @arg 'atomic' : atomic scattering (phase, emission) files in portable format
# @arg 'cluster' : cluster files in portable XYZ format for report
# @arg 'log' : log files
# @arg 'debug' : debug files
# @arg 'model': output files in ETPAI format: complete simulation (a_-1_-1_-1_-1)
# @arg 'scan' : output files in ETPAI format: scan (a_b_-1_-1_-1)
# @arg 'domain' : output files in ETPAI format: domain (a_b_c_-1_-1)
# @arg 'emitter' : output files in ETPAI format: emitter (a_b_c_d_-1)
# @arg 'region' : output files in ETPAI format: region (a_b_c_d_e)
# @arg 'report': final report of results
# @arg 'population': final state of particle population
# @arg 'rfac': files related to models which give bad r-factors (dynamic category, see below).
#
# @note @c 'rfac' is a dynamic category not connected to a particular file or content type.
# no file should be marked @c 'rfac'.
# the string is used only to specify whether bad models should be deleted or not.
# if so, all files related to bad models are deleted, regardless of their static category.
#
FILE_CATEGORIES = {'cluster', 'phase', 'input', 'output',
'report', 'region', 'emitter', 'scan', 'symmetry', 'model',
FILE_CATEGORIES = {'cluster', 'atomic', 'input', 'output',
'report', 'region', 'emitter', 'scan', 'domain', 'model',
'log', 'debug', 'population', 'rfac'}
## @var FILE_CATEGORIES_TO_KEEP
@ -53,7 +56,7 @@ FILE_CATEGORIES = {'cluster', 'phase', 'input', 'output',
#
# this constant defines the default set of file categories that are kept after the calculation.
#
FILE_CATEGORIES_TO_KEEP = {'cluster', 'model', 'report', 'population'}
FILE_CATEGORIES_TO_KEEP = {'cluster', 'model', 'scan', 'report', 'population'}
## @var FILE_CATEGORIES_TO_DELETE
# categories of files to be deleted.
@ -67,13 +70,17 @@ FILE_CATEGORIES_TO_DELETE = FILE_CATEGORIES - FILE_CATEGORIES_TO_KEEP
class FileTracker(object):
"""
organize output files of calculations.
manage the lifetime of files produced by the calculations.
the file manager stores references to data files generated during calculations
and cleans up unused files according to a range of filter criteria.
this class identifies files by _file name_.
file names must therefore be unique over the whole calculation process.
it is possible to specify a full path that is used for communication with the operating system.
"""
## @var files_to_delete (set)
## @var categories_to_delete (set)
# categories of generated files that should be deleted after the calculation.
#
# each string of this set marks a category of files to be deleted.
@ -93,96 +100,119 @@ class FileTracker(object):
#
# the default is 10.
## @var _last_id (int)
# last used file identification number (incremental)
## @var _path_by_id (dict)
# key = file id, value = file path
## @var _model_by_id (dict)
# key = file id, value = model number
## @var _category_by_id (dict)
# key = file id, value = category (str)
## @var _file_model (dict)
# key = file name, value = model number
## @var _file_category (dict)
# key = file name, value = category (str)
## @var _file_path (dict)
# key = file name, value = absolute file path (str)
## @var _rfac_by_model (dict)
# key = model number, value = file id
# key = model number, value = R-factor
## @var _complete_by_model (dict)
# key = model number, value (boolean) = all calculations complete, files can be deleted
## @var _complete_models (set)
# this set contains the model numbers of the models that have finished all calculations.
# files of these models can be considered for clean up.
def __init__(self):
self._id_by_path = {}
self._path_by_id = {}
self._model_by_id = {}
self._category_by_id = {}
self._file_model = {}
self._file_category = {}
self._file_path = {}
self._rfac_by_model = {}
self._complete_by_model = {}
self._last_id = 0
self._complete_models = set([])
self.categories_to_delete = FILE_CATEGORIES_TO_DELETE
self.keep_rfac = 10
def add_file(self, path, model, category='default'):
def get_file_count(self):
"""
return the number of tracked files.
@return: (int) number of tracked files.
"""
return len(self._file_path)
def get_complete_models_count(self):
"""
return the number of complete models.
@return: (int) number of complete models.
"""
return len(self._complete_models)
def add_file(self, name, model, category='default', path=''):
"""
add a new data file to the list.
@param path: (str) system path of the file relative to the working directory.
@param name: (str) unique identification of the file.
this can be the file name in the file system if file names are unique without path specification.
the name must be spelled identically
whenever the same file is referenced in a call to another method of this class.
the empty string is ignored.
@param model: (int) model number
@param category: (str) file category, e.g. 'output', etc.
@param path: (str) file system path of the file.
the file system path is used for communication with the operating system when the file is deleted.
by default, the path is the name argument expanded to a full path relative to the current working directory.
the path is expanded during the call of this method and will not change when the working directory changes.
@return: None
"""
self._last_id += 1
_id = self._last_id
self._id_by_path[path] = _id
self._path_by_id[_id] = path
self._model_by_id[_id] = model
self._category_by_id[_id] = category
if name:
self._file_model[name] = model
self._file_category[name] = category
self._file_path[name] = path if path else os.path.abspath(name)
def rename_file(self, old_path, new_path):
def rename_file(self, old_name, new_name, new_path=''):
"""
rename a data file in the list.
the method does not rename the file in the file system.
@param old_path: must match an existing file path identically.
if old_path is not in the list, the method does nothing.
@param old_name: name used in the original add_file() call.
if it is not in the list, the method does nothing.
@param new_path: new path.
@param new_name: new name of the file, see add_file().
if the file is already in the list, its model and category is overwritten by the values of the old file.
@param new_path: new file system path of the file, see add_file().
by default, the path is the name argument expanded to a full path relative to the current working directory.
@return: None
"""
try:
_id = self._id_by_path[old_path]
model = self._file_model[old_name]
cat = self._file_category[old_name]
except KeyError:
pass
else:
del self._id_by_path[old_path]
self._id_by_path[new_path] = _id
self._path_by_id[_id] = new_path
del self._file_model[old_name]
del self._file_category[old_name]
del self._file_path[old_name]
self.add_file(new_name, model, cat, new_path)
def remove_file(self, path):
def remove_file(self, name):
"""
remove a file from the list.
the method does not delete the file from the file system.
@param path: must match an existing file path identically.
if path is not in the list, the method does nothing.
@param name: must match an existing file name identically.
if the name is not found in the list, the method does nothing.
@return: None
"""
try:
_id = self._id_by_path[path]
del self._file_model[name]
del self._file_category[name]
del self._file_path[name]
except KeyError:
pass
else:
del self._id_by_path[path]
del self._path_by_id[_id]
del self._model_by_id[_id]
del self._category_by_id[_id]
def update_model_rfac(self, model, rfac):
"""
@ -207,43 +237,57 @@ class FileTracker(object):
@param complete: (bool) True if all calculations of the model are complete (files can be deleted).
@return: None
"""
self._complete_by_model[model] = complete
if complete:
self._complete_models.add(model)
else:
self._complete_models.discard(model)
def delete_files(self, categories=None, keep_rfac=0):
def delete_files(self, categories=None, incomplete_models=False):
"""
delete the files matching the list of categories.
delete all files matching a set of categories.
this function deletes all files that are tagged with one of the given categories.
tags are set by the code sections that create the files.
for a list of common categories, see FILE_CATEGORIES.
the categories can be given as an argument or taken from the categories_to_delete property.
files are deleted regardless of R-factor.
be sure to specify only categories that you don't need in the output at all.
by default, only files of complete models (cf. set_model_complete()) are deleted
to avoid interference with running calculations.
to clean up after calculations, the incomplete_models argument can override this.
@note this method does not act on the special 'rfac' category (see delete_bad_rfac()).
@param categories: set of file categories to delete.
may include 'rfac' if bad r-factors should be deleted additionally (regardless of static category).
defaults to self.categories_to_delete.
if the argument is None, it defaults to the categories_to_delete property.
@param keep_rfac: number of best models to keep if bad r-factors are to be deleted.
the effective keep number is the greater of self.keep_rfac and this argument.
@param incomplete_models: (bool) delete files of incomplete models as well.
by default (False), incomplete models are not deleted.
@return: None
"""
if categories is None:
categories = self.categories_to_delete
for cat in categories:
self.delete_category(cat)
if 'rfac' in categories:
self.delete_bad_rfac(keep=keep_rfac)
self.delete_category(cat, incomplete_models=incomplete_models)
def delete_bad_rfac(self, keep=0, force_delete=False):
"""
delete the files of all models except a specified number of good models.
delete all files of all models except for a specified number of best ranking models.
the method first determines which models to keep.
models with R factor values of 0.0, without a specified R-factor, and
the specified number of best ranking non-zero models are kept.
the files belonging to the keeper models are kept, all others are deleted,
regardless of category.
files of incomplete models are also kept.
in addition, incomplete models, models with R factor = 0.0,
and those without a specified R-factor are kept.
all other files are deleted.
the method does not consider the file category.
the files are deleted from the list and the file system.
files are deleted only if 'rfac' is specified in self.categories_to_delete
or if force_delete is set to True.
the method executes only if 'rfac' is specified in self.categories_to_delete
or if force_delete is True.
otherwise the method does nothing.
@param keep: number of files to keep.
@ -252,8 +296,6 @@ class FileTracker(object):
@param force_delete: delete the bad files even if 'rfac' is not selected in categories_to_delete.
@return: None
@todo should clean up rfac and model dictionaries from time to time.
"""
if force_delete or 'rfac' in self.categories_to_delete:
keep = max(keep, self.keep_rfac)
@ -263,62 +305,132 @@ class FileTracker(object):
except IndexError:
return
complete_models = {_model for (_model, _complete) in self._complete_by_model.iteritems() if _complete}
del_models = {_model for (_model, _rfac) in self._rfac_by_model.iteritems() if _rfac > rfac_split}
del_models &= complete_models
del_ids = {_id for (_id, _model) in self._model_by_id.iteritems() if _model in del_models}
for _id in del_ids:
self.delete_file(_id)
keep_models = {model for (model, rfac) in self._rfac_by_model.items() if 0.0 <= rfac <= rfac_split}
del_models = self._complete_models - keep_models
del_names = {name for (name, model) in self._file_model.items() if model in del_models}
for name in del_names:
self.delete_file(name)
def delete_category(self, category):
def delete_models(self, keep=None, delete=None):
"""
delete all files by model.
this involves the following steps:
1. determine a list of complete models
(incomplete models are still being processed and must not be deleted).
2. intersect with the _delete_ list if specified.
3. subtract the _keep_ list if specified.
if neither the _keep_ nor the _delete_ list is specified,
or if the steps above resolve to the _complete_ list
the method considers it as an error and does nothing.
@param keep: (sequence) model numbers to keep, i.e., delete all others.
@param delete: (sequence) model numbers to delete.
@return (int) number of models deleted.
"""
del_models = self._complete_models.copy()
if delete:
del_models &= delete
if keep:
del_models -= keep
if not del_models or del_models == self._complete_models:
return 0
del_names = {name for (name, model) in self._file_model.items() if model in del_models}
for name in del_names:
self.delete_file(name)
return len(del_models)
def delete_category(self, category, incomplete_models=False):
"""
delete all files of a specified category from the list and the file system.
only files of complete models (cf. set_model_complete()) are deleted, but regardless of R-factor.
this function deletes all files that are tagged with the given category.
tags are set by the code sections that create the files.
for a list of common categories, see FILE_CATEGORIES.
files are deleted regardless of R-factor.
be sure to specify only categories that you don't need in the output at all.
by default, only files of complete models (cf. set_model_complete()) are deleted
to avoid interference with running calculations.
to clean up after calculations, the incomplete_models argument can override this.
@param category: (str) category.
should be one of FILE_CATEGORIES. otherwise, the function has no effect.
@param incomplete_models: (bool) delete files of incomplete models as well.
by default (False), incomplete models are not deleted.
@return: None
"""
complete_models = {_model for (_model, _complete) in self._complete_by_model.iteritems() if _complete}
del_ids = {_id for (_id, cat) in self._category_by_id.iteritems() if cat == category}
del_ids &= {_id for (_id, _model) in self._model_by_id.iteritems() if _model in complete_models}
for _id in del_ids:
self.delete_file(_id)
del_names = {name for (name, cat) in self._file_category.items() if cat == category}
if not incomplete_models:
del_names &= {name for (name, model) in self._file_model.items() if model in self._complete_models}
for name in del_names:
self.delete_file(name)
def delete_file(self, _id):
def delete_file(self, name):
"""
delete a specified file from the list and the file system.
the file is identified by ID number.
this method is unconditional. it does not consider category, completeness, nor R-factor.
@param _id: (int) ID number of the file to delete.
the method catches errors during file deletion and prints warnings to the logger.
@param name: must match an existing file path identically.
if it is not in the list, the method does nothing.
the method uses the associated path declared in add_file() to delete the file.
@return: None
"""
path = self._path_by_id[_id]
cat = self._category_by_id[_id]
model = self._model_by_id[_id]
del self._id_by_path[path]
del self._path_by_id[_id]
del self._model_by_id[_id]
del self._category_by_id[_id]
try:
self._os_delete_file(path)
except OSError:
logger.warning("error deleting file {0}".format(path))
cat = self._file_category[name]
model = self._file_model[name]
path = self._file_path[name]
except KeyError:
logger.warning("tried to delete untracked file {0}".format(name))
else:
logger.debug("delete file {0} ({1}, model {2})".format(path, cat, model))
del self._file_model[name]
del self._file_category[name]
del self._file_path[name]
try:
os.remove(path)
except OSError:
logger.warning("file system error deleting file {0}".format(path))
else:
logger.debug("delete file {0} ({1}, model {2})".format(path, cat, model))
@staticmethod
def _os_delete_file(path):
"""
have the operating system delete a file path.
this function is separate so that we can mock it in unit tests.
def list_files_other_models(prefix, models):
"""
list input/output files except those of the given models.
@param path: OS path
@return: None
"""
os.remove(path)
this can be used to clean up all files except those belonging to the given models.
to delete the listed files:
for f in files:
os.remove(f)
@param prefix: file name prefix up to the first underscore.
only files starting with this prefix are listed.
@param models: sequence or set of model numbers that should not be listed.
@return: set of file names
"""
file_names = set([])
for entry in os.scandir():
if entry.is_file:
elements = entry.name.split('_')
try:
if len(elements) == 6 and elements[0] == prefix and int(elements[1]) not in models:
file_names.add(entry.name)
except (IndexError, ValueError):
pass
return file_names

