public distro 2.1.0

This commit is contained in:
2019-07-19 12:54:54 +02:00
parent acea809e4e
commit fbd2d4fa8c
40 changed files with 2813 additions and 345 deletions

View File

@ -11,7 +11,7 @@ TestCalcInterface is provided for testing the PMSCO code quickly without calling
@author Matthias Muntwiler
@copyright (c) 2015-18 by Paul Scherrer Institut @n
@copyright (c) 2015-19 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
@ -56,11 +56,25 @@ class Calculator(object):
@arg the first element is the name of the main ETPI or ETPAI result file to be further processed.
@arg the second element is a dictionary that lists the names of all created data files with their category.
the dictionary key is the file name,
the value is the file category (cluster, phase, etc.).
the value is the file category (cluster, atomic, etc.).
"""
return None, None
class AtomicCalculator(Calculator):
"""
abstract interface class to the atomic scattering calculation program.
"""
pass
class InternalAtomicCalculator(AtomicCalculator):
"""
dummy atomic scattering class if scattering factors are calculated internally by the multiple scattering calculator.
"""
pass
class TestCalculator(Calculator):
"""
interface class producing random data for testing the MSCO code without calling an external program.

View File

@ -55,7 +55,10 @@ class EdacCalculator(calculator.Calculator):
@param filepath: (str) name and path of the file to be created.
@return dictionary of created files {filename: category}
"""
files = {}
with open(filepath, "w") as f:
f.write("verbose off\n")
f.write("cluster input {0}\n".format(params.cluster_file))
@ -146,9 +149,16 @@ class EdacCalculator(calculator.Calculator):
scatterers = ["scatterer {at} {fi}\n".format(at=at, fi=fi)
for (at, fi) in params.phase_files.items()
if os.path.isfile(fi)]
if scatterers:
rme = ["rmat {fi}\n".format(fi=fi)
for (at, fi) in params.rme_files.items()
if at == params.emitters[0][3] and os.path.isfile(fi)] or \
["rmat inline 1 regular1 {l0} {pv} {pd} {mv} {md}\n".format(l0=params.l_init,
pv=params.rme_plus_value, pd=params.rme_plus_shift,
mv=params.rme_minus_value, md=params.rme_minus_shift)]
if scatterers and rme:
for scat in scatterers:
f.write(scat)
f.write(rme[0])
else:
f.write("muffin-tin\n")
@ -162,16 +172,27 @@ class EdacCalculator(calculator.Calculator):
f.write("orders {0:d} ".format(len(params.orders)))
f.write(" ".join(format(order, "d") for order in params.orders) + "\n")
f.write("emission angle window {0:F}\n".format(params.angular_resolution / 2.0))
# f.write("cluster output l(A) out.clu")
# problems:
# - muffin-tin relabels atoms
# - there can be multiple atom types for the same chemical element
# - we have to compare coordinates to find the mapping between input and output cluster
# f.write("scan scatterer i phase-shifts i.pha")
# f.write("scan scatterer i potential i.pot")
# scattering factor output (see project.Params.phase_output_classes)
if params.phase_output_classes is not None:
fn = "{0}.clu".format(params.output_file)
f.write("cluster output l(A) {fn}\n".format(fn=fn))
files[fn] = "output"
try:
cls = (cl for cl in params.phase_output_classes)
except TypeError:
cls = range(params.phase_output_classes)
for cl in cls:
fn = "{of}.{cl}.scat".format(cl=cl, of=params.output_file)
f.write("scan scatterer {cl} phase-shifts {fn}\n".format(cl=cl, fn=fn))
files[fn] = "output"
f.write("scan pd {0}\n".format(params.output_file))
files[params.output_file] = "output"
f.write("end\n")
return files
def run(self, params, cluster, scan, output_file):
"""
run EDAC with the given parameters and cluster.
@ -205,13 +226,13 @@ class EdacCalculator(calculator.Calculator):
params.cluster_file = clu_filename
params.output_file = out_filename
params.data_file = dat_filename
params.emitters = cluster.get_emitters()
params.emitters = cluster.get_emitters(['x', 'y', 'z', 'c'])
# save parameter files
logger.debug("writing cluster file %s", clu_filename)
cluster.save_to_file(clu_filename, fmt=mc.FMT_EDAC)
logger.debug("writing input file %s", par_filename)
self.write_input_file(params, scan, par_filename)
files = self.write_input_file(params, scan, par_filename)
# run EDAC
logger.info("calling EDAC with input file %s", par_filename)
@ -244,6 +265,9 @@ class EdacCalculator(calculator.Calculator):
logger.debug("save result to file %s", etpi_filename)
md.save_data(etpi_filename, result_etpi)
files = {clu_filename: 'input', par_filename: 'input', dat_filename: 'output',
etpi_filename: 'region'}
files[clu_filename] = 'input'
files[par_filename] = 'input'
files[dat_filename] = 'output'
files[etpi_filename] = 'region'
return etpi_filename, files