View File

View File

@ -0,0 +1,443 @@
"""
@package pmsco.graphics.population
graphics rendering module for population dynamics.
the main function is render_genetic_chart().
this module is experimental.
interface and implementation are subject to change.
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2021 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
import logging
import numpy as np
import os
from pmsco.database import regular_params, special_params
logger = logging.getLogger(__name__)
try:
from matplotlib.figure import Figure
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
# from matplotlib.backends.backend_pdf import FigureCanvasPdf
# from matplotlib.backends.backend_svg import FigureCanvasSVG
except ImportError:
Figure = None
FigureCanvas = None
logger.warning("error importing matplotlib. graphics rendering disabled.")
def _default_range(pos):
"""
determine a default range from actual values.
@param pos: (numpy.ndarray) 1-dimensional structured array of parameter values.
@return: range_min, range_max are dictionaries of the minimum and maximum values of each parameter.
"""
names = regular_params(pos.dtype.names)
range_min = {}
range_max = {}
for name in names:
range_min[name] = pos[name].min()
range_max[name] = pos[name].max()
return range_min, range_max
def _prune_constant_params(pnames, range_min, range_max):
"""
remove constant parameters from the list and range
@param pnames: (list)
@param range_min: (dict)
@param range_max: (dict)
@return:
"""
del_names = [name for name in pnames if range_max[name] <= range_min[name]]
for name in del_names:
pnames.remove(name)
del range_min[name]
del range_max[name]
def render_genetic_chart(output_file, input_data_or_file, model_space=None, generations=None, title=None, cmap=None,
canvas=None):
"""
produce a genetic chart from a given population.
a genetic chart is a pseudo-colour representation of the coordinates of each individual in the model space.
the axes are the particle number and the model parameter.
the colour is mapped from the relative position of a parameter value within the parameter range.
the chart should illustrate the diversity in the population.
converged parameters will show similar colours.
by comparing charts of different generations, the effect of the optimization algorithm can be examined.
though the chart type is designed for the genetic algorithm, it may be useful for other algorithms as well.
the function requires input in one of the following forms:
- a result (.dat) file or numpy structured array.
the array must contain regular parameters, as well as the _particle and _gen columns.
the function generates one chart per generation unless the generation argument is specified.
- a population (.pop) file or numpy structured array.
the array must contain regular parameters, as well as the _particle columns.
- a pmsco.optimizers.population.Population object with valid data.
the graphics file format can be changed by providing a specific canvas. default is PNG.
this function requires the matplotlib module.
if it is not available, the function raises an error.
@param output_file: path and base name of the output file without extension.
a generation index and the file extension according to the file format are appended.
@param input_data_or_file: a numpy structured ndarray of a population or result list from an optimization run.
alternatively, the file path of a result file (.dat) or population file (.pop) can be given.
file can be any object that numpy.genfromtxt() can handle.
@param model_space: model space can be a pmsco.project.ModelSpace object,
any object that contains the same min and max attributes as pmsco.project.ModelSpace,
or a dictionary with to keys 'min' and 'max' that provides the corresponding ModelSpace dictionaries.
by default, the model space boundaries are derived from the input data.
if a model_space is specified, only the parameters listed in it are plotted.
@param generations: (int or sequence) generation index or list of indices.
this index is used in the output file name and for filtering input data by generation.
if the input data does not contain the generation, no filtering is applied.
by default, no filtering is applied, and one graph for each generation is produced.
@param title: (str) title of the chart.
the title is a {}-style format string, where {base} is the output file name and {gen} is the generation.
default: derived from file name.
@param cmap: (str) name of colour map supported by matplotlib.
default is 'jet'.
other good-looking options are 'PiYG', 'RdBu', 'RdYlGn', 'coolwarm'.
@param canvas: a FigureCanvas class reference from a matplotlib backend.
if None, the default FigureCanvasAgg is used which produces a bitmap file in PNG format.
some other options are:
matplotlib.backends.backend_pdf.FigureCanvasPdf or
matplotlib.backends.backend_svg.FigureCanvasSVG.
@return (str) path and name of the generated graphics file.
empty string if an error occurred.
@raise TypeError if matplotlib is not available.
"""
try:
pos = np.copy(input_data_or_file.pos)
range_min = input_data_or_file.model_min
range_max = input_data_or_file.model_max
generations = [input_data_or_file.generation]
except AttributeError:
try:
pos = np.atleast_1d(np.genfromtxt(input_data_or_file, names=True))
except TypeError:
pos = np.copy(input_data_or_file)
range_min, range_max = _default_range(pos)
pnames = regular_params(pos.dtype.names)
if model_space is not None:
try:
# a ModelSpace-like object
range_min = model_space.min
range_max = model_space.max
except AttributeError:
# a dictionary-like object
range_min = model_space['min']
range_max = model_space['max']
try:
pnames = range_min.keys()
except AttributeError:
pnames = range_min.dtype.names
pnames = list(pnames)
_prune_constant_params(pnames, range_min, range_max)
if generations is None:
try:
generations = np.unique(pos['_gen'])
except ValueError:
pass
files = []
path, base = os.path.split(output_file)
if generations is not None and len(generations):
if title is None:
title = "{base} gen {gen}"
for generation in generations:
idx = np.where(pos['_gen'] == generation)
gpos = pos[idx]
gtitle = title.format(base=base, gen=int(generation))
out_filename = "{base}-{gen}".format(base=os.fspath(output_file), gen=int(generation))
out_filename = _render_genetic_chart_2(out_filename, gpos, pnames, range_min, range_max,
gtitle, cmap, canvas)
files.append(out_filename)
else:
if title is None:
title = "{base}"
gtitle = title.format(base=base, gen="")
out_filename = "{base}".format(base=os.fspath(output_file))
out_filename = _render_genetic_chart_2(out_filename, pos, pnames, range_min, range_max, gtitle, cmap, canvas)
files.append(out_filename)
return files
def _render_genetic_chart_2(out_filename, pos, pnames, range_min, range_max, title, cmap, canvas):
"""
internal part of render_genetic_chart()
this function calculates the relative position in the model space,
sorts the positions array by particle index,
and calls plot_genetic_chart().
@param out_filename:
@param pos:
@param pnames:
@param range_max:
@param range_min:
@param cmap:
@param canvas:
@return: out_filename
"""
spos = np.sort(pos, order='_particle')
rpos2d = np.zeros((spos.shape[0], len(pnames)))
for index, pname in enumerate(pnames):
rpos2d[:, index] = (spos[pname] - range_min[pname]) / (range_max[pname] - range_min[pname])
out_filename = plot_genetic_chart(out_filename, rpos2d, pnames, title=title, cmap=cmap, canvas=canvas)
return out_filename
def plot_genetic_chart(filename, rpos2d, param_labels, title=None, cmap=None, canvas=None):
"""
produce a genetic chart from the given data.
a genetic chart is a pseudo-colour representation of the coordinates of each individual in the model space.
the chart should highlight the amount of diversity in the population
and - by comparing charts of different generations - the changes due to mutation.
the axes are the model parameter (x) and particle number (y).
the colour is mapped from the relative position of a parameter value within the parameter range.
in contrast to render_genetic_chart() this function contains only the drawing code.
it requires input in the final form and does not do any checks, conversion or processing.
the graphics file format can be changed by providing a specific canvas. default is PNG.
this function requires the matplotlib module.
if it is not available, the function raises an error.
@param filename: path and name of the output file without extension.
@param rpos2d: (two-dimensional numpy array of numeric type)
relative positions of the particles in the model space.
dimension 0 (y-axis) is the particle index,
dimension 1 (x-axis) is the parameter index (in the order given by param_labels).
all values must be between 0 and 1.
@param param_labels: (sequence) list or tuple of parameter names.
@param title: (str) string to be printed as chart title. default is 'genetic chart'.
@param cmap: (str) name of colour map supported by matplotlib.
default is 'jet'.
other good-looking options are 'PiYG', 'RdBu', 'RdYlGn', 'coolwarm'.
@param canvas: a FigureCanvas class reference from a matplotlib backend.
if None, the default FigureCanvasAgg is used which produces a bitmap file in PNG format.
some other options are:
matplotlib.backends.backend_pdf.FigureCanvasPdf or
matplotlib.backends.backend_svg.FigureCanvasSVG.
@raise TypeError if matplotlib is not available.
"""
if canvas is None:
canvas = FigureCanvas
if cmap is None:
cmap = 'jet'
if title is None:
title = 'genetic chart'
fig = Figure()
canvas(fig)
ax = fig.add_subplot(111)
im = ax.imshow(rpos2d, aspect='auto', cmap=cmap, origin='lower')
im.set_clim((0.0, 1.0))
ax.set_xticks(np.arange(len(param_labels)))
ax.set_xticklabels(param_labels, rotation=45, ha="right", rotation_mode="anchor")
ax.set_ylabel('particle')
ax.set_title(title)
cb = ax.figure.colorbar(im, ax=ax)
cb.ax.set_ylabel("relative value", rotation=-90, va="bottom")
out_filename = "{base}.{ext}".format(base=filename, ext=canvas.get_default_filetype())
fig.savefig(out_filename)
return out_filename
def render_swarm(output_file, input_data, model_space=None, title=None, cmap=None, canvas=None):
"""
render a two-dimensional particle swarm population.
this function generates a schematic rendering of a particle swarm in two dimensions.
particles are represented by their position and velocity, indicated by an arrow.
the model space is projected on the first two (or selected two) variable parameters.
in the background, a scatter plot of results (dots with pseudocolor representing the R-factor) can be plotted.
the chart type is designed for the particle swarm optimization algorithm.
the function requires input in one of the following forms:
- position (.pos), velocity (.vel) and result (.dat) files or the respective numpy structured arrays.
the arrays must contain regular parameters, as well as the `_particle` column.
the result file must also contain an `_rfac` column.
- a pmsco.optimizers.population.Population object with valid data.
the graphics file format can be changed by providing a specific canvas. default is PNG.
this function requires the matplotlib module.
if it is not available, the function raises an error.
@param output_file: path and base name of the output file without extension.
a generation index and the file extension according to the file format are appended.
@param input_data: a pmsco.optimizers.population.Population object with valid data,
or a sequence of position, velocity and result arrays.
the arrays must be structured ndarrays corresponding to the respective Population members.
alternatively, the arrays can be referenced as file paths
in any format that numpy.genfromtxt() can handle.
@param model_space: model space can be a pmsco.project.ModelSpace object,
any object that contains the same min and max attributes as pmsco.project.ModelSpace,
or a dictionary with to keys 'min' and 'max' that provides the corresponding ModelSpace dictionaries.
by default, the model space boundaries are derived from the input data.
if a model_space is specified, only the parameters listed in it are plotted.
@param title: (str) title of the chart.
the title is a {}-style format string, where {base} is the output file name and {gen} is the generation.
default: derived from file name.
@param cmap: (str) name of colour map supported by matplotlib.
default is 'plasma'.
other good-looking options are 'viridis', 'plasma', 'inferno', 'magma', 'cividis'.
@param canvas: a FigureCanvas class reference from a matplotlib backend.
if None, the default FigureCanvasAgg is used which produces a bitmap file in PNG format.
some other options are:
matplotlib.backends.backend_pdf.FigureCanvasPdf or
matplotlib.backends.backend_svg.FigureCanvasSVG.
@return (str) path and name of the generated graphics file.
empty string if an error occurred.
@raise TypeError if matplotlib is not available.
"""
try:
range_min = input_data.model_min
range_max = input_data.model_max
pos = np.copy(input_data.pos)
vel = np.copy(input_data.vel)
rfac = np.copy(input_data.results)
generation = input_data.generation
except AttributeError:
try:
pos = np.atleast_1d(np.genfromtxt(input_data[0], names=True))
vel = np.atleast_1d(np.genfromtxt(input_data[1], names=True))
rfac = np.atleast_1d(np.genfromtxt(input_data[2], names=True))
except TypeError:
pos = np.copy(input_data[0])
vel = np.copy(input_data[1])
rfac = np.copy(input_data[2])
range_min, range_max = _default_range(rfac)
pnames = regular_params(pos.dtype.names)
if model_space is not None:
try:
# a ModelSpace-like object
range_min = model_space.min
range_max = model_space.max
except AttributeError:
# a dictionary-like object
range_min = model_space['min']
range_max = model_space['max']
try:
pnames = range_min.keys()
except AttributeError:
pnames = range_min.dtype.names
pnames = list(pnames)
_prune_constant_params(pnames, range_min, range_max)
pnames = pnames[0:2]
files = []
if len(pnames) == 2:
params = {pnames[0]: [range_min[pnames[0]], range_max[pnames[0]]],
pnames[1]: [range_min[pnames[1]], range_max[pnames[1]]]}
out_filename = plot_swarm(output_file, pos, vel, rfac, params, title=title, cmap=cmap, canvas=canvas)
files.append(out_filename)
else:
logging.warning("model space must be two-dimensional and non-degenerate.")
return files
def plot_swarm(filename, pos, vel, rfac, params, title=None, cmap=None, canvas=None):
"""
plot a two-dimensional particle swarm population.
this is a sub-function of render_swarm() containing just the plotting commands.
the graphics file format can be changed by providing a specific canvas. default is PNG.
this function requires the matplotlib module.
if it is not available, the function raises an error.
@param filename: path and base name of the output file without extension.
a generation index and the file extension according to the file format are appended.
@param pos: structured ndarray containing the positions of the particles.
@param vel: structured ndarray containing the velocities of the particles.
@param rfac: structured ndarray containing positions and R-factor values.
this array is independent of pos and vel.
it can also be set to None if results should be suppressed.
@param params: dictionary of two parameters to be plotted.
the keys correspond to columns of the pos, vel and rfac arrays.
the values are lists [minimum, maximum] that define the axis range.
@param title: (str) title of the chart.
the title is a {}-style format string, where {base} is the output file name and {gen} is the generation.
default: derived from file name.
@param cmap: (str) name of colour map supported by matplotlib.
default is 'plasma'.
other good-looking options are 'viridis', 'plasma', 'inferno', 'magma', 'cividis'.
@param canvas: a FigureCanvas class reference from a matplotlib backend.
if None, the default FigureCanvasAgg is used which produces a bitmap file in PNG format.
some other options are:
matplotlib.backends.backend_pdf.FigureCanvasPdf or
matplotlib.backends.backend_svg.FigureCanvasSVG.
@return (str) path and name of the generated graphics file.
empty string if an error occurred.
@raise TypeError if matplotlib is not available.
"""
if canvas is None:
canvas = FigureCanvas
if cmap is None:
cmap = 'plasma'
if title is None:
title = 'swarm map'
pnames = list(params.keys())
fig = Figure()
canvas(fig)
ax = fig.add_subplot(111)
if rfac is not None:
try:
s = ax.scatter(rfac[params[0]], rfac[params[1]], s=5, c=rfac['_rfac'], cmap=cmap, vmin=0, vmax=1)
except ValueError:
# _rfac column missing
pass
else:
cb = ax.figure.colorbar(s, ax=ax)
cb.ax.set_ylabel("R-factor", rotation=-90, va="bottom")
p = ax.plot(pos[pnames[0]], pos[pnames[1]], 'co')
q = ax.quiver(pos[pnames[0]], pos[pnames[1]], vel[pnames[0]], vel[pnames[1]], color='c')
ax.set_xlim(params[pnames[0]])
ax.set_ylim(params[pnames[1]])
ax.set_xlabel(pnames[0])
ax.set_ylabel(pnames[1])
ax.set_title(title)
out_filename = "{base}.{ext}".format(base=filename, ext=canvas.get_default_filetype())
fig.savefig(out_filename)
return out_filename

198
pmsco/graphics/rfactor.py Normal file
View File

@ -0,0 +1,198 @@
"""
@package pmsco.graphics.rfactor
graphics rendering module for r-factor optimization results.
this module is under development.
interface and implementation are subject to change.
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2018 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import math
import numpy as np
from pmsco.helpers import BraceMessage as BMsg
logger = logging.getLogger(__name__)
try:
from matplotlib.figure import Figure
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
except ImportError:
Figure = None
FigureCanvas = None
logger.warning("error importing matplotlib. graphics rendering disabled.")
def render_param_rfac(filename, data, param_name, summary=None, canvas=None):
"""
render an r-factor versus one model parameter graph.
the default file format is PNG.
this function requires the matplotlib module.
if it is not available, the function raises an error.
@param filename: path and name of the results file.
this is used to derive the output file path by adding the parameter name and
the extension of the graphics file format.
@param data: numpy-structured array of results (one-dimensional).
the field names identify the model parameters and optimization control values.
model parameters can have any name not including a leading underscore and are evaluated as is.
the names of the special optimization control values begin with an underscore.
of these, at least _rfac must be provided.
@param param_name: name of the model parameter to display.
this must correspond to a field name of the data array.
@param summary: (dict) the dictionary returned by @ref evaluate_results.
this is used to mark the optimum value and the error limits.
if None, these values are not marked in the plot.
@param canvas: a FigureCanvas class reference from a matplotlib backend.
if None, the default FigureCanvasAgg is used which produces a bitmap file in PNG format.
@return (str) path and name of the generated graphics file.
empty string if an error occurred.
@raise TypeError if matplotlib is not available.
"""
if canvas is None:
canvas = FigureCanvas
fig = Figure()
canvas(fig)
ax = fig.add_subplot(111)
ax.scatter(data[param_name], data['_rfac'], c='b', marker='o', s=4.0)
if summary is not None:
xval = summary['val'][param_name]
ymin = summary['vmin']['_rfac']
ymax = summary['vmax']['_rfac']
ax.plot((xval, xval), (ymin, ymax), ':k')
xmin = summary['vmin'][param_name]
xmax = summary['vmax'][param_name]
varr = summary['rmin'] + summary['rvar']
ax.plot((xmin, xmax), (varr, varr), ':k')
ax.grid(True)
ax.set_xlabel(param_name)
ax.set_ylabel('R-factor')
out_filename = "{0}.{1}.{2}".format(filename, param_name, canvas.get_default_filetype())
fig.savefig(out_filename)
return out_filename
def evaluate_results(data, features=50.):
"""
@param data: numpy-structured array of results (one-dimensional).
the field names identify the model parameters and optimization control values.
model parameters can have any name not including a leading underscore and are evaluated as is.
the names of the special optimization control values begin with an underscore.
of these, at least _rfac must be provided.
@param features: number of independent features (pieces of information) in the data.
this quantity can be approximated as the scan range divided by the average width of a feature
which includes an intrinsic component and the instrumental resolution.
see Booth et al., Surf. Sci. 387 (1997), 152 for energy scans, and
Muntwiler et al., Surf. Sci. 472 (2001), 125 for angle scans.
the default value of 50 is a typical value.
@return dictionary of evaluation results.
the dictionary contains scalars and structured arrays as follows.
the structured arrays have the same data type as the input data and contain exactly one element.
@arg rmin: (scalar) minimum r-factor.
@arg rvar: (scalar) one-sigma variation of r-factor.
@arg imin: (scalar) array index where the minimum is located.
@arg val: (structured array) estimates of parameter values (parameter value at rmin).
@arg sig: (structured array) one-sigma error of estimated values.
@arg vmin: (structured array) minimum value of the parameter.
@arg vmax: (structured array) maximum value of the parameter.
"""
imin = data['_rfac'].argmin()
rmin = data['_rfac'][imin]
rvar = rmin * math.sqrt(2. / float(features))
val = np.zeros(1, dtype=data.dtype)
sig = np.zeros(1, dtype=data.dtype)
vmin = np.zeros(1, dtype=data.dtype)
vmax = np.zeros(1, dtype=data.dtype)
sel = data['_rfac'] <= rmin + rvar
for name in data.dtype.names:
val[name] = data[name][imin]
vmin[name] = data[name].min()
vmax[name] = data[name].max()
if name[0] != '_':
sig[name] = (data[name][sel].max() - data[name][sel].min()) / 2.
results = {'rmin': rmin, 'rvar': rvar, 'imin': imin, 'val': val, 'sig': sig, 'vmin': vmin, 'vmax': vmax}
return results
def render_results(results_file, data=None):
"""
produce a graphics file from optimization results.
the results can be passed in a file name or numpy array (see parameter section).
the default file format is PNG.
this function requires the matplotlib module.
if it is not available, the function will log a warning message and return gracefully.
@param results_file: path and name of the result file.
result files are the ones written by swarm.SwarmPopulation.save_array, for instance.
the file contains columns of model parameters and optimization control values.
the first row must contain column names that identify the quantity.
model parameters can have any name not including a leading underscore and are evaluated as is.
the names of the special optimization control values begin with an underscore.
of these, at least _rfac must be provided.
if the optional data parameter is present,
this is used only to derive the output file path by adding the extension of the graphics file format.
@param data: numpy-structured array of results (one-dimensional).
the field names identify the model parameters and optimization control values.
model parameters can have any name not including a leading underscore and are evaluated as is.
the names of the special optimization control values begin with an underscore.
of these, at least _rfac must be provided.
if this argument is omitted, the data is loaded from the file referenced by the filename argument.
@return (list of str) path names of the generated graphics files.
empty if an error occurred.
the most common exceptions are caught and add a warning in the log file.
"""
if data is None:
data = np.atleast_1d(np.genfromtxt(results_file, names=True))
summary = evaluate_results(data)
out_files = []
try:
for name in data.dtype.names:
if name[0] != '_' and summary['sig'][name] > 0.:
graph_file = render_param_rfac(results_file, data, name, summary)
out_files.append(graph_file)
except (TypeError, AttributeError, IOError) as e:
logger.warning(BMsg("error rendering scan file {file}: {msg}", file=results_file, msg=str(e)))
return out_files

286
pmsco/graphics/scan.py Normal file
View File

@ -0,0 +1,286 @@
"""
@package pmsco.graphics.scan
graphics rendering module for energy and angle scans.
this module is experimental.
interface and implementation are subject to change.
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2018-21 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
import logging
import math
import numpy as np
import pmsco.data as md
from pmsco.helpers import BraceMessage as BMsg
logger = logging.getLogger(__name__)
try:
from matplotlib.figure import Figure
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
# from matplotlib.backends.backend_pdf import FigureCanvasPdf
# from matplotlib.backends.backend_svg import FigureCanvasSVG
except ImportError:
Figure = None
FigureCanvas = None
logger.warning("error importing matplotlib. graphics rendering disabled.")
def render_1d_scan(filename, data, scan_mode, canvas=None, is_modf=False, ref_data=None):
"""
produce a graphics file from a one-dimensional scan file.
the default file format is PNG.
this function requires the matplotlib module.
if it is not available, the function raises an error.
@param filename: path and name of the scan file.
this is used to derive the output file path by adding the extension of the graphics file format.
@param data: numpy-structured array of EI, ETPI or ETPAI data.
@param scan_mode: list containing the field name of the scanning axis of the data array.
it must contain one element exactly.
@param canvas: a FigureCanvas class reference from a matplotlib backend.
if None, the default FigureCanvasAgg is used which produces a bitmap file in PNG format.
@param is_modf: whether data contains a modulation function (True) or intensity (False, default).
this parameter is used to set axis labels.
@param ref_data: numpy-structured array of EI, ETPI or ETPAI data.
this is reference data (e.g. experimental data) that should be plotted with the main dataset.
both datasets will be plotted on the same axis and should have similar data range.
@return (str) path and name of the generated graphics file.
empty string if an error occurred.
@raise TypeError if matplotlib is not available.
"""
if canvas is None:
canvas = FigureCanvas
fig = Figure()
canvas(fig)
ax = fig.add_subplot(111)
if ref_data is not None:
ax.plot(ref_data[scan_mode[0]], ref_data['i'], 'k.')
ax.plot(data[scan_mode[0]], data['i'])
ax.set_xlabel(scan_mode[0])
if is_modf:
ax.set_ylabel('chi')
else:
ax.set_ylabel('int')
out_filename = "{0}.{1}".format(filename, canvas.get_default_filetype())
fig.savefig(out_filename)
return out_filename
def render_ea_scan(filename, data, scan_mode, canvas=None, is_modf=False):
"""
produce a graphics file from an energy-angle scan file.
the default file format is PNG.
this function requires the matplotlib module.
if it is not available, the function raises an error.
@param filename: path and name of the scan file.
this is used to derive the output file path by adding the extension of the graphics file format.
@param data: numpy-structured array of ETPI or ETPAI data.
@param scan_mode: list containing the field names of the scanning axes of the data array,
i.e. 'e' and one of the angle axes.
@param canvas: a FigureCanvas class reference from a matplotlib backend.
if None, the default FigureCanvasAgg is used which produces a bitmap file in PNG format.
@param is_modf: whether data contains a modulation function (True) or intensity (False, default).
this parameter is used to select a suitable color scale.
@return (str) path and name of the generated graphics file.
empty string if an error occurred.
@raise TypeError if matplotlib is not available.
"""
(data2d, axis0, axis1) = md.reshape_2d(data, scan_mode, 'i')
if canvas is None:
canvas = FigureCanvas
fig = Figure()
canvas(fig)
ax = fig.add_subplot(111)
im = ax.imshow(data2d, origin='lower', aspect='auto', interpolation='none')
im.set_extent((axis1[0], axis1[-1], axis0[0], axis0[-1]))
ax.set_xlabel(scan_mode[1])
ax.set_ylabel(scan_mode[0])
cb = fig.colorbar(im, shrink=0.4, pad=0.1)
dlo = np.nanpercentile(data['i'], 1)
dhi = np.nanpercentile(data['i'], 99)
if is_modf:
im.set_cmap("RdBu_r")
dhi = max(abs(dlo), abs(dhi))
dlo = -dhi
im.set_clim((-1., 1.))
try:
ti = cb.get_ticks()
ti = [min(ti), 0., max(ti)]
cb.set_ticks(ti)
except AttributeError:
pass
else:
im.set_cmap("magma")
im.set_clim((dlo, dhi))
out_filename = "{0}.{1}".format(filename, canvas.get_default_filetype())
fig.savefig(out_filename)
return out_filename
def render_tp_scan(filename, data, canvas=None, is_modf=False):
"""
produce a graphics file from an theta-phi (hemisphere) scan file.
the default file format is PNG.
this function requires the matplotlib module.
if it is not available, the function raises an error.
@param filename: path and name of the scan file.
this is used to derive the output file path by adding the extension of the graphics file format.
@param data: numpy-structured array of TPI data.
the T and P columns describes a full or partial hemispherical scan.
the I column contains the intensity or modulation values.
other columns are ignored.
@param canvas: a FigureCanvas class reference from a matplotlib backend.
if None, the default FigureCanvasAgg is used which produces a bitmap file in PNG format.
@param is_modf: whether data contains a modulation function (True) or intensity (False, default).
this parameter is used to select a suitable color scale.
@return (str) path and name of the generated graphics file.
empty string if an error occurred.
@raise TypeError if matplotlib is not available.
"""
if canvas is None:
canvas = FigureCanvas
fig = Figure()
canvas(fig)
ax = fig.add_subplot(111, projection='polar')
data = data[data['t'] <= 89.0]
# stereographic projection
rd = 2 * np.tan(np.radians(data['t']) / 2)
drdt = 1 + np.tan(np.radians(data['t']) / 2)**2
# http://matplotlib.org/api/collections_api.html#matplotlib.collections.PathCollection
pc = ax.scatter(data['p'] * math.pi / 180., rd, c=data['i'], lw=0, alpha=1.)
# interpolate marker size between 4 and 9 (for theta step = 1)
unique_theta = np.unique(data['t'])
theta_step = (np.max(unique_theta) - np.min(unique_theta)) / unique_theta.shape[0]
sz = np.ones_like(pc.get_sizes()) * drdt * 4.5 * theta_step**2
pc.set_sizes(sz)
# xticks = angles where grid lines are displayed (in radians)
ax.set_xticks([])
# rticks = radii where grid lines (circles) are displayed
ax.set_rticks([])
ax.set_rmax(2.0)
cb = fig.colorbar(pc, shrink=0.4, pad=0.1)
dlo = np.nanpercentile(data['i'], 2)
dhi = np.nanpercentile(data['i'], 98)
if is_modf:
pc.set_cmap("RdBu_r")
# im.set_cmap("coolwarm")
dhi = max(abs(dlo), abs(dhi))
dlo = -dhi
pc.set_clim((-1., 1.))
try:
ti = cb.get_ticks()
ti = [min(ti), 0., max(ti)]
cb.set_ticks(ti)
except AttributeError:
pass
else:
pc.set_cmap("magma")
# im.set_cmap("inferno")
# im.set_cmap("viridis")
pc.set_clim((dlo, dhi))
try:
ti = cb.get_ticks()
ti = [min(ti), max(ti)]
cb.set_ticks(ti)
except AttributeError:
pass
out_filename = "{0}.{1}".format(filename, canvas.get_default_filetype())
fig.savefig(out_filename)
return out_filename
def render_scan(filename, data=None, ref_data=None):
"""
produce a graphics file from a scan file.
the default file format is PNG.
this function requires the matplotlib module.
if it is not available, the function will log a warning message and return gracefully.
@param filename: path and name of the scan file.
the file must have one of the formats supported by pmsco.data.load_data().
it must contain a single scan (not the combined scan from the model level of PMSCO).
supported are all one-dimensional linear scans,
and two-dimensional energy-angle scans (each axis must be linear).
hemispherical scans are currently not supported.
the filename should include ".modf" if the data contains a modulation function rather than intensity.
if the optional data parameter is present,
this is used only to derive the output file path by adding the extension of the graphics file format.
@param data: numpy-structured array of ETPI or ETPAI data.
if this argument is omitted, the data is loaded from the file referenced by the filename argument.
@param ref_data: numpy-structured array of ETPI or ETPAI data.
this is reference data (e.g. experimental data) that should be plotted with the main dataset.
this is supported for 1d scans only.
both datasets will be plotted on the same axis and should have similar data range.
@return (str) path and name of the generated graphics file.
empty string if an error occurred.
"""
if data is None:
data = md.load_data(filename)
scan_mode, scan_positions = md.detect_scan_mode(data)
is_modf = filename.find(".modf") >= 0
try:
if len(scan_mode) == 1:
out_filename = render_1d_scan(filename, data, scan_mode, is_modf=is_modf, ref_data=ref_data)
elif len(scan_mode) == 2 and 'e' in scan_mode:
out_filename = render_ea_scan(filename, data, scan_mode, is_modf=is_modf)
elif len(scan_mode) == 2 and 't' in scan_mode and 'p' in scan_mode:
out_filename = render_tp_scan(filename, data, is_modf=is_modf)
else:
out_filename = ""
logger.warning(BMsg("no render function for scan file {file}", file=filename))
except (TypeError, AttributeError, IOError) as e:
out_filename = ""
logger.warning(BMsg("error rendering scan file {file}: {msg}", file=filename, msg=str(e)))
return out_filename

View File

@ -1,6 +1,6 @@
"""
@package pmsco.handlers
project-independent task handlers for models, scans, symmetries, emitters and energies.
project-independent task handlers for models, scans, domains, emitters and energies.
calculation tasks are organized in a hierarchical tree.
at each node, a task handler (feel free to find a better name)
@ -20,9 +20,9 @@ the handlers of the structural optimizers are declared in separate modules.
scans are defined by the project.
the actual merging step from multiple scans into one result dataset is delegated to the project class.
<em>symmetry handlers</em> split a task into one child per symmetry.
symmetries are defined by the project.
the actual merging step from multiple symmetries into one result dataset is delegated to the project class.
<em>domain handlers</em> split a task into one child per domain.
domains are defined by the project.
the actual merging step from multiple domains into one result dataset is delegated to the project class.
<em>emitter handlers</em> split a task into one child per emitter configuration (inequivalent sets of emitting atoms).
emitter configurations are defined by the project.
@ -35,26 +35,31 @@ code inspection and tests have shown that per-emitter results from EDAC can be s
in order to take advantage of parallel processing.
while several classes of model handlers are available,
the default handlers for scans, symmetries, emitters and energies should be sufficient in most situations.
the scan and symmetry handlers call methods of the project class to invoke project-specific functionality.
the default handlers for scans, domains, emitters and energies should be sufficient in most situations.
the scan and domain handlers call methods of the project class to invoke project-specific functionality.
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2015-17 by Paul Scherrer Institut @n
@copyright (c) 2015-21 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import division
import datetime
import os
from functools import reduce
import logging
import math
import numpy as np
import data as md
from helpers import BraceMessage as BMsg
import os
from pathlib import Path
from pmsco.compat import open
import pmsco.data as md
import pmsco.dispatch as dispatch
import pmsco.graphics.scan as mgs
from pmsco.helpers import BraceMessage as BMsg
logger = logging.getLogger(__name__)
@ -66,10 +71,10 @@ class TaskHandler(object):
this class defines the common interface of task handlers.
"""
## @var project
## @var _project
# (Project) project instance.
## @var slots
## @var _slots
# (int) number of calculation slots (processes).
#
# for best efficiency the number of tasks generated should be greater or equal the number of slots.
@ -93,7 +98,7 @@ class TaskHandler(object):
# the dictionary keys are the task identifiers CalculationTask.id,
# the values are the corresponding CalculationTask objects.
## @var invalid_count (int)
## @var _invalid_count (int)
# accumulated total number of invalid results received.
#
# the number is incremented by add_result if an invalid task is reported.
@ -120,10 +125,14 @@ class TaskHandler(object):
for best efficiency the number of tasks generated should be greater or equal the number of slots.
it should not exceed N times the number of slots, where N is a reasonably small number.
@return None
@return (int) number of children that create_tasks() will generate on average.
the number does not need to be accurate, a rough estimate or order of magnitude if greater than 10 is fine.
it is used to distribute processing slots across task levels.
see pmsco.dispatch.MscoMaster.setup().
"""
self._project = project
self._slots = slots
return 1
def cleanup(self):
"""
@ -188,21 +197,22 @@ class TaskHandler(object):
the id, model, and files attributes are required.
if model contains a '_rfac' value, the r-factor is
@return: None
@return None
"""
model_id = task.id.model
for path, cat in task.files.iteritems():
for path, cat in task.files.items():
self._project.files.add_file(path, model_id, category=cat)
def cleanup_files(self, keep=10):
def cleanup_files(self, keep=0):
"""
delete uninteresting files.
@param: number of best ranking models to keep.
@param keep: minimum number of models to keep.
0 (default): leave the decision to the project.
@return: None
@return None
"""
self._project.files.delete_files(keep_rfac=keep)
self._project.cleanup_files(keep=keep)
class ModelHandler(TaskHandler):
@ -255,6 +265,22 @@ class ModelHandler(TaskHandler):
return None
def save_report(self, root_task):
"""
generate a final report of the optimization procedure.
detailed calculation results are usually saved as soon as they become available.
this method may be implemented in sub-classes to aggregate and summarize the results, generate plots, etc.
in this class, the method does nothing.
@note: implementations must add the path names of generated files to self._project.files.
@param root_task: (CalculationTask) task with initial model parameters.
@return: None
"""
pass
class SingleModelHandler(ModelHandler):
"""
@ -263,6 +289,10 @@ class SingleModelHandler(ModelHandler):
this class runs a single calculation on the start parameters defined in the domain of the project.
"""
def __init__(self):
super(SingleModelHandler, self).__init__()
self.result = {}
def create_tasks(self, parent_task):
"""
start one task with the start parameters.
@ -316,25 +346,17 @@ class SingleModelHandler(ModelHandler):
modf_ext = ".modf" + parent_task.file_ext
parent_task.modf_filename = parent_task.file_root + modf_ext
rfac = 1.0
if task.result_valid:
try:
rfac = self._project.calc_rfactor(task)
except ValueError:
task.result_valid = False
logger.warning(BMsg("calculation of model {0} resulted in an undefined R-factor.", task.id.model))
self.result = task.model.copy()
self.result['_rfac'] = task.rfac
task.model['_rfac'] = rfac
self.save_report_file(task.model)
self._project.files.update_model_rfac(task.id.model, rfac)
self._project.files.update_model_rfac(task.id.model, task.rfac)
self._project.files.set_model_complete(task.id.model, True)
parent_task.time = task.time
return parent_task
def save_report_file(self, result):
def save_report(self, root_task):
"""
save model parameters and r-factor to a file.
@ -343,20 +365,25 @@ class SingleModelHandler(ModelHandler):
the first line contains the parameter names.
this is the same format as used by the swarm and grid handlers.
@param result: dictionary of results and parameters. the values should be scalars and strings.
@param root_task: (CalculationTask) the id.model attribute is used to register the generated files.
@return: None
"""
keys = [key for key in result]
super(SingleModelHandler, self).save_report(root_task)
keys = [key for key in self.result]
keys.sort(key=lambda t: t[0].lower())
vals = (str(result[key]) for key in keys)
with open(self._project.output_file + ".dat", "w") as outfile:
vals = (str(self.result[key]) for key in keys)
filename = Path(self._project.output_file).with_suffix(".dat")
with open(filename, "w") as outfile:
outfile.write("# ")
outfile.write(" ".join(keys))
outfile.write("\n")
outfile.write(" ".join(vals))
outfile.write("\n")
self._project.files.add_file(filename, root_task.id.model, "report")
class ScanHandler(TaskHandler):
"""
@ -388,6 +415,34 @@ class ScanHandler(TaskHandler):
self._pending_ids_per_parent = {}
self._complete_ids_per_parent = {}
def setup(self, project, slots):
"""
initialize the scan task handler and save processed experimental scans.
@return (int) number of scans defined in the project.
"""
super(ScanHandler, self).setup(project, slots)
for (i_scan, scan) in enumerate(self._project.scans):
if scan.modulation is not None:
__, filename = os.path.split(scan.filename)
pre, ext = os.path.splitext(filename)
filename = "{pre}_{scan}.modf{ext}".format(pre=pre, ext=ext, scan=i_scan)
filepath = os.path.join(self._project.output_dir, filename)
md.save_data(filepath, scan.modulation)
mgs.render_scan(filepath, data=scan.modulation)
if project.combined_scan is not None:
ext = md.format_extension(project.combined_scan)
filename = Path(project.output_file).with_suffix(ext)
md.save_data(filename, project.combined_scan)
if project.combined_modf is not None:
ext = md.format_extension(project.combined_modf)
filename = Path(project.output_file).with_suffix(".modf" + ext)
md.save_data(filename, project.combined_modf)
return len(self._project.scans)
def create_tasks(self, parent_task):
"""
generate a calculation task for each scan of the given parent task.
@ -464,6 +519,7 @@ class ScanHandler(TaskHandler):
if parent_task.result_valid:
self._project.combine_scans(parent_task, child_tasks)
self._project.evaluate_result(parent_task, child_tasks)
self._project.files.add_file(parent_task.result_filename, parent_task.id.model, 'model')
self._project.files.add_file(parent_task.modf_filename, parent_task.id.model, 'model')
@ -476,7 +532,7 @@ class ScanHandler(TaskHandler):
return None
class SymmetryHandler(TaskHandler):
class DomainHandler(TaskHandler):
## @var _pending_ids_per_parent
# (dict) sets of child task IDs per parent
#
@ -496,20 +552,29 @@ class SymmetryHandler(TaskHandler):
# the values are sets of all child CalculationTask.id belonging to the parent.
def __init__(self):
super(SymmetryHandler, self).__init__()
super(DomainHandler, self).__init__()
self._pending_ids_per_parent = {}
self._complete_ids_per_parent = {}
def setup(self, project, slots):
"""
initialize the domain task handler.
@return (int) number of domains defined in the project.
"""
super(DomainHandler, self).setup(project, slots)
return len(self._project.domains)
def create_tasks(self, parent_task):
"""
generate a calculation task for each symmetry of the given parent task.
generate a calculation task for each domain of the given parent task.
all symmetries share the same model parameters.
all domains share the same model parameters.
@return list of CalculationTask objects, with one element per symmetry.
the symmetry index varies according to project.symmetries.
@return list of CalculationTask objects, with one element per domain.
the domain index varies according to project.domains.
"""
super(SymmetryHandler, self).create_tasks(parent_task)
super(DomainHandler, self).create_tasks(parent_task)
parent_id = parent_task.id
self._parent_tasks[parent_id] = parent_task
@ -517,10 +582,10 @@ class SymmetryHandler(TaskHandler):
self._complete_ids_per_parent[parent_id] = set()
out_tasks = []
for (i_sym, sym) in enumerate(self._project.symmetries):
for (i_dom, domain) in enumerate(self._project.domains):
new_task = parent_task.copy()
new_task.parent_id = parent_id
new_task.change_id(sym=i_sym)
new_task.change_id(domain=i_dom)
child_id = new_task.id
self._pending_tasks[child_id] = new_task
@ -529,25 +594,25 @@ class SymmetryHandler(TaskHandler):
out_tasks.append(new_task)
if not out_tasks:
logger.error("no symmetry tasks generated. your project must declare at least one symmetry.")
logger.error("no domain tasks generated. your project must declare at least one domain.")
return out_tasks
def add_result(self, task):
"""
collect and combine the calculation results versus symmetry.
collect and combine the calculation results versus domain.
* mark the task as complete
* store its result for later
* check whether this was the last pending task of the family (belonging to the same parent).
the actual merging of data is delegated to the project's combine_symmetries() method.
the actual merging of data is delegated to the project's combine_domains() method.
@param task: (CalculationTask) calculation task that completed.
@return parent task (CalculationTask) if the family is complete. None if the family is not complete yet.
"""
super(SymmetryHandler, self).add_result(task)
super(DomainHandler, self).add_result(task)
self._complete_tasks[task.id] = task
del self._pending_tasks[task.id]
@ -557,7 +622,7 @@ class SymmetryHandler(TaskHandler):
family_pending.remove(task.id)
family_complete.add(task.id)
# all symmetries complete?
# all domains complete?
if len(family_pending) == 0:
parent_task = self._parent_tasks[task.parent_id]
@ -574,9 +639,13 @@ class SymmetryHandler(TaskHandler):
parent_task.time = reduce(lambda a, b: a + b, child_times)
if parent_task.result_valid:
self._project.combine_symmetries(parent_task, child_tasks)
self._project.combine_domains(parent_task, child_tasks)
self._project.evaluate_result(parent_task, child_tasks)
self._project.files.add_file(parent_task.result_filename, parent_task.id.model, 'scan')
self._project.files.add_file(parent_task.modf_filename, parent_task.id.model, 'scan')
graph_file = mgs.render_scan(parent_task.modf_filename,
ref_data=self._project.scans[parent_task.id.scan].modulation)
self._project.files.add_file(graph_file, parent_task.id.model, 'scan')
del self._pending_ids_per_parent[parent_task.id]
del self._complete_ids_per_parent[parent_task.id]
@ -615,13 +684,26 @@ class EmitterHandler(TaskHandler):
self._pending_ids_per_parent = {}
self._complete_ids_per_parent = {}
def setup(self, project, slots):
"""
initialize the emitter task handler.
@return (int) estimated number of emitter configurations that the cluster generator will generate.
the estimate is based on the start parameters, scan 0 and domain 0.
"""
super(EmitterHandler, self).setup(project, slots)
mock_model = self._project.model_space.start
mock_index = dispatch.CalcID(-1, 0, 0, -1, -1)
n_emitters = project.cluster_generator.count_emitters(mock_model, mock_index)
return n_emitters
def create_tasks(self, parent_task):
"""
generate a calculation task for each emitter configuration of the given parent task.
all emitters share the same model parameters.
@return list of @ref CalculationTask objects with one element per emitter configuration
@return list of @ref pmsco.dispatch.CalculationTask objects with one element per emitter configuration
if parallel processing is enabled.
otherwise the list contains a single CalculationTask object with emitter index 0.
the emitter index is used by the project's create_cluster method.
@ -634,10 +716,7 @@ class EmitterHandler(TaskHandler):
self._complete_ids_per_parent[parent_id] = set()
n_emitters = self._project.cluster_generator.count_emitters(parent_task.model, parent_task.id)
if n_emitters > 1 and self._slots > 1:
emitters = range(1, n_emitters + 1)
else:
emitters = [0]
emitters = range(n_emitters)
out_tasks = []
for em in emitters:
@ -698,8 +777,12 @@ class EmitterHandler(TaskHandler):
if parent_task.result_valid:
self._project.combine_emitters(parent_task, child_tasks)
self._project.files.add_file(parent_task.result_filename, parent_task.id.model, 'symmetry')
self._project.files.add_file(parent_task.modf_filename, parent_task.id.model, 'symmetry')
self._project.evaluate_result(parent_task, child_tasks)
self._project.files.add_file(parent_task.result_filename, parent_task.id.model, 'domain')
self._project.files.add_file(parent_task.modf_filename, parent_task.id.model, 'domain')
graph_file = mgs.render_scan(parent_task.modf_filename,
ref_data=self._project.scans[parent_task.id.scan].modulation)
self._project.files.add_file(graph_file, parent_task.id.model, 'domain')
del self._pending_ids_per_parent[parent_task.id]
del self._complete_ids_per_parent[parent_task.id]
@ -776,15 +859,10 @@ class RegionHandler(TaskHandler):
parent_task.time = reduce(lambda a, b: a + b, child_times)
if parent_task.result_valid:
stack1 = [md.load_data(t.result_filename) for t in child_tasks]
dtype = md.common_dtype(stack1)
stack2 = [md.restructure_data(d, dtype) for d in stack1]
result_data = np.hstack(tuple(stack2))
md.sort_data(result_data)
md.save_data(parent_task.result_filename, result_data)
self._project.combine_regions(parent_task, child_tasks)
self._project.evaluate_result(parent_task, child_tasks)
self._project.files.add_file(parent_task.result_filename, parent_task.id.model, "emitter")
for t in child_tasks:
self._project.files.remove_file(t.result_filename)
self._project.files.add_file(parent_task.modf_filename, parent_task.id.model, "emitter")
del self._pending_ids_per_parent[parent_task.id]
del self._complete_ids_per_parent[parent_task.id]
@ -840,7 +918,7 @@ class EnergyRegionHandler(RegionHandler):
so that all child tasks of the same parent finish approximately in the same time.
pure angle scans are not split.
to use this feature, the project assigns this class to its @ref handler_classes['region'].
to use this feature, the project assigns this class to its @ref pmsco.project.Project.handler_classes['region'].
it is safe to use this handler for calculations that do not involve energy scans.
the handler is best used for single calculations.
in optimizations that calculate many models there is no advantage in using it
@ -871,7 +949,7 @@ class EnergyRegionHandler(RegionHandler):
@param slots (int) number of calculation slots (processes).
@return None
@return (int) average number of child tasks
"""
super(EnergyRegionHandler, self).setup(project, slots)
@ -884,6 +962,8 @@ class EnergyRegionHandler(RegionHandler):
logger.debug(BMsg("region handler: split scan {file} into {slots} chunks",
file=os.path.basename(scan.filename), slots=self._slots_per_scan[i]))
return max(int(sum(self._slots_per_scan) / len(self._slots_per_scan)), 1)
def create_tasks(self, parent_task):
"""
generate a calculation task for each energy region of the given parent task.