View File

View File

@ -0,0 +1,43 @@
SHELL=/bin/sh
# makefile for PHAGEN program and module
#
# the PHAGEN source code is not included in the public distribution.
# please obtain the PHAGEN code from the original author,
# and copy it to this directory before compilation.
#
# see the top-level makefile for additional information.
.SUFFIXES:
.SUFFIXES: .c .cpp .cxx .exe .f .h .i .o .py .pyf .so
.PHONY: all clean phagen
FC?=gfortran
F2PY?=f2py
F2PYOPTS?=
CC?=gcc
CCOPTS?=
SWIG?=swig
SWIGOPTS?=
PYTHON?=python
PYTHONOPTS?=
PYTHONINC?=
PYTHON_CONFIG = ${PYTHON}-config
PYTHON_CFLAGS ?= $(shell ${PYTHON_CONFIG} --cflags)
PYTHON_EXT_SUFFIX ?= $(shell ${PYTHON_CONFIG} --extension-suffix)
all: phagen
phagen: phagen.exe phagen$(EXT_SUFFIX)
phagen.exe: phagen_scf.f msxas3.inc msxasc3.inc
$(FC) $(FCOPTS) -o phagen.exe phagen_scf.f
phagen.pyf: | phagen_scf.f
$(F2PY) -h phagen.pyf -m phagen phagen_scf.f only: libmain
phagen$(EXT_SUFFIX): phagen_scf.f phagen.pyf msxas3.inc msxasc3.inc
$(F2PY) -c $(F2PYOPTS) -m phagen phagen.pyf phagen_scf.f
clean:
rm -f *.so *.o *.exe

View File

@ -0,0 +1,102 @@
--- phagen_scf.orig.f 2019-06-05 16:45:52.977855859 +0200
+++ phagen_scf.f 2019-05-09 16:32:35.790286429 +0200
@@ -174,6 +174,99 @@
1100 format(//,1x,' ** phagen terminated normally ** ',//)
end
+
+c-----------------------------------------------------------------------
+ subroutine libmain(infile,outfile,etcfile)
+c main calculation routine
+c entry point for external callers
+c
+c infile: name of parameter input file
+c
+c outfile: base name of output files
+c output files with endings .list, .clu, .pha, .tl, .rad
+c will be created
+c-----------------------------------------------------------------------
+ implicit real*8 (a-h,o-z)
+c
+ include 'msxas3.inc'
+ include 'msxasc3.inc'
+
+ character*60 infile,outfile,etcfile
+ character*70 listfile,clufile,tlfile,radfile,phafile
+
+c
+c.. constants
+ antoau = 0.52917715d0
+ pi = 3.141592653589793d0
+ ev = 13.6058d0
+ zero = 0.d0
+c.. threshold for linearity
+ thresh = 1.d-4
+c.. fortran io units
+ idat = 5
+ iwr = 6
+ iphas = 30
+ iedl0 = 31
+ iwf = 32
+ iof = 17
+
+ iii=LnBlnk(outfile)+1
+ listfile=outfile
+ listfile(iii:)='.list'
+ clufile=outfile
+ clufile(iii:)='.clu'
+ phafile=outfile
+ phafile(iii:)='.pha'
+ tlfile=outfile
+ tlfile(iii:)='.tl'
+ radfile=outfile
+ radfile(iii:)='.rad'
+
+ open(idat,file=infile,form='formatted',status='old')
+ open(iwr,file=listfile,form='formatted',status='unknown')
+ open(10,file=clufile,form='formatted',status='unknown')
+ open(35,file=tlfile,form='formatted',status='unknown')
+ open(55,file=radfile,form='formatted',status='unknown')
+ open(iphas,file=phafile,form='formatted',status='unknown')
+
+ open(iedl0,form='unformatted',status='scratch')
+ open(iof,form='unformatted',status='scratch')
+ open(unit=21,form='unformatted',status='scratch')
+ open(60,form='formatted',status='scratch')
+ open(50,form='formatted',status='scratch')
+ open(unit=13,form='formatted',status='scratch')
+ open(unit=14,form='formatted',status='scratch')
+ open(unit=11,status='scratch')
+ open(unit=iwf,status='scratch')
+ open(unit=33,status='scratch')
+ open(unit=66,status='scratch')
+
+ call inctrl
+ call intit(iof)
+ call incoor
+ call calphas
+
+ close(idat)
+ close(iwr)
+ close(10)
+ close(35)
+ close(55)
+ close(iphas)
+ close(iedl0)
+ close(iof)
+ close(60)
+ close(50)
+ close(13)
+ close(14)
+ close(11)
+ close(iwf)
+ close(33)
+ close(66)
+ close(21)
+
+ endsubroutine
+
+
subroutine inctrl
implicit real*8 (a-h,o-z)
include 'msxas3.inc'