View File

@ -1,4 +1,20 @@
class BraceMessage:
"""
@package pmsco.helpers
helper classes
a collection of small and generic code bits mostly collected from the www.
"""
class BraceMessage(object):
"""
a string formatting proxy class useful for logging and exceptions.
use BraceMessage("{0} {1}", "formatted", "message")
in place of "{0} {1}".format("formatted", "message").
the advantage is that the format method is called only if the string is actually used.
"""
def __init__(self, fmt, *args, **kwargs):
self.fmt = fmt
self.args = args

143
pmsco/igor.py Normal file
View File

@ -0,0 +1,143 @@
"""
@package pmsco.igor
data exchange with wavemetrics igor pro.
this module provides functions for loading/saving pmsco data in igor pro.
@author Matthias Muntwiler
@copyright (c) 2019 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from pmsco.compat import open
def _escape_igor_string(s):
s = s.replace('\\', '\\\\')
s = s.replace('"', '\\"')
return s
def namefix_double(name):
"""
fix 1-character wave name by doubling
replaces length-1 string by a doubled version.
@param name: (str) proposed wave name
@return: corrected name
"""
return name*2 if len(name) == 1 else name
def namefix_etpais(name):
"""
fix 1-character wave name according to ETPAIS scheme
replaces 'e' by 'en' etc.
@param name: (str) proposed wave name
@return: corrected name
"""
name_map = {'e': 'en', 't': 'th', 'p': 'ph', 'i': 'in', 'm': 'mo', 's': 'si'}
try:
return name_map[name]
except KeyError:
return name
class IgorExport(object):
"""
class exports pmsco data to an Igor text (ITX) file.
usage:
1) create an object instance.
2) set @ref data.
3) set optional attributes: @ref prefix and @ref namefix.
4) call @ref export.
"""
def __init__(self):
super(IgorExport, self).__init__()
self.data = None
self.prefix = ""
self.namefix = namefix_double
def set_data(self, data):
"""
set the data array to export.
this must (currently) be a one-dimensional structured array.
the column names will become wave names.
@param data: numpy.ndarray
@return:
"""
self.data = data
def export(self, filename):
"""
write to igor file.
"""
with open(filename, 'w') as f:
self._write_header(f)
self._write_data(f)
def _fix_name(self, name):
"""
fix a wave name.
this function first applies @ref namefix and @ref prefix to the proposed wave name.
@param name: (str) proposed wave name
@return: corrected name
"""
if self.namefix is not None:
name = self.namefix(name)
return self.prefix + name
def _write_header(self, f):
"""
write the header of the igor text file
@param f: open file or stream
@return: None
"""
f.write('IGOR' + '\n')
f.write('X // pmsco data export\n')
def _write_data(self, f):
"""
write a data section to the igor text file.
@param f: open file or stream
@return: None
"""
assert isinstance(self.data, np.ndarray)
assert len(self.data.shape) == 1
assert len(self.data.dtype.names[0]) >= 1
arr = self.data
shape = ",".join(map(str, arr.shape))
names = (self._fix_name(name) for name in arr.dtype.names)
names = ", ".join(names)
f.write('Waves/O/D/N=({shape}) {names}\n'.format(shape=shape, names=names))
f.write('BEGIN\n')
np.savetxt(f, arr, fmt='%g')
f.write('END\n')

View File

@ -5,45 +5,42 @@ SHELL=/bin/sh
# required libraries: libblas, liblapack, libf2c
# (you may have to set soft links so that linker finds them)
#
# the makefile calls python-config to get the compilation flags and include path.
# you may override the corresponding variables on the command line or by environment variables:
#
# PYTHON_INC: specify additional include directories. each dir must start with -I prefix.
# PYTHON_CFLAGS: specify the C compiler flags.
#
# see the top-level makefile for additional information.
.SUFFIXES:
.SUFFIXES: .c .cpp .cxx .exe .f .h .i .o .py .pyf .so .x
.PHONY: all loess test gas madeup ethanol air galaxy
HOST=$(shell hostname)
CFLAGS=-O
FFLAGS=-O
OBJ=loessc.o loess.o predict.o misc.o loessf.o dqrsl.o dsvdc.o fix_main.o
FFLAGS?=-O
LIB=-lblas -lm -lf2c
LIBPATH=
CC=gcc
CCOPTS=
SWIG=swig
SWIGOPTS=
PYTHON=python
PYTHONOPTS=
ifneq (,$(filter merlin%,$(HOST)))
PYTHONINC=-I/usr/include/python2.7 -I/opt/python/python-2.7.5/include/python2.7/
else ifneq (,$(filter ra%,$(HOST)))
PYTHONINC=-I${PSI_PYTHON27_INCLUDE_DIR}/python2.7 -I${PSI_PYTHON27_LIBRARY_DIR}/python2.7/site-packages/numpy/core/include
else
PYTHONINC=-I/usr/include/python2.7
endif
LIBPATH?=
CC?=gcc
CCOPTS?=
SWIG?=swig
SWIGOPTS?=
PYTHON?=python
PYTHONOPTS?=
PYTHON_CONFIG = ${PYTHON}-config
#PYTHON_LIB ?= $(shell ${PYTHON_CONFIG} --libs)
#PYTHON_INC ?= $(shell ${PYTHON_CONFIG} --includes)
PYTHON_INC ?=
PYTHON_CFLAGS ?= $(shell ${PYTHON_CONFIG} --cflags)
#PYTHON_LDFLAGS ?= $(shell ${PYTHON_CONFIG} --ldflags)
all: loess
loess: _loess.so
loess_wrap.c: loess.c loess.i
$(SWIG) $(SWIGOPTS) -python loess.i
loess.py _loess.so: loess_wrap.c
# setuptools doesn't handle the fortran files correctly
# $(PYTHON) $(PYTHONOPTS) setup.py build_ext --inplace
$(CC) $(CFLAGS) -fpic -c loessc.c loess.c predict.c misc.c loessf.f dqrsl.f dsvdc.f fix_main.c
$(CC) $(CFLAGS) -fpic -c loess_wrap.c $(PYTHONINC)
$(CC) -shared $(OBJ) $(LIB) $(LIBPATH) loess_wrap.o -o _loess.so
loess.py _loess.so: loess.c loess.i
$(PYTHON) $(PYTHONOPTS) setup.py build_ext --inplace
examples: gas madeup ethanol air galaxy

View File

@ -1,7 +1,5 @@
#!/usr/bin/env python
__author__ = 'Matthias Muntwiler'
"""
@package loess.setup
setup.py file for LOESS
@ -17,39 +15,49 @@ the Python wrapper was set up by M. Muntwiler
with the help of the SWIG toolkit
and other incredible goodies available in the Linux world.
@bug this file is currently not used because
distutils does not compile the included Fortran files.
@bug numpy.distutils.build_src in python 2.7 treats all Fortran files with f2py
so that they are compiled via both f2py and swig.
this produces extra object files which cause the linker to fail.
to fix this issue, this module hacks the build_src class.
this hack does not work with python 3. perhaps it's even unnecessary.
@author Matthias Muntwiler
@copyright (c) 2015 by Paul Scherrer Institut @n
@copyright (c) 2015-18 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from distutils.core import setup, Extension
from distutils import sysconfig
import numpy
try:
numpy_include = numpy.get_include()
except AttributeError:
numpy_include = numpy.get_numpy_include()
loess_module = Extension('_loess',
sources=['loess.i', 'loess_wrap.c', 'loess.c', 'loessc.c', 'predict.c', 'misc.c', 'loessf.f',
'dqrsl.f', 'dsvdc.f'],
include_dirs = [numpy_include],
libraries=['blas', 'm', 'f2c'],
)
setup(name='loess',
version='0.1',
author=__author__,
author_email='matthias.muntwiler@psi.ch',
description="""LOESS module in Python""",
ext_modules=[loess_module],
py_modules=["loess"], requires=['numpy']
)
def configuration(parent_package='', top_path=None):
from numpy.distutils.misc_util import Configuration
config = Configuration('loess', parent_package, top_path)
lib = ['blas', 'm', 'f2c']
src = ['loess.c', 'loessc.c', 'predict.c', 'misc.c', 'loessf.f', 'dqrsl.f', 'dsvdc.f', 'fix_main.c', 'loess.i']
inc_dir = [numpy_include]
config.add_extension('_loess',
sources=src,
libraries=lib,
include_dirs=inc_dir
)
return config
def ignore_sources(self, sources, extension):
return sources
if __name__ == '__main__':
try:
from numpy.distutils.core import numpy_cmdclass
numpy_cmdclass['build_src'].f2py_sources = ignore_sources
except ImportError:
pass
from numpy.distutils.core import setup
setup(**configuration(top_path='').todict())

View File

@ -1,17 +1,18 @@
SHELL=/bin/sh
# makefile for EDAC, MSC, and MUFPOT programs and modules
# makefile for external programs and modules
#
# see the top-level makefile for additional information.
.PHONY: all clean edac loess msc mufpot
.PHONY: all clean edac loess msc mufpot phagen
EDAC_DIR = edac
MSC_DIR = msc
MUFPOT_DIR = mufpot
LOESS_DIR = loess
PHAGEN_DIR = calculators/phagen
all: edac loess
all: edac loess phagen
edac:
$(MAKE) -C $(EDAC_DIR)
@ -25,9 +26,13 @@ msc:
mufpot:
$(MAKE) -C $(MUFPOT_DIR)
phagen:
$(MAKE) -C $(PHAGEN_DIR)
clean:
$(MAKE) -C $(EDAC_DIR) clean
$(MAKE) -C $(LOESS_DIR) clean
$(MAKE) -C $(MSC_DIR) clean
$(MAKE) -C $(MUFPOT_DIR) clean
$(MAKE) -C $(PHAGEN_DIR) clean
rm -f *.pyc

View File

@ -12,16 +12,17 @@ SHELL=/bin/sh
.SUFFIXES: .c .cpp .cxx .exe .f .h .i .o .py .pyf .so
.PHONY: all clean edac msc mufpot
FC=gfortran
FCCOPTS=
F2PY=f2py
F2PYOPTS=
CC=gcc
CCOPTS=
SWIG=swig
SWIGOPTS=
PYTHON=python
PYTHONOPTS=
FC?=gfortran
FCCOPTS?=
F2PY?=f2py
F2PYOPTS?=
CC?=gcc
CCOPTS?=
SWIG?=swig
SWIGOPTS?=
PYTHON?=python
PYTHONOPTS?=
PYTHONINC?=
all: msc

View File

@ -20,7 +20,7 @@ CC=gcc
CCOPTS=
SWIG=swig
SWIGOPTS=
PYTHON=python
PYTHON=python2
PYTHONOPTS=
all: mufpot

View File

308
pmsco/optimizers/genetic.py Normal file
View File

@ -0,0 +1,308 @@
"""
@package pmsco.optimizers.genetic
genetic optimization algorithm.
this module implements a genetic algorithm for structural optimization.
the genetic algorithm is adapted from
D. A. Duncan et al., Surface Science 606, 278 (2012)
the genetic algorithm evolves a population of individuals
by a combination of inheritance, crossover and mutation
and R-factor based selection.
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2018 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import numpy as np
import random
import pmsco.optimizers.population as population
from pmsco.helpers import BraceMessage as BMsg
logger = logging.getLogger(__name__)
class GeneticPopulation(population.Population):
"""
population implementing a genetic optimization algorithm.
the genetic algorithm implements the following principles:
1. inheritance: two children of a new generation are generated from the genes (i.e. model parameters)
of two parents of the old generation.
2. elitism: individuals with similar r-factors are more likely to mate.
3. crossover: the genes of the parents are randomly distributed to their children.
4. mutation: a gene may mutate at random.
5. selection: the globally best individual is added to a parent population (and replaces the worst).
the main tuning parameter of the algorithm is the mutation_step which is copied from the model_space.step.
it defines the width of a gaussian distribution of change under a weak mutation.
it should be large enough so that the whole parameter space can be probed,
but small enough that a frequent mutation does not throw the individual out of the convergence region.
typically, the step should be of the order of the parameter range divided by the population size.
other tunable parameters are the mating_factor, the weak_mutation_probability and the strong_mutation_probability.
the defaults should normally be fine.
"""
## @var weak_mutation_probability
#
# probability (between 0 and 1) that a parameter changes in the mutate_weak() method.
#
# the default is 1.0, i.e., each parameter mutates in each generation.
#
# 1.0 has shown better coverage of the continuous parameter space and faster finding of the optimum.
## @var strong_mutation_probability
#
# probability (between 0 and 1) that a parameter changes in the mutate_strong() method.
#
# the default is 0.01, i.e., on average, every hundredth probed parameter is affected by a strong mutation.
# if the model contains 10 parameters, for example,
# every tenth particle would see a mutation of at least one of its parameters.
#
# too high value may disturb convergence,
# too low value may trap the algorithm in a local optimum.
## @var mating_factor
#
# inverse width of the mating preference distribution.
#
# the greater this value, the more similar partners are mated by the mate_parents() method.
#
# the default value 4.0 results in a probability of about 0.0025
# that the best particle mates the worst.
## @var position_constrain_mode
#
# the position constrain mode selects what to do if a particle violates the parameter limits.
#
# the default is "random" which resets the parameter to a random value.
## @var mutation_step
#
# standard deviations of the exponential distribution function used in the mutate_weak() method.
# the variable is a dictionary with the same keys as model_step (the parameter space).
#
# it is initialized from the model_space.step
# or set to a default value based on the parameter range and population size.
def __init__(self):
"""
initialize the population object.
"""
super(GeneticPopulation, self).__init__()
self.weak_mutation_probability = 1.0
self.strong_mutation_probability = 0.01
self.mating_factor = 4.
self.position_constrain_mode = 'random'
self.mutation_step = {}
def setup(self, size, model_space, **kwargs):
"""
@copydoc Population.setup()
in addition to the inherited behaviour, this method initializes self.mutation_step.
mutation_step of a parameter is set to its model_space.step if non-zero.
otherwise it is set to the parameter range divided by the population size.
"""
super(GeneticPopulation, self).setup(size, model_space, **kwargs)
for key in self.model_step:
val = self.model_step[key]
self.mutation_step[key] = val if val != 0 else (self.model_max[key] - self.model_min[key]) / size
def randomize(self, pos=True, vel=True):
"""
initializes a "random" population.
this implementation is a new proposal.
the distribution is not completely random.
rather, a position vector (by parameter) is initialized with a linear function
that covers the parameter space.
the linear function is then permuted randomly.
the method does not update the particle info fields.
@param pos: randomize positions. if False, the positions are not changed.
@param vel: randomize velocities. if False, the velocities are not changed.
"""
if pos:
for key in self.model_start:
self.pos[key] = np.random.permutation(np.linspace(self.model_min[key], self.model_max[key],
self.pos.shape[0]))
if vel:
for key in self.model_start:
d = (self.model_max[key] - self.model_min[key]) / 8
self.vel[key] = np.random.permutation(np.linspace(-d, d, self.vel.shape[0]))
def advance_population(self):
"""
advance the population by one generation.
the population is advanced in several steps:
1. replace the worst individual by the best found so far.
2. mate the parents in pairs of two.
3. produce children by crossover from the parents.
4. apply weak mutations.
5. apply strong mutations.
if generation is lower than zero, the method increases the generation number but does not advance the particles.
@return: None
"""
if not self._hold_once:
self.generation += 1
pop = self.pos.copy()
pop.sort(order='_rfac')
elite = self.best.copy()
elite.sort(order='_rfac')
if elite[0]['_model'] not in pop['_model']:
elite[0]['_particle'] = pop[-1]['_particle']
pop[-1] = elite[0]
pop.sort(order='_rfac')
parents = self.mate_parents(pop)
children = []
for x, y in parents:
a, b = self.crossover(x, y)
children.append(a)
children.append(b)
for child in children:
index = child['_particle']
self.mutate_weak(child, self.weak_mutation_probability)
self.mutate_strong(child, self.strong_mutation_probability)
self.mutate_duplicate(child)
for key in self.model_start:
vel = child[key] - self.pos[index][key]
child[key], vel, self.model_min[key], self.model_max[key] = \
self.constrain_position(child[key], vel, self.model_min[key], self.model_max[key],
self.position_constrain_mode)
self.pos[index] = child
self.update_particle_info(index)
super(GeneticPopulation, self).advance_population()
def mate_parents(self, positions):
"""
group the population in pairs of two.
to mate two individuals, the first individual of the (remaining) population selects one of the following
with an exponential preference of earlier ones.
the process is repeated until all individuals are mated.
@param positions: original population (numpy structured array)
the population should be ordered with best model first.
@return: sequence of pairs (tuples) of structured arrays holding one model each.
"""
seq = [model for model in positions]
parents = []
while len(seq) >= 2:
p1 = seq.pop(0)
ln = len(seq)
i = min(int(random.expovariate(self.mating_factor / ln) * ln), ln - 1)
p2 = seq.pop(i)
parents.append((p1, p2))
return parents
def crossover(self, parent1, parent2):
"""
crossover two parents to create two children.
for each model parameter, the parent's value is randomly assigned to either one of the children.
@param parent1: numpy structured array holding the model of the first parent.
@param parent2: numpy structured array holding the model of the second parent.
@return: tuple of the two crossed children.
these are two new ndarray instances that are independent of their parents.
"""
child1 = parent1.copy()
child2 = parent2.copy()
for key in self.model_start:
if random.random() >= 0.5:
child1[key], child2[key] = parent2[key], parent1[key]
return child1, child2
def mutate_weak(self, model, probability):
"""
apply a weak mutation to a model.
each parameter is changed to a different value in the parameter space at the given probability.
the amount of change has a gaussian distribution with a standard deviation of mutation_step.
@param[in,out] model: structured numpy.ndarray holding the model parameters.
model is modified in place.
@param probability: probability between 0 and 1 at which to change a parameter.
0 = no change, 1 = force change.
@return: model (same instance as the @c model input argument).
"""
for key in self.model_start:
if random.random() < probability:
model[key] += random.gauss(0, self.mutation_step[key])
return model
def mutate_strong(self, model, probability):
"""
apply a strong mutation to a model.
each parameter is changed to a random value in the parameter space at the given probability.
@param[in,out] model: structured numpy.ndarray holding the model parameters.
model is modified in place.
@param probability: probability between 0 and 1 at which to change a parameter.
0 = no change, 1 = force change.
@return: model (same instance as the @c model input argument).
"""
for key in self.model_start:
if random.random() < probability:
model[key] = (self.model_max[key] - self.model_min[key]) * random.random() + self.model_min[key]
return model
def mutate_duplicate(self, model):
"""
mutate a model if it is identical to a previously calculated one.
if the model was calculated before, the mutate_weak mutation is applied with probability 1.
@param[in,out] model: structured numpy.ndarray holding the model parameters.
model is modified in place.
@return: model (same instance as the @c model input argument).
"""
try:
self.find_model(model)
self.mutate_weak(model, 1.0)
except ValueError:
pass
return model
class GeneticOptimizationHandler(population.PopulationHandler):
"""
model handler which implements a genetic algorithm.
"""
def __init__(self):
super(GeneticOptimizationHandler, self).__init__()
self._pop = GeneticPopulation()

View File

@ -8,7 +8,7 @@ the optimization task is distributed over multiple processes using MPI.
the optimization must be started with N+1 processes in the MPI environment,
where N equals the number of fit parameters.
IMPLEMENTATION IN PROGRESS - DEBUGGING
THIS MODULE IS NOT INTEGRATED INTO PMSCO YET.
Requires: scipy, numpy
@ -109,7 +109,7 @@ class MscMaster(MscProcess):
def setup(self, project):
super(MscMaster, self).setup(project)
self.dom = project.create_domain()
self.dom = project.create_model_space()
self.running_slaves = self.slaves
self._outfile = open(self.project.output_file + ".dat", "w")

View File

@ -13,14 +13,19 @@ Licensed under the Apache License, Version 2.0 (the "License"); @n
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
import copy
import os
from __future__ import print_function
import datetime
import math
import numpy as np
import logging
import handlers
from helpers import BraceMessage as BMsg
from pmsco.compat import open
import pmsco.handlers as handlers
import pmsco.graphics as graphics
from pmsco.helpers import BraceMessage as BMsg
logger = logging.getLogger(__name__)
@ -58,7 +63,7 @@ class GridPopulation(object):
## @var positions
# (numpy.ndarray) flat list of grid coordinates and results.
#
# the column names include the names of the model parameters, taken from domain.start,
# the column names include the names of the model parameters, taken from model_space.start,
# and the special names @c '_model', @c '_rfac'.
# the special fields have the following meanings:
#
@ -108,41 +113,40 @@ class GridPopulation(object):
dt.sort(key=lambda t: t[0].lower())
return dt
def setup(self, domain):
def setup(self, model_space):
"""
set up the population and result arrays.
@param domain: definition of initial and limiting model parameters
@param model_space: (pmsco.project.ModelSpace)
definition of initial and limiting model parameters
expected by the cluster and parameters functions.
the attributes have the following meanings:
@arg start: values of the fixed parameters.
@arg min: minimum values allowed.
@arg max: maximum values allowed.
if abs(max - min) < step/2 , the parameter is kept constant.
@arg step: step size (distance between two grid points).
if step <= 0, the parameter is kept constant.
@param domain.start: values of the fixed parameters.
@param domain.min: minimum values allowed.
@param domain.max: maximum values allowed.
if abs(max - min) < step/2 , the parameter is kept constant.
@param domain.step: step size (distance between two grid points).
if step <= 0, the parameter is kept constant.
"""
self.model_start = domain.start
self.model_min = domain.min
self.model_max = domain.max
self.model_step = domain.step
self.model_start = model_space.start
self.model_min = model_space.min
self.model_max = model_space.max
self.model_step = model_space.step
self.model_count = 1
self.search_keys = []
self.fixed_keys = []
scales = []
for p in domain.step.keys():
if domain.step[p] > 0:
n = np.round((domain.max[p] - domain.min[p]) / domain.step[p]) + 1
for p in model_space.step.keys():
if model_space.step[p] > 0:
n = int(np.round((model_space.max[p] - model_space.min[p]) / model_space.step[p]) + 1)
else:
n = 1
if n > 1:
self.search_keys.append(p)
scales.append(np.linspace(domain.min[p], domain.max[p], n))
scales.append(np.linspace(model_space.min[p], model_space.max[p], n))
else:
self.fixed_keys.append(p)
@ -218,7 +222,7 @@ class GridPopulation(object):
@raise AssertionError if the number of rows of the two files differ.
"""
data = np.genfromtxt(filename, names=True)
data = np.atleast_1d(np.genfromtxt(filename, names=True))
assert data.shape == array.shape
for name in data.dtype.names:
array[name] = data[name]
@ -295,12 +299,12 @@ class GridSearchHandler(handlers.ModelHandler):
the minimum number of slots is 1, the recommended value is 10 or greater.
the population size is set to at least 4.
@return:
@return (int) number of models to be calculated.
"""
super(GridSearchHandler, self).setup(project, slots)
self._pop = GridPopulation()
self._pop.setup(self._project.create_domain())
self._pop.setup(self._project.model_space)
self._invalid_limit = max(slots, self._invalid_limit)
self._outfile = open(self._project.output_file + ".dat", "w")
@ -308,7 +312,7 @@ class GridSearchHandler(handlers.ModelHandler):
self._outfile.write(" ".join(self._pop.positions.dtype.names))
self._outfile.write("\n")
return None
return self._pop.model_count
def cleanup(self):
self._outfile.close()
@ -341,13 +345,18 @@ class GridSearchHandler(handlers.ModelHandler):
time_pending += self._model_time
if time_pending > time_avail:
self._timeout = True
logger.warning("time limit reached")
if self._invalid_count > self._invalid_limit:
self._timeout = True
logger.error("number of invalid calculations (%u) exceeds limit", self._invalid_count)
model = self._next_model
if not self._timeout and model < self._pop.model_count and self._invalid_count < self._invalid_limit:
if not self._timeout and model < self._pop.model_count:
new_task = parent_task.copy()
new_task.parent_id = parent_id
pos = self._pop.positions[model]
new_task.model = {k:pos[k] for k in pos.dtype.names}
new_task.model = {k: pos[k] for k in pos.dtype.names}
new_task.change_id(model=model)
child_id = new_task.id
@ -374,17 +383,10 @@ class GridSearchHandler(handlers.ModelHandler):
del self._pending_tasks[task.id]
parent_task = self._parent_tasks[task.parent_id]
rfac = 1.0
if task.result_valid:
try:
rfac = self._project.calc_rfactor(task)
except ValueError:
task.result_valid = False
self._invalid_count += 1
logger.warning(BMsg("calculation of model {0} resulted in an undefined R-factor.", task.id.model))
task.model['_rfac'] = rfac
self._pop.add_result(task.model, rfac)
assert not math.isnan(task.rfac)
task.model['_rfac'] = task.rfac
self._pop.add_result(task.model, task.rfac)
if self._outfile:
s = (str(task.model[name]) for name in self._pop.positions.dtype.names)
@ -392,12 +394,14 @@ class GridSearchHandler(handlers.ModelHandler):
self._outfile.write("\n")
self._outfile.flush()
self._project.files.update_model_rfac(task.id.model, rfac)
self._project.files.update_model_rfac(task.id.model, task.rfac)
self._project.files.set_model_complete(task.id.model, True)
if task.result_valid:
if task.time > self._model_time:
self._model_time = task.time
else:
self._invalid_count += 1
# grid search complete?
if len(self._pending_tasks) == 0:
@ -407,3 +411,17 @@ class GridSearchHandler(handlers.ModelHandler):
self.cleanup_files()
return parent_task
def save_report(self, root_task):
"""
generate a graphical summary of the optimization.
@param root_task: (CalculationTask) the id.model attribute is used to register the generated files.
@return: None
"""
super(GridSearchHandler, self).save_report(root_task)
files = graphics.rfactor.render_results(self._project.output_file + ".dat", self._pop.positions)
for f in files:
self._project.files.add_file(f, root_task.id.model, "report")

File diff suppressed because it is too large Load Diff

139
pmsco/optimizers/swarm.py Normal file
View File

@ -0,0 +1,139 @@
"""
@package pmsco.optimizers.swarm
particle swarm optimization handler.
the module starts multiple MSC calculations and optimizes the model parameters
according to the particle swarm optimization algorithm.
Particle swarm optimization adapted from
D. A. Duncan et al., Surface Science 606, 278 (2012)
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2015-18 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import numpy as np
import pmsco.optimizers.population as population
from pmsco.helpers import BraceMessage as BMsg
logger = logging.getLogger(__name__)
class SwarmPopulation(population.Population):
"""
particle swarm population.
"""
## @var friends
# number of other particles that each particle consults for the global best fit.
# default = 3.
## @var momentum
# momentum of the particle.
# default = 0.689343.
## @var attract_local
# preference for returning to the local best fit
# default = 1.92694.
## @var attract_global
# preference for heading towards the global best fit.
# default = 1.92694
def __init__(self):
"""
initialize the population object.
"""
super(SwarmPopulation, self).__init__()
self.friends = 3
self.momentum = 0.689343
self.attract_local = 1.92694
self.attract_global = 1.92694
self.position_constrain_mode = 'default'
self.velocity_constrain_mode = 'default'
def advance_population(self):
"""
advance the population by one step.
this method just calls advance_particle() for each particle of the population.
if generation is lower than zero, the method increases the generation number but does not advance the particles.
@return: None
"""
if not self._hold_once:
self.generation += 1
for index, __ in enumerate(self.pos):
self.advance_particle(index)
super(SwarmPopulation, self).advance_population()
def advance_particle(self, index):
"""
advance a particle by one step.
@param index: index of the particle in the population.
"""
# note: the following two identifiers are views,
# assignment will modify the original array
pos = self.pos[index]
vel = self.vel[index]
# best fit that this individual has seen
xl = self.best[index]
# best fit that a group of others have seen
xg = self.best_friend(index)
for key in self.model_start:
# update velocity
dxl = xl[key] - pos[key]
dxg = xg[key] - pos[key]
pv = np.random.random()
pl = np.random.random()
pg = np.random.random()
vel[key] = (self.momentum * pv * vel[key] +
self.attract_local * pl * dxl +
self.attract_global * pg * dxg)
pos[key], vel[key], self.model_min[key], self.model_max[key] = \
self.constrain_velocity(pos[key], vel[key], self.model_min[key], self.model_max[key],
self.velocity_constrain_mode)
# update position
pos[key] += vel[key]
pos[key], vel[key], self.model_min[key], self.model_max[key] = \
self.constrain_position(pos[key], vel[key], self.model_min[key], self.model_max[key],
self.position_constrain_mode)
self.update_particle_info(index)
# noinspection PyUnusedLocal
def best_friend(self, index):
"""
select the best fit out of a random set of particles
returns the "best friend"
"""
friends = np.random.choice(self.best, self.friends, replace=False)
index = np.argmin(friends['_rfac'])
return friends[index]
class ParticleSwarmHandler(population.PopulationHandler):
"""
model handler which implements the particle swarm optimization algorithm.
"""
def __init__(self):
super(ParticleSwarmHandler, self).__init__()
self._pop = SwarmPopulation()

155
pmsco/optimizers/table.py Normal file
View File

@ -0,0 +1,155 @@
"""
@package pmsco.table
table scan optimization handler
the table scan scans through an explicit table of model parameters.
it can be used to recalculate models from a previous optimization run on different scans,
or as an interface to external optimizers.
new elements can be added to the table while the calculation loop is in progress.
though the concepts _population_ and _optimization_ are not intrinsic to a table scan,
the classes defined here inherit from the generic population class and optimization handler.
this is done to share as much code as possible between the different optimizers.
the only difference is that the table optimizer does not generate models internally.
instead, it loads them (possibly repeatedly) from a file or asks the project code to provide the data.
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2015-18 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import numpy as np
import pmsco.optimizers.population as population
from pmsco.helpers import BraceMessage as BMsg
logger = logging.getLogger(__name__)
class TablePopulation(population.Population):
"""
population generated from explicit values.
this class maintains a population that is updated from a table of explicit values.
the table can be static (defined at the start of the optimization process)
or dynamic (new models appended during the optimization process).
for each generation, the table is read and the next models are imported into the population.
the class de-duplicates the table, i.e. models with equal parameters as a previous one are not calculated again.
it is, thus, perfectly fine that new models are appended to the table rather than overwrite previous entries.
the table can be built from the following data sources:
@arg (numpy.ndarray): structured array that can be added to self.positions,
having at least the columns defining the model parameters.
@arg (sequence of dict, numpy.ndarray, numpy.void, named tuple):
each element must be syntactically compatible with a dict
that holds the model parameters.
@arg (str): file name that contains a table in the same format as
@ref pmsco.optimizers.population.Population.save_array produces.
@arg (callable): a function that returns one of the above objects
(or None to mark the end of the table).
the data source is passed as an argument to the self.setup() method.
structured arrays and sequences cannot be modified after they are passed to `setup`.
this means that the complete table must be known at the start of the process.
the most flexible way is to pass a function that generates a structured array in each call.
this would even allow to include a non-standard optimization algorithm.
the function is best defined in the custom project class.
the population calls it every time before a new generation starts.
to end the optimization process, it simply returns None.
the table can also be defined in an external file, e.g. as calculated by other programs or edited manually.
the table file can either remain unchanged during the optimization process,
or new models can be added while the optimization is in progress.
in the latter case, note that there is no reliable synchronization of file access.
first, writing to the file must be as short as possible.
the population class has a read timeout of ten seconds.
second, because it is impossible to know whether the file has been read or not,
new models should be _appended_ rather than _overwrite_ previous ones.
the population class automatically skips models that have already been read.
this class supports does not support seeding.
although, a seed file is accepted, it is not used.
patching is allowed, but there is normally no advantage over modifying the table.
the model space is used to define the model parameters and the parameter range.
models violating the parameter model space are ignored.
"""
## @var table_source
# data source of the model table
#
# this can be any object accepted by @ref pmsco.optimizers.population.Population.import_positions,
# e.g. a file name, a numpy structured array, or a function returning a structured array.
# see the class description for details.
def __init__(self):
"""
initialize the population object.
"""
super(TablePopulation, self).__init__()
self.table_source = None
self.position_constrain_mode = 'error'
def setup(self, size, model_space, **kwargs):
"""
set up the population arrays, parameter model space and data source.
@param size: requested number of particles.
this does not need to correspond to the number of table entries.
on each generation the population loads up to this number of new entries from the table source.
@param model_space: definition of initial and limiting model parameters
expected by the cluster and parameters functions.
@arg model_space.start: not used.
@arg model_space.min: minimum values allowed.
@arg model_space.max: maximum values allowed.
@arg model_space.step: not used.
the following arguments are keyword arguments.
the method also accepts the inherited arguments for seeding. they do not have an effect, however.
@param table_source: data source of the model table.
this can be any object accepted by @ref pmsco.optimizers.population.Population.import_positions,
e.g. a file name, a numpy structured array, or a function returning a structured array.
see the class description for details.
@return: None
"""
super(TablePopulation, self).setup(size, model_space, **kwargs)
self.table_source = kwargs['table_source']
def advance_population(self):
"""
advance the population by one step.
this methods re-imports the table file
and copies the table to current population.
@return: None
"""
self.import_positions(self.table_source)
self.advance_from_import()
super(TablePopulation, self).advance_population()
class TableModelHandler(population.PopulationHandler):
"""
model handler which implements the table algorithm.
"""
def __init__(self):
super(TableModelHandler, self).__init__()
self._pop = TablePopulation()

View File

@ -4,18 +4,14 @@
@package pmsco.pmsco
PEARL Multiple-Scattering Calculation and Structural Optimization
this is the main entry point and top-level interface of the PMSCO package.
all calculations (any mode, any project) start by calling the main_pmsco() function of this module.
the module also provides a command line parser.
command line usage: call with -h option to see the list of arguments.
python usage: call main_pmsco() with suitable arguments.
this is the top-level interface of the PMSCO package.
all calculations (any mode, any project) start by calling the run_project() function of this module.
the module also provides a command line and a run-file/run-dict interface.
for parallel execution, prefix the command line with mpi_exec -np NN, where NN is the number of processes to use.
note that in parallel mode, one process takes the role of the coordinator (master).
the master does not run calculations and is idle most of the time.
to benefit from parallel execution on a work station, NN should be the number of processors plus one.
to benefit from parallel execution on a work station, NN should be the number of processors.
on a cluster, the number of processes is chosen according to the available resources.
all calculations can also be run in a single process.
@ -24,47 +20,45 @@ PMSCO serializes the calculations automatically.
the code of the main module is independent of a particular calculation project.
all project-specific code must be in a separate python module.
the project module must implement a class derived from pmsco.project.Project,
and a global function create_project which returns a new instance of the derived project class.
and call run_project() with an instance of the project class.
refer to the projects folder for examples.
@pre
* python 2.7, including python-pip
* numpy
* nose from Debian python-nose
* statsmodels from Debian python-statsmodels, or PyPI (https://pypi.python.org/pypi/statsmodels)
* periodictable from PyPI (https://pypi.python.org/pypi/periodictable)
* mpi4py from PyPI (the Debian package may have a bug causing the program to crash)
* OpenMPI, including libopenmpi-dev
* SWIG from Debian swig
to install a PyPI package, e.g. periodictable, do
@code{.sh}
pip install --user periodictable
@endcode
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2015 by Paul Scherrer Institut @n
@copyright (c) 2015-21 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
import os.path
import sys
import datetime
import argparse
from builtins import range
import logging
import cluster
import dispatch
import handlers
import files
import calculator
import swarm
import grid
# import gradient
from mpi4py import MPI
import importlib
import commentjson as json
from pathlib import Path
import sys
try:
from mpi4py import MPI
mpi_comm = MPI.COMM_WORLD
mpi_size = mpi_comm.Get_size()
mpi_rank = mpi_comm.Get_rank()
except ImportError:
MPI = None
mpi_comm = None
mpi_size = 1
mpi_rank = 0
pmsco_root = Path(__file__).resolve().parent.parent
if str(pmsco_root) not in sys.path:
sys.path.insert(0, str(pmsco_root))
import pmsco.dispatch as dispatch
import pmsco.files as files
import pmsco.handlers as handlers
from pmsco.optimizers import genetic, swarm, grid, table
# the module-level logger
logger = logging.getLogger(__name__)
@ -86,40 +80,36 @@ def setup_logging(enable=False, filename="pmsco.log", level="WARNING"):
@param enable: (bool) True=enable logging to the specified file,
False=do not generate a log (null handler).
@param filename: (string) path and name of the log file.
@param filename: (Path-like) path and name of the log file.
if this process is part of an MPI communicator,
the function inserts a dot and the MPI rank of this process before the extension.
if the filename is empty, logging is disabled.
@param level: (string) name of the log level.
must be the name of one of "DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL".
if empty or invalid, the function raises a ValueError.
if empty, logging is disabled.
if not a valid level, defaults to "WARNING".
@return None
"""
numeric_level = getattr(logging, level.upper(), None)
if not isinstance(numeric_level, int):
raise ValueError('Invalid log level: %s' % level)
logger = logging.getLogger("")
logger.setLevel(numeric_level)
logformat = '%(asctime)s (%(name)s) %(levelname)s: %(message)s'
formatter = logging.Formatter(logformat)
enable = enable and str(filename) and level
numeric_level = getattr(logging, level.upper(), logging.WARNING)
root_logger = logging.getLogger()
root_logger.setLevel(numeric_level)
if enable:
mpi_comm = MPI.COMM_WORLD
mpi_size = mpi_comm.Get_size()
if mpi_size > 1:
mpi_rank = mpi_comm.Get_rank()
root, ext = os.path.splitext(filename)
filename = root + "." + str(mpi_rank) + ext
p = Path(filename)
filename = p.with_suffix(f".{mpi_rank}" + p.suffix)
log_format = '%(asctime)s (%(name)s) %(levelname)s: %(message)s'
formatter = logging.Formatter(log_format)
handler = logging.FileHandler(filename, mode="w", delay=True)
handler.setLevel(numeric_level)
handler.setFormatter(formatter)
else:
handler = logging.NullHandler()
logger.addHandler(handler)
root_logger.addHandler(handler)
def set_common_args(project, args):
@ -139,76 +129,57 @@ def set_common_args(project, args):
@return: None
"""
log_file = "pmsco.log"
if args.data_dir:
project.data_dir = args.data_dir
if args.output_file:
project.set_output(args.output_file)
log_file = args.output_file + ".log"
project.output_file = args.output_file
if args.db_file:
project.db_file = args.db_file
if args.log_file:
log_file = args.log_file
setup_logging(enable=args.log_enable, filename=log_file, level=args.log_level)
logger.debug("creating project")
mode = args.mode.lower()
if mode in {'single', 'grid', 'swarm'}:
project.mode = mode
else:
logger.error("invalid optimization mode '%s'.", mode)
if args.pop_size:
project.pop_size = args.pop_size
code = args.code.lower()
if code in {'edac', 'msc', 'test'}:
project.code = code
else:
logger.error("invalid code argument")
project.log_file = args.log_file
if args.log_level:
project.log_level = args.log_level
if not args.log_enable:
project.log_file = ""
project.log_level = ""
if args.mode:
project.mode = args.mode.lower()
if args.time_limit:
project.set_timedelta_limit(datetime.timedelta(hours=args.time_limit))
project.time_limit = args.time_limit
if args.keep_files:
if "all" in args.keep_files:
cats = set([])
else:
cats = files.FILE_CATEGORIES - set(args.keep_files)
cats -= {'report'}
if mode == 'single':
cats -= {'model'}
project.files.categories_to_delete = cats
def log_project_args(project):
"""
send some common project arguments to the log.
@param project: project instance (sub-class of pmsco.project.Project).
@return: None
"""
try:
logger.info("scattering code: {0}".format(project.code))
logger.info("optimization mode: {0}".format(project.mode))
logger.info("minimum swarm size: {0}".format(project.pop_size))
logger.info("data directory: {0}".format(project.data_dir))
logger.info("output file: {0}".format(project.output_file))
_files_to_keep = files.FILE_CATEGORIES - project.files.categories_to_delete
logger.info("intermediate files to keep: {0}".format(", ".join(_files_to_keep)))
except AttributeError:
logger.warning("AttributeError in log_project_args")
project.keep_files = args.keep_files
if args.keep_levels:
project.keep_levels = max(args.keep_levels, project.keep_levels)
if args.keep_best:
project.keep_best = max(args.keep_best, project.keep_best)
def run_project(project):
"""
run a calculation project.
@param project:
@return:
the function sets up logging, validates the project, chooses the handler classes,
and passes control to the pmsco.dispatch module to run the calculations.
@param project: fully initialized project object.
the validate method is called as part of this function after setting up the logger.
@return: None
"""
log_project_args(project)
log_file = Path(project.log_file)
if not log_file.name:
log_file = Path(project.job_name).with_suffix(".log")
if log_file.name:
log_file.parent.mkdir(exist_ok=True)
log_level = project.log_level
else:
log_level = ""
setup_logging(enable=bool(log_level), filename=log_file, level=log_level)
if mpi_rank == 0:
project.log_project_args()
project.validate()
optimizer_class = None
if project.mode == 'single':
@ -217,36 +188,21 @@ def run_project(project):
optimizer_class = grid.GridSearchHandler
elif project.mode == 'swarm':
optimizer_class = swarm.ParticleSwarmHandler
elif project.mode == 'genetic':
optimizer_class = genetic.GeneticOptimizationHandler
elif project.mode == 'gradient':
logger.error("gradient search not implemented")
# TODO: implement gradient search
# optimizer_class = gradient.GradientSearchHandler
elif project.mode == 'table':
optimizer_class = table.TableModelHandler
else:
logger.error("invalid optimization mode '%s'.", project.mode)
project.handler_classes['model'] = optimizer_class
project.handler_classes['region'] = handlers.choose_region_handler_class(project)
calculator_class = None
if project.code == 'edac':
logger.debug("importing EDAC interface")
import edac_calculator
project.cluster_format = cluster.FMT_EDAC
calculator_class = edac_calculator.EdacCalculator
elif project.code == 'msc':
logger.debug("importing MSC interface")
import msc_calculator
project.cluster_format = cluster.FMT_MSC
calculator_class = msc_calculator.MscCalculator
elif project.code == 'test':
logger.debug("importing TEST interface")
project.cluster_format = cluster.FMT_EDAC
calculator_class = calculator.TestCalculator
else:
logger.error("invalid code argument")
project.calculator_class = calculator_class
if project and optimizer_class and calculator_class:
if project and optimizer_class:
logger.info("starting calculations")
try:
dispatch.run_calculations(project)
@ -261,6 +217,34 @@ def run_project(project):
logger.error("undefined project, optimizer, or calculator.")
def schedule_project(project, run_dict):
"""
schedule a calculation project.
the function validates the project and submits a job to the scheduler.
@param project: fully initialized project object.
the validate method is called as part of this function.
@param run_dict: dictionary holding the contents of the run file.
@return: None
"""
assert mpi_rank == 0
setup_logging(enable=False)
project.validate()
schedule_dict = run_dict['schedule']
module = importlib.import_module(schedule_dict['__module__'])
schedule_class = getattr(module, schedule_dict['__class__'])
schedule = schedule_class(project)
schedule.set_properties(module, schedule_dict, project)
schedule.run_dict = run_dict
schedule.validate()
schedule.submit()
class Args(object):
"""
arguments of the main function.
@ -273,7 +257,7 @@ class Args(object):
values as the command line parser.
"""
def __init__(self, mode="single", code="edac", output_file=""):
def __init__(self):
"""
constructor.
@ -282,25 +266,23 @@ class Args(object):
other parameters may be required depending on the project
and/or the calculation mode.
"""
self.mode = mode
self.pop_size = 0
self.code = code
self.data_dir = os.getcwd()
self.output_file = output_file
self.data_dir = ""
self.output_file = ""
self.db_file = ""
self.time_limit = 24.0
self.keep_files = []
self.keep_files = files.FILE_CATEGORIES_TO_KEEP
self.keep_best = 10
self.keep_levels = 1
self.log_level = "WARNING"
self.log_file = ""
self.log_enable = True
def get_cli_parser(default_args=None):
if not default_args:
default_args = Args()
def get_cli_parser():
KEEP_FILES_CHOICES = files.FILE_CATEGORIES | {'all'}
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description="""
multiple-scattering calculations and optimization
@ -309,7 +291,7 @@ def get_cli_parser(default_args=None):
1) a project class derived from pmsco.project.Project.
the class implements/overrides all necessary methods of the calculation project,
in particular create_domain, create_cluster, and create_params.
in particular create_model_space, create_cluster, and create_params.
2) a global function named create_project.
the function accepts a namespace object from the argument parser.
@ -324,39 +306,45 @@ def get_cli_parser(default_args=None):
# for simplicity, the parser does not check these requirements.
# all parameters are optional and accepted regardless of mode.
# errors may occur if implicit requirements are not met.
parser.add_argument('-m', '--mode', default='single',
choices=['single', 'grid', 'swarm', 'gradient'],
parser.add_argument('project_module', nargs='?',
help="path to custom module that defines the calculation project")
parser.add_argument('-r', '--run-file',
help="path to run-time parameters file which contains all program arguments. " +
"must be in JSON format.")
parser.add_argument('-m', '--mode',
choices=['single', 'grid', 'swarm', 'genetic', 'table'],
help='calculation mode')
parser.add_argument('--pop-size', type=int, default=0,
help='population size (number of particles) in swarm optimization mode. ' +
'default is the greater of 4 or two times the number of calculation processes.')
parser.add_argument('-c', '--code', choices=['msc', 'edac', 'test'], default="edac",
help='scattering code (default: edac)')
parser.add_argument('-d', '--data-dir', default=os.getcwd(),
parser.add_argument('-d', '--data-dir',
help='directory path for experimental data files (if required by project). ' +
'default: working directory')
parser.add_argument('-o', '--output-file',
help='base path for intermediate and output files.' +
'default: pmsco_data')
parser.add_argument('-k', '--keep-files', nargs='*', default=files.FILE_CATEGORIES_TO_KEEP,
help='base path for intermediate and output files.')
parser.add_argument('-b', '--db-file',
help='name of an sqlite3 database file where the results should be stored.')
parser.add_argument('-k', '--keep-files', nargs='*',
choices=KEEP_FILES_CHOICES,
help='output file categories to keep after the calculation. '
'by default, cluster and model (simulated data) '
'of a limited number of best models are kept.')
parser.add_argument('-t', '--time-limit', type=float, default=24.0,
help='wall time limit in hours. the optimizers try to finish before the limit. default: 24.')
parser.add_argument('--log-file', default=default_args.log_file,
parser.add_argument('--keep-best', type=int,
help='number of best models for which to keep result files '
'(at each node from root down to keep-levels).')
parser.add_argument('--keep-levels', type=int, choices=range(5),
help='task level down to which result files of best models are kept. '
'0 = model, 1 = scan, 2 = domain, 3 = emitter, 4 = region.')
parser.add_argument('-t', '--time-limit', type=float,
help='wall time limit in hours. the optimizers try to finish before the limit.')
parser.add_argument('--log-file',
help='name of the main log file. ' +
'under MPI, the rank of the process is inserted before the extension. ' +
'defaults: output file + log, or pmsco.log.')
parser.add_argument('--log-level', default=default_args.log_level,
help='minimum level of log messages. DEBUG, INFO, WARNING, ERROR, CRITICAL. default: WARNING.')
'under MPI, the rank of the process is inserted before the extension.')
parser.add_argument('--log-level',
help='minimum level of log messages. DEBUG, INFO, WARNING, ERROR, CRITICAL.')
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--log-enable', dest='log_enable', action="store_true",
help="enable logging. by default, logging is on.")
feature_parser.add_argument('--log-disable', dest='log_enable', action='store_false',
help="disable logging. by default, logging is on.")
parser.set_defaults(log_enable=default_args.log_enable)
parser.set_defaults(log_enable=True)
return parser
@ -367,15 +355,138 @@ def parse_cli():
@return: Namespace object created by the argument parser.
"""
default_args = Args()
parser = get_cli_parser(default_args)
parser = get_cli_parser()
args, unknown_args = parser.parse_known_args()
return args, unknown_args
def import_module(module_name):
"""
import a custom module by name.
import a module given its file path or module name (like in an import statement).
preferably, the module name should be given as in an import statement.
as the top-level pmsco directory is on the python path,
the module name will begin with `projects` for a custom project module or `pmsco` for a core pmsco module.
in this case, the function just calls importlib.import_module.
if a file path is given, i.e., `module_name` links to an existing file and has a `.py` extension,
the function extracts the directory path,
inserts it into the python path,
and calls importlib.import_module on the stem of the file name.
@note the file path remains in the python path.
this option should be used carefully to avoid breaking file name resolution.
@param module_name: file path or module name.
file path is interpreted relative to the working directory.
@return: the loaded module as a python object
"""
p = Path(module_name)
if p.is_file() and p.suffix == ".py":
path = p.parent.resolve()
module_name = p.stem
if path not in sys.path:
sys.path.insert(0, path)
module = importlib.import_module(module_name)
return module
def main_dict(run_params):
"""
main function with dictionary run-time parameters
this starts the whole process with all direct parameters.
the command line is not parsed.
no run-file is loaded (just the project module).
@param run_params: dictionary with the same structure as the JSON run-file.
@return: None
"""
project_params = run_params['project']
module = importlib.import_module(project_params['__module__'])
try:
project_class = getattr(module, project_params['__class__'])
except KeyError:
project = module.create_project()
else:
project = project_class()
project._module = module
project.directories['pmsco'] = Path(__file__).parent
project.directories['project'] = Path(module.__file__).parent
project.set_properties(module, project_params, project)
run_project(project)
def main():
"""
main function with command line parsing
this function starts the whole process with parameters from the command line.
if the command line contains a run-file parameter, it determines the module to load and the project parameters.
otherwise, the command line parameters apply.
the project class can be specified either in the run-file or the project module.
if the run-file specifies a class name, that class is looked up in the project module and instantiated.
otherwise, the module's create_project is called.
@return: None
"""
args, unknown_args = parse_cli()
try:
with open(args.run_file, 'r') as f:
rf = json.load(f)
except AttributeError:
rfp = {'__module__': args.project_module}
else:
rfp = rf['project']
module = import_module(rfp['__module__'])
try:
project_args = module.parse_project_args(unknown_args)
except AttributeError:
project_args = None
try:
project_class = getattr(module, rfp['__class__'])
except (AttributeError, KeyError):
project = module.create_project()
else:
project = project_class()
project_args = None
project._module = module
project.directories['pmsco'] = Path(__file__).parent
project.directories['project'] = Path(module.__file__).parent
project.set_properties(module, rfp, project)
set_common_args(project, args)
try:
if project_args:
module.set_project_args(project, project_args)
except AttributeError:
pass
try:
schedule_enabled = rf['schedule']['enabled']
except KeyError:
schedule_enabled = False
if schedule_enabled:
schedule_project(project, rf)
else:
run_project(project)
if __name__ == '__main__':
main_parser = get_cli_parser()
main_parser.print_help()
main()
sys.exit(0)

File diff suppressed because it is too large Load Diff

309
pmsco/schedule.py Normal file
View File

@ -0,0 +1,309 @@
"""
@package pmsco.schedule
job schedule interface
this module defines common infrastructure to submit a pmsco calculation job to a job scheduler such as slurm.
the schedule can be defined as part of the run-file (see pmsco module).
users may derive sub-classes in a separate module to adapt to their own computing cluster.
the basic call sequence is:
1. create a schedule object.
2. initialize its properties with job parameters.
3. validate()
4. submit()
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2015-21 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
import collections.abc
import commentjson as json
import datetime
import logging
from pathlib import Path
import shutil
import subprocess
import pmsco.config
logger = logging.getLogger(__name__)
class JobSchedule(pmsco.config.ConfigurableObject):
"""
base class for job schedule
this class defines the abstract interface and some utilities.
derived classes may override any method, but should call the inherited method.
usage:
1. create object, assigning a project instance.
2. assign run_file.
3. call validate.
4. call submit.
this class' properties should not be listed in the run file - they will be overwritten.
"""
## @var enabled (bool)
#
# this parameter signals whether pmsco should schedule a job or run the calculation.
# it is not directly used by the schedule classes but by the pmsco module.
# it must be defined in the run file and set to true to submit the job to a scheduler.
# it is set to false in the run file copied to the job directory so that the job script starts the calculation.
def __init__(self, project):
super(JobSchedule, self).__init__()
self.project = project
self.enabled = False
self.run_dict = {}
self.job_dir = Path()
self.job_file = Path()
self.run_file = Path()
# directory that contains the pmsco and projects directories
self.pmsco_root = Path(__file__).parent.parent
def validate(self):
"""
validate the job parameters.
make sure all object attributes are correct for submission.
@return: None
"""
self.pmsco_root = Path(self.project.directories['pmsco']).parent
output_dir = Path(self.project.directories['output'])
assert self.pmsco_root.is_dir()
assert (self.pmsco_root / "pmsco").is_dir()
assert (self.pmsco_root / "projects").is_dir()
assert output_dir.is_dir()
assert self.project.job_name
self.job_dir = output_dir / self.project.job_name
self.job_dir.mkdir(parents=True, exist_ok=True)
self.job_file = (self.job_dir / self.project.job_name).with_suffix(".sh")
self.run_file = (self.job_dir / self.project.job_name).with_suffix(".json")
def submit(self):
"""
submit the job to the scheduler.
as of this class, the method does to following:
1. copy source files
2. copy a patched version of the run file.
3. write the job file (_write_job_file must be implemented by a derived class).
@return: None
"""
self._copy_source()
self._fix_run_file()
self._write_run_file()
self._write_job_file()
def _copy_source(self):
"""
copy the source files to the job directory.
the source_dir and job_dir attributes must be correct.
the job_dir directory must not exist and will be created.
this is a utility method used internally by derived classes.
job_dir/pmsco/pmsco/**
job_dir/pmsco/projects/**
job_dir/job.sh
job_dir/job.json
@return: None
"""
source = self.pmsco_root
dest = self.job_dir / "pmsco"
ignore = shutil.ignore_patterns(".*", "~*", "*~")
shutil.copytree(source / "pmsco", dest / "pmsco", ignore=ignore)
shutil.copytree(source / "projects", dest / "projects", ignore=ignore)
def _fix_run_file(self):
"""
fix the run file.
patch some entries of self.run_dict so that it can be used as run file.
the following changes are made:
1. set schedule.enabled to false so that the calculation is run.
2. set the output directory to the job directory.
3. set the log file to the job directory.
@return: None
"""
self.run_dict['schedule']['enabled'] = False
self.run_dict['project']['directories']['output'] = str(self.job_dir)
self.run_dict['project']['log_file'] = str((self.job_dir / self.project.job_name).with_suffix(".log"))
def _write_run_file(self):
"""
copy the run file.
this is a JSON dump of self.run_dict to the self.run_file file.
@return: None
"""
with open(self.run_file, "wt") as f:
json.dump(self.run_dict, f, indent=2)
def _write_job_file(self):
"""
create the job script.
this method must be implemented by a derived class.
the script must be written to the self.job_file file.
don't forget to make the file executable.
@return: None
"""
pass
class SlurmSchedule(JobSchedule):
"""
job schedule for a slurm scheduler.
this class implements commonly used features of the slurm scheduler.
host-specific features and the creation of the job file should be done in a derived class.
derived classes must, in particular, implement the _write_job_file method.
they can override other methods, too, but should call the inherited method first.
1. copy the source trees (pmsco and projects) to the job directory
2. copy a patched version of the run file.
3. call the submission command
the public properties of this class should be assigned from the run file.
"""
def __init__(self, project):
super(SlurmSchedule, self).__init__(project)
self.host = ""
self.nodes = 1
self.tasks_per_node = 8
self.wall_time = datetime.timedelta(hours=1)
self.signal_time = 600
self.manual = True
@staticmethod
def parse_timedelta(td):
"""
parse time delta input formats
converts a string or dictionary from run-file into datetime.timedelta.
@param td:
str: [days-]hours[:minutes[:seconds]]
dict: days, hours, minutes, seconds - at least one needs to be defined. values must be numeric.
datetime.timedelta - native type
@return: datetime.timedelta
"""
if isinstance(td, str):
dt = {}
d = td.split("-")
if len(d) > 1:
dt['days'] = float(d.pop(0))
t = d[0].split(":")
try:
dt['hours'] = float(t.pop(0))
dt['minutes'] = float(t.pop(0))
dt['seconds'] = float(t.pop(0))
except (IndexError, ValueError):
pass
td = datetime.timedelta(**dt)
elif isinstance(td, collections.abc.Mapping):
td = datetime.timedelta(**td)
return td
def validate(self):
super(SlurmSchedule, self).validate()
self.wall_time = self.parse_timedelta(self.wall_time)
assert self.job_dir.is_absolute()
def submit(self):
"""
call the sbatch command
if manual is true, the job files are generated but the job is not submitted.
@return: None
"""
super(SlurmSchedule, self).submit()
args = ['sbatch', str(self.job_file)]
print(" ".join(args))
if self.manual:
print("manual run - job files created but not submitted")
else:
cp = subprocess.run(args)
cp.check_returncode()
class PsiRaSchedule(SlurmSchedule):
"""
job shedule for the Ra cluster at PSI.
this class selects specific features of the Ra cluster,
such as the partition and node type (24 or 32 cores).
it also implements the _write_job_file method.
"""
## @var partition (str)
#
# the partition is selected based on wall time and number of tasks by the validate() method.
# it should not be listed in the run file.
def __init__(self, project):
super(PsiRaSchedule, self).__init__(project)
self.partition = "shared"
def validate(self):
super(PsiRaSchedule, self).validate()
assert self.nodes <= 2
assert self.tasks_per_node <= 24 or self.tasks_per_node == 32
assert self.wall_time.total_seconds() >= 60
if self.wall_time.total_seconds() > 24 * 60 * 60:
self.partition = "week"
elif self.tasks_per_node < 24:
self.partition = "shared"
else:
self.partition = "day"
assert self.partition in ["day", "week", "shared"]
def _write_job_file(self):
lines = []
lines.append('#!/bin/bash')
lines.append('#SBATCH --export=NONE')
lines.append(f'#SBATCH --job-name="{self.project.job_name}"')
lines.append(f'#SBATCH --partition={self.partition}')
lines.append(f'#SBATCH --time={int(self.wall_time.total_seconds() / 60)}')
lines.append(f'#SBATCH --nodes={self.nodes}')
lines.append(f'#SBATCH --ntasks-per-node={self.tasks_per_node}')
if self.tasks_per_node > 24:
lines.append('#SBATCH --cores-per-socket=16')
# 0 - 65535 seconds
# currently, PMSCO does not react to signals properly
# lines.append(f'#SBATCH --signal=TERM@{self.signal_time}')
lines.append(f'#SBATCH --output="{self.project.job_name}.o.%j"')
lines.append(f'#SBATCH --error="{self.project.job_name}.e.%j"')
lines.append('module load psi-python36/4.4.0')
lines.append('module load gcc/4.8.5')
lines.append('module load openmpi/3.1.3')
lines.append('source activate pmsco')
lines.append(f'cd "{self.job_dir}"')
lines.append(f'mpirun python pmsco/pmsco -r {self.run_file.name}')
lines.append(f'cd "{self.job_dir}"')
lines.append('rm -rf pmsco')
lines.append('exit 0')
self.job_file.write_text("\n".join(lines))
self.job_file.chmod(0o755)

View File

@ -1,909 +0,0 @@
"""
@package pmsco.swarm
particle swarm optimization handler.
the module starts multiple MSC calculations and optimizes the model parameters
according to the particle swarm optimization algorithm.
Particle swarm optimization adapted from
D. A. Duncan et al., Surface Science 606, 278 (2012)
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2015 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import division
import copy
import os
import datetime
import logging
import numpy as np
import handlers
from helpers import BraceMessage as BMsg
logger = logging.getLogger(__name__)
CONSTRAIN_MODES = {'re-enter', 'bounce', 'scatter', 'stick', 'expand'}
class Population(object):
"""
particle swarm population.
"""
## @var size_req
# requested number of particles.
# read-only. call setup() to change this attribute.
## @var model_start
# (dict) initial model parameters.
# read-only. call setup() to change this attribute.
## @var model_min
# (dict) low limits of the model parameters.
# read-only. call setup() to change this attribute.
## @var model_max
# (dict) high limits of the model parameters.
# if min == max, the parameter is kept constant.
# read-only. call setup() to change this attribute.
## @var model_max
# (dict) high limits of the model parameters.
# read-only. call setup() to change this attribute.
## @var model_step
# (dict) initial velocity (difference between two steps) of the particle.
# read-only. call setup() to change this attribute.
## @var friends
# number of other particles that each particle consults for the global best fit.
# default = 3.
## @var momentum
# momentum of the particle.
# default = 0.689343.
## @var attract_local
# preference for returning to the local best fit
# default = 1.92694.
## @var attract_global
# preference for heading towards the global best fit.
# default = 1.92694
## @var generation
# generation number. the counter is incremented by advance_population().
# initial value = 0.
## @var model_count
# model number.
# the counter is incremented by advance_particle() each time a particle position is changed.
# initial value = 0.
## @var pos
# (numpy.ndarray) current positions of each particle.
#
# the column names include the names of the model parameters, taken from domain.start,
# and the special names @c '_particle', @c '_model', @c '_rfac'.
# the special fields have the following meanings:
#
# * @c '_particle': index of the particle in the array.
# the particle index is used to match a calculation result and its original particle.
# it must be preserved during the calculation process.
#
# * @c '_gen': generation number.
# the generation number counts the number of calls to advance_population().
# this field is not used internally.
# the first population is generation 0.
#
# * @c '_model': model number.
# the model number counts the number of calls to advance_particle().
# the field is filled with the current value of model_count whenever the position is changed.
# this field is not used internally.
# the model handlers use it to derive their model ID.
#
# * @c '_rfac': calculated R-factor for this position.
# this field is meaningful in the best and results arrays only
# where it is set by the add_result() method.
# in the pos and vel arrays, the field value is arbitrary.
#
# @note if your read a single element, e.g. pos[0], from the array, you will get a numpy.void object.
# this object is a <em>view</em> of the original array item
## @var vel
# (numpy.ndarray) current the velocities of each particle.
# the structure is the same as for the pos array.
## @var best
# (numpy.ndarray) best positions found by each particle so far.
# the structure is the same as for the pos array.
## @var results
# (numpy.ndarray) all positions and resulting R-factors calculated.
# the structure is the same as for the pos array.
## @var _hold_once
# (bool) hold the population once during the next update.
# if _hold_once is True, advance_population() will skip the update process once.
# this flag is set by setup() because it sets up a valid initial population.
# the caller then doesn't have to care whether to skip advance_population() after setup.
def __init__(self):
"""
initialize the population object.
"""
self.size_req = 0
self.model_start = {}
self.model_min = {}
self.model_max = {}
self.model_step = {}
self.friends = 3
self.momentum = 0.689343
self.attract_local = 1.92694
self.attract_global = 1.92694
self.position_constrain_mode = 'default'
self.velocity_constrain_mode = 'default'
self.generation = 0
self.model_count = 0
self._hold_once = False
self.pos = None
self.vel = None
self.best = None
self.results = None
def pos_gen(self):
"""
generator for dictionaries of the pos array.
the generator can be used to loop over the array.
on each iteration, it yields a dictionary of the position at the current index.
for example,
@code{.py}
for pos in pop.pos_gen():
print pos['_index'], pos['_rfac']
@endcode
"""
return ({name: pos[name] for name in pos.dtype.names} for pos in self.pos)
def vel_gen(self):
"""
generator for dictionaries of the vel array.
@see pos_gen() for details.
"""
return ({name: vel[name] for name in vel.dtype.names} for vel in self.vel)
def best_gen(self):
"""
generator for dictionaries of the best array.
@see pos_gen() for details.
"""
return ({name: best[name] for name in best.dtype.names} for best in self.best)
def results_gen(self):
"""
generator for dictionaries of the results array.
@see pos_gen() for details.
"""
return ({name: results[name] for name in results.dtype.names} for results in self.results)
@staticmethod
def get_model_dtype(model_params):
"""
get numpy array data type for model parameters and swarm control variables.
@param model_params: dictionary of model parameters or list of parameter names.
@return: dtype for use with numpy array constructors.
this is a sorted list of (name, type) tuples.
"""
dt = []
for key in model_params:
dt.append((key, 'f4'))
dt.append(('_particle', 'i4'))
dt.append(('_gen', 'i4'))
dt.append(('_model', 'i4'))
dt.append(('_rfac', 'f4'))
dt.sort(key=lambda t: t[0].lower())
return dt
def setup(self, size, domain, history_file="", recalc_history=True):
"""
set up the population arrays seeded with previous results and the start model.
* set the population parameters and allocate the data arrays.
* set one particle to the initial guess, and the others to positions from a previous results file.
if the file contains less particles than allocated, the remaining particles are initialized randomly.
seeding from a history file can be used to continue an interrupted optimization process.
the method loads the results into the best and position arrays,
and updates the other arrays and variables
so that the population can be advanced and calculated.
by default, the calculations of the previous parameters are repeated.
this is recommended whenever the code, the experimental input, or the project arguments change
because all of them may have an influence on the R-factor.
re-calculation can be turned off by setting recalc_history to false.
this is recommended only if the calculation is a direct continuation of a previous one
without any changes to the code or input.
in that case, the previous results are marked as generation -1 with a negative model number.
upon the first iteration before running the scattering calculations,
new parameters will be derived by the swarm algorithm.
@param size: requested number of particles.
@param domain: definition of initial and limiting model parameters
expected by the cluster and parameters functions.
@arg domain.start: initial guess.
@arg domain.min: minimum values allowed.
@arg domain.max: maximum values allowed. if min == max, the parameter is kept constant.
@arg domain.step: initial velocity (difference between two steps) for particle swarm.
@param history_file: name of the results history file.
this can be a file created by the @ref save_array or @ref save_results methods.
the columns of the plain-text file contain model parameters and
the _rfac values of a previous calculation.
additional columns are ignored.
the first row must contain the column names.
if a parameter column is missing,
the corresponding parameter is seeded with a random value within the domain.
in this case, a warning is added to the log file.
the number of rows does not need to be equal to the population size.
if it is lower, the remaining particles are initialized randomly.
if it is higher, only the ones with the lowest R factors are used.
results with R >= 1.0 are ignored in any case.
@param recalc_history: select whether the R-factors of the historic models are calculated again.
this is useful if the historic data was calculated for a different cluster, different set of parameters,
or different experimental data, and if the R-factors of the new optimization may be systematically greater.
set this argument to False only if the calculation is a continuation of a previous one
without any changes to the code.
@return: None
"""
self.size_req = size
self.model_start = domain.start
self.model_min = domain.min
self.model_max = domain.max
self.model_step = domain.step
# allocate arrays
dt = self.get_model_dtype(self.model_start)
self.pos = np.zeros(self.size_req, dtype=dt)
self.vel = np.zeros(self.size_req, dtype=dt)
self.results = np.empty((0), dtype=dt)
# randomize population
self.generation = 0
self.randomize()
self.pos['_particle'] = np.arange(self.size_req)
self.pos['_gen'] = self.generation
self.pos['_model'] = np.arange(self.size_req)
self.pos['_rfac'] = 2.1
self.model_count = self.size_req
# add previous results
if history_file:
hist = np.genfromtxt(history_file, names=True)
hist = hist[hist['_rfac'] < 1.0]
hist.sort(order='_rfac')
hist_size = min(hist.shape[0], self.size_req - 1)
discarded_fields = {'_particle', '_gen', '_model'}
source_fields = set(hist.dtype.names) - discarded_fields
dest_fields = set(self.pos.dtype.names) - discarded_fields
common_fields = source_fields & dest_fields
if len(common_fields) < len(dest_fields):
logger.warning(BMsg("missing columns in history file {hf} default to random seed value.",
hf=history_file))
for name in common_fields:
self.pos[name][0:hist_size] = hist[name][0:hist_size]
self.pos['_particle'] = np.arange(self.size_req)
logger.info(BMsg("seeding swarm population with {hs} models from history file {hf}.",
hs=hist_size, hf=history_file))
if recalc_history:
self.pos['_gen'] = self.generation
self.pos['_model'] = np.arange(self.size_req)
self.pos['_rfac'] = 2.1
logger.info("historic models will be re-calculated.")
else:
self.pos['_gen'][0:hist_size] = -1
self.pos['_model'][0:hist_size] = -np.arange(hist_size) - 1
self.model_count = self.size_req - hist_size
self.pos['_model'][hist_size:] = np.arange(self.model_count)
logger.info("historic models will not be re-calculated.")
# seed last particle with start parameters
self.seed(self.model_start, index=-1)
# initialize best array
self.best = self.pos.copy()
self._hold_once = True
def randomize(self, pos=True, vel=True):
"""
initializes a random population.
the position array is filled with random values (uniform distribution) from the parameter domain.
velocity values are randomly chosen between -1/8 to 1/8 times the width (max - min) of the parameter domain.
the method does not update the particle info fields.
@param pos: randomize positions. if False, the positions are not changed.
@param vel: randomize velocities. if False, the velocities are not changed.
"""
if pos:
for key in self.model_start:
self.pos[key] = ((self.model_max[key] - self.model_min[key]) *
np.random.random_sample(self.pos.shape) + self.model_min[key])
if vel:
for key in self.model_start:
self.vel[key] = ((self.model_max[key] - self.model_min[key]) *
(np.random.random_sample(self.pos.shape) - 0.5) / 4.0)
def seed(self, params, index=0):
"""
set the one of the particles to the specified seed values.
the method does not update the particle info fields.
@param params: dictionary of model parameters.
the keys must match the ones of domain.start.
@param index: index of the particle that is seeded.
the index must be in the allowed range of the self.pos array.
0 is the first, -1 the last particle.
"""
for key in params:
self.pos[key][index] = params[key]
def update_particle_info(self, index, inc_model=True):
"""
set the internal particle info fields.
the fields @c _particle, @c _gen, and @c _model are updated with the current values.
@c _rfac is set to the default value 2.1.
this method must be called after each change of particle position.
@param index: (int) particle index.
@param inc_model: (bool) if True, increment the model count afterwards.
@return: None
"""
self.pos['_particle'][index] = index
self.pos['_gen'][index] = self.generation
self.pos['_model'][index] = self.model_count
self.pos['_rfac'][index] = 2.1
if inc_model:
self.model_count += 1
def advance_population(self):
"""
advance the population by one step.
this method just calls advance_particle() for each particle of the population.
if generation is lower than zero, the method increases the generation number but does not advance the particles.
@return: None
"""
if not self._hold_once:
self.generation += 1
for index, __ in enumerate(self.pos):
self.advance_particle(index)
self._hold_once = False
def advance_particle(self, index):
"""
advance a particle by one step.
@param index: index of the particle in the population.
"""
# note: the following two identifiers are views,
# assignment will modify the original array
pos = self.pos[index]
vel = self.vel[index]
# best fit that this individual has seen
xl = self.best[index]
# best fit that a group of others have seen
xg = self.best_friend(index)
for key in self.model_start:
# update velocity
dxl = xl[key] - pos[key]
dxg = xg[key] - pos[key]
pv = np.random.random()
pl = np.random.random()
pg = np.random.random()
vel[key] = (self.momentum * pv * vel[key] +
self.attract_local * pl * dxl +
self.attract_global * pg * dxg)
pos[key], vel[key], self.model_min[key], self.model_max[key] = \
self.constrain_velocity(pos[key], vel[key], self.model_min[key], self.model_max[key],
self.velocity_constrain_mode)
# update position
pos[key] += vel[key]
pos[key], vel[key], self.model_min[key], self.model_max[key] = \
self.constrain_position(pos[key], vel[key], self.model_min[key], self.model_max[key],
self.position_constrain_mode)
self.update_particle_info(index)
@staticmethod
def constrain_velocity(_pos, _vel, _min, _max, _mode='default'):
"""
constrain a velocity to the given bounds.
@param _pos: current position of the particle.
@param _vel: new velocity of the particle, i.e. distance to move.
@param _min: lower position boundary.
@param _max: upper position boundary.
_max must be greater or equal to _min.
@param _mode: what to do if a boundary constraint is violated.
reserved for future use. should be set to 'default'.
@return: tuple (new position, new velocity, new lower boundary, new upper boundary).
in the current implementation only the velocity may change.
however, in future versions any of these values may change.
"""
d = abs(_max - _min) / 2.0
if d > 0.0:
while abs(_vel) >= d:
_vel /= 2.0
else:
_vel = 0.0
return _pos, _vel, _min, _max
@staticmethod
def constrain_position(_pos, _vel, _min, _max, _mode='default'):
"""
constrain a position to the given bounds.
@param _pos: new position of the particle, possible out of bounds.
@param _vel: velocity of the particle, i.e. distance from the previous position.
_vel must be lower than _max - _min.
@param _min: lower boundary.
@param _max: upper boundary.
_max must be greater or equal to _min.
@param _mode: what to do if a boundary constraint is violated:
@arg 're-enter': re-enter from the opposite side of the parameter interval.
@arg 'bounce': fold the motion vector at the boundary and move the particle back into the domain.
@arg 'scatter': place the particle at a random place between its old position and the violated boundary.
@arg 'stick': place the particle at the violated boundary.
@arg 'expand': move the boundary so that the particle fits.
@arg 'random': place the particle at a random position between the lower and upper boundaries.
@arg 'default': the default mode is 'bounce'. this may change in future versions.
@return: tuple (new position, new velocity, new lower boundary, new upper boundary).
depending on the mode, any of these values may change.
the velocity is adjusted to be consistent with the change of position.
"""
_rng = max(_max - _min, 0.0)
_old = _pos - _vel
# prevent undershoot
if _vel > 0.0 and _pos < _min:
_pos = _min
_vel = _pos - _old
if _vel < 0.0 and _pos > _max:
_pos = _max
_vel = _pos - _old
assert abs(_vel) <= _rng, \
"velocity: pos = {0}, min = {1}, max = {2}, vel = {3}, _rng = {4}".format(_pos, _min, _max, _vel, _rng)
assert (_vel >= 0 and _pos >= _min) or (_vel <= 0 and _pos <= _max), \
"undershoot: pos = {0}, min = {1}, max = {2}, vel = {3}, _rng = {4}".format(_pos, _min, _max, _vel, _rng)
if _rng > 0.0:
while _pos > _max:
if _mode == 're-enter':
_pos -= _rng
elif _mode == 'bounce' or _mode == 'default':
_pos = _max - (_pos - _max)
_vel = -_vel
elif _mode == 'scatter':
_pos = _old + (_max - _old) * np.random.random()
_vel = _pos - _old
elif _mode == 'stick':
_pos = _max
_vel = _pos - _old
elif _mode == 'expand':
_max = _pos
elif _mode == 'random':
_pos = _min + _rng * np.random.random()
_vel = _pos - _old
else:
raise ValueError('invalid constrain mode')
while _pos < _min:
if _mode == 're-enter':
_pos += _rng
elif _mode == 'bounce' or _mode == 'default':
_pos = _min - (_pos - _min)
_vel = -_vel
elif _mode == 'scatter':
_pos = _old + (_min - _old) * np.random.random()
_vel = _pos - _old
elif _mode == 'stick':
_pos = _min
_vel = _pos - _old
elif _mode == 'expand':
_min = _pos
elif _mode == 'random':
_pos = _min + _rng * np.random.random()
_vel = _pos - _old
else:
raise ValueError('invalid constrain mode')
else:
_pos = _max
_vel = 0.0
return _pos, _vel, _min, _max
# noinspection PyUnusedLocal
def best_friend(self, index):
"""
select the best fit out of a random set of particles
returns the "best friend"
"""
friends = np.random.choice(self.best, self.friends, replace=False)
index = np.argmin(friends['_rfac'])
return friends[index]
def add_result(self, particle, rfac):
"""
add a calculation particle to the results array, and update the best fit array.
@param particle: dictionary of model parameters and particle values.
the keys must correspond to the columns of the pos array,
i.e. the names of the model parameters plus the _rfac, _particle, and _model fields.
@param rfac: calculated R-factor.
the R-factor is written to the '_rfac' field.
@return better (bool): True if the new R-factor is better than the particle's previous best mark.
"""
particle['_rfac'] = rfac
l = [particle[n] for n in self.results.dtype.names]
t = tuple(l)
a = np.asarray(t, dtype=self.results.dtype)
self.results = np.append(self.results, a)
index = particle['_particle']
better = particle['_rfac'] < self.best['_rfac'][index]
if better:
self.best[index] = a
return better
def is_converged(self, tol=0.01):
"""
check whether the population has converged.
convergence is reached when the R-factors of the N latest results,
do not vary more than tol, where N is the size of the population.
@param tol: max. difference allowed between greatest and lowest value of the R factor in the population.
"""
nres = self.results.shape[0]
npop = self.pos.shape[0]
if nres >= npop:
rfac1 = np.min(self.results['_rfac'][-npop:])
rfac2 = np.max(self.results['_rfac'][-npop:])
converg = rfac2 - rfac1 < tol
return converg
else:
return False
def save_array(self, filename, array):
"""
save a population array to a text file.
the columns are space-delimited.
the first line contains the column names.
@param filename: name of destination file, optionally including a path.
@param array: population array to save.
must be one of self.pos, self.vel, self.best, self.results
"""
header = " ".join(self.results.dtype.names)
np.savetxt(filename, array, fmt='%g', header=header)
def load_array(self, filename, array):
"""
load a population array from a text file.
the array to load must be compatible with the current population
(same number of rows, same columns).
the first row must contain column names.
the ordering of columns may be different.
the returned array is ordered according to the array argument.
@param filename: name of source file, optionally including a path.
@param array: population array to load.
must be one of self.pos, self.vel, self.results.
@return array with loaded data.
this may be the same instance as on input.
@raise AssertionError if the number of rows of the two files differ.
"""
data = np.genfromtxt(filename, names=True)
assert data.shape == array.shape
for name in data.dtype.names:
array[name] = data[name]
return array
def save_population(self, base_filename):
"""
save the population array to a set of text files.
the file name extensions are .pos, .vel, and .best
"""
self.save_array(base_filename + ".pos", self.pos)
self.save_array(base_filename + ".vel", self.vel)
self.save_array(base_filename + ".best", self.best)
def load_population(self, base_filename):
"""
load the population array from a set of previously saved text files.
this can be used to continue an optimization job.
the file name extensions are .pos, .vel, and .best.
the files must have the same format as produced by save_population.
the files must have the same number of rows.
"""
self.pos = self.load_array(base_filename + ".pos", self.pos)
self.vel = self.load_array(base_filename + ".vel", self.vel)
self.best = self.load_array(base_filename + ".best", self.best)
def save_results(self, filename):
"""
saves the complete list of calculations results.
"""
self.save_array(filename, self.results)
class ParticleSwarmHandler(handlers.ModelHandler):
"""
model handler which implements the particle swarm optimization algorithm.
"""
## @var _pop (Population)
# holds the population object.
## @var _pop_size (int)
# number of particles in the swarm.
## @var _outfile (file)
# output file for model parametes and R factor.
# the file is open during calculations.
# each calculation result adds one line.
## @var _model_time (timedelta)
# estimated CPU time to calculate one model.
# this value is the maximum time measured of the completed calculations.
# it is used to determine when the optimization should be finished so that the time limit is not exceeded.
## @var _converged (bool)
# indicates that the population has converged.
# convergence is detected by calling Population.is_converged().
# once convergence has been reached, this flag is set, and further convergence tests are skipped.
## @var _timeout (bool)
# indicates when the handler has run out of time,
# i.e. time is up before convergence has been reached.
# if _timeout is True, create_tasks() will not create further tasks,
# and add_result() will signal completion when the _pending_tasks queue becomes empty.
## @var _invalid_limit (int)
# maximum tolerated number of invalid calculations.
#
# if the number of invalid calculations (self._invalid_count) exceeds this limit,
# the optimization is aborted.
# the variable is initialized by self.setup() to 10 times the population size.
def __init__(self):
super(ParticleSwarmHandler, self).__init__()
self._pop = None
self._pop_size = 0
self._outfile = None
self._model_time = datetime.timedelta()
self._converged = False
self._timeout = False
self._invalid_limit = 10
def setup(self, project, slots):
"""
initialize the particle swarm and open an output file.
the population size is set to project.pop_size if it is defined and greater than 4.
otherwise, it defaults to <code>max(2 * slots, 4)</code>.
for good efficiency the population size (number of particles) should be
greater or equal to the number of available processing slots,
otherwise the next generation is created before all particles have been calculated
which may slow down convergence.
if calculations take a long time compared to the available computation time
or spawn a lot of sub-tasks due to complex symmetry,
and you prefer to allow for a good number of generations,
you should override the population size.
@param project: project instance.
@param slots: number of calculation processes available through MPI.
@return: None
"""
super(ParticleSwarmHandler, self).setup(project, slots)
_min_size = 4
if project.pop_size:
self._pop_size = max(project.pop_size, _min_size)
else:
self._pop_size = max(self._slots * 2, _min_size)
self._pop = Population()
self._pop.setup(self._pop_size, self._project.create_domain(), self._project.history_file,
self._project.recalc_history)
self._invalid_limit = self._pop_size * 10
self._outfile = open(self._project.output_file + ".dat", "w")
self._outfile.write("# ")
self._outfile.write(" ".join(self._pop.results.dtype.names))
self._outfile.write("\n")
return None
def cleanup(self):
self._outfile.close()
super(ParticleSwarmHandler, self).cleanup()
def create_tasks(self, parent_task):
"""
develop the particle population and create a calculation task per particle.
this method advances the population by one step.
it generates one task for each particle if its model number is positive.
negative model numbers indicate that the particle is used for seeding
and does not need to be calculated in the first generation.
if the time limit is approaching, no new tasks are created.
the process loop calls this method every time the length of the task queue drops
below the number of calculation processes (slots).
this means in particular that a population will not be completely calculated
before the next generation starts.
for efficiency reasons, we do not wait until a population is complete.
this will cause a certain mixing of generations and slow down convergence
because the best peer position in the generation may not be known yet.
the effect can be reduced by making the population larger than the number of processes.
@return list of generated tasks. empty list if the optimization has converged (see Population.is_converged()).
"""
super(ParticleSwarmHandler, self).create_tasks(parent_task)
# this is the top-level handler, we expect just one parent: root.
parent_id = parent_task.id
assert parent_id == (-1, -1, -1, -1, -1)
self._parent_tasks[parent_id] = parent_task
time_pending = self._model_time * len(self._pending_tasks)
time_avail = (self.datetime_limit - datetime.datetime.now()) * max(self._slots, 1)
out_tasks = []
if not self._timeout and not self._converged:
self._pop.advance_population()
for pos in self._pop.pos_gen():
time_pending += self._model_time
if time_pending > time_avail:
self._timeout = True
logger.info("time limit reached")
break
if pos['_model'] >= 0:
new_task = parent_task.copy()
new_task.parent_id = parent_id
new_task.model = pos
new_task.change_id(model=pos['_model'])
child_id = new_task.id
self._pending_tasks[child_id] = new_task
out_tasks.append(new_task)
return out_tasks
def add_result(self, task):
"""
calculate the R factor of the result and add it to the results list of the population.
* save the current population.
* append the result to the result output file.
* update the execution time statistics.
* remove temporary files if requested.
* check whether the population has converged.
@return parent task (CalculationTask) if the optimization has converged, @c None otherwise.
"""
super(ParticleSwarmHandler, self).add_result(task)
self._complete_tasks[task.id] = task
del self._pending_tasks[task.id]
parent_task = self._parent_tasks[task.parent_id]
rfac = 1.0
if task.result_valid:
try:
rfac = self._project.calc_rfactor(task)
except ValueError:
task.result_valid = False
self._invalid_count += 1
logger.warning(BMsg("calculation of model {0} resulted in an undefined R-factor.", task.id.model))
task.model['_rfac'] = rfac
self._pop.add_result(task.model, rfac)
self._pop.save_population(self._project.output_file + ".pop")
if self._outfile:
s = (str(task.model[name]) for name in self._pop.results.dtype.names)
self._outfile.write(" ".join(s))
self._outfile.write("\n")
self._outfile.flush()
self._project.files.update_model_rfac(task.id.model, rfac)
self._project.files.set_model_complete(task.id.model, True)
if task.result_valid:
if self._pop.is_converged() and not self._converged:
logger.info("population converged")
self._converged = True
if task.time > self._model_time:
self._model_time = task.time
else:
if self._invalid_count >= self._invalid_limit:
logger.error("number of invalid calculations (%u) exceeds limit", self._invalid_count)
self._converged = True
# optimization complete?
if (self._timeout or self._converged) and len(self._pending_tasks) == 0:
del self._parent_tasks[parent_task.id]
else:
parent_task = None
self.cleanup_files(keep=self._pop_size)
return parent_task

Some files were not shown because too many files have changed in this diff Show More