View File

@ -0,0 +1,153 @@
"""
@package pmsco.calculators.phagen.runner
Natoli/Sebilleau PHAGEN interface
this module runs the PHAGEN program to calculate scattering factors and radial matrix element.
@author Matthias Muntwiler
@copyright (c) 2015-19 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import logging
import os
import shutil
import tempfile
from pmsco.calculators.calculator import AtomicCalculator
from pmsco.calculators.phagen.phagen import libmain
from pmsco.calculators.phagen.translator import Translator
import pmsco.cluster
logger = logging.getLogger(__name__)
class PhagenCalculator(AtomicCalculator):
"""
use the PHAGEN program to calculate scattering factors and radial matrix element.
this produces scatterer, radial matrix element and cluster files for EDAC.
"""
def run(self, params, cluster, scan, output_file):
"""
create the input file, run PHAGEN, and translate the output to EDAC format.
the following files are created in the job work directory:
- scattering factor files in EDAC format.
their names are `output_file + "_{atomclass}.scat"`.
- radial matrix element file in EDAC format.
its name is `output_file + ".rme"`.
- cluster file in PMSCO format.
its name is `output_file + ".clu"`.
the cluster and params objects are updated and linked to the scattering files
so that they can be passed to EDAC without further modification.
the radial matrix element is currently not used.
note that the scattering files are numbered according to the atomic environment and not chemical element.
this means that the updated cluster (cluster object or ".clu" file)
must be used in the scattering calculation.
atomic index is not preserved - atoms in the input and output clusters can only be related by coordinate!
because PHAGEN generates a lot of files with hard-coded names,
the function creates a temporary directory for PHAGEN and deletes it before returning.
@param params: pmsco.project.Params object.
the phase_files attribute is updated with the paths of the scattering files.
@param cluster: pmsco.cluster.Cluster object.
the cluster is updated with the one returned from PHAGEN.
the atom classes are linked to the scattering files.
@param scan: pmsco.project.Scan object.
the scan object is used to determine the kinetic energy range.
@param output_file: base path and name of the output files.
@return (None, dict) where dict is a list of output files with their category.
the category is "atomic" for all output files.
"""
transl = Translator()
transl.params.set_params(params)
transl.params.set_cluster(cluster)
transl.params.set_scan(scan)
phagen_cluster = pmsco.cluster.Cluster()
files = {}
prev_wd = os.getcwd()
try:
with tempfile.TemporaryDirectory() as temp_dir:
os.chdir(temp_dir)
os.mkdir("div")
os.mkdir("div/wf")
os.mkdir("plot")
os.mkdir("data")
# prepare input for phagen
infile = "phagen.in"
outfile = "phagen.out"
try:
transl.write_input(infile)
report_infile = os.path.join(prev_wd, output_file + ".phagen.in")
shutil.copy(infile, report_infile)
files[report_infile] = "input"
except IOError:
logger.warning("error writing phagen input file {fi}.".format(fi=infile))
# call phagen
libmain(infile, outfile)
# collect results
try:
phafile = outfile + ".pha"
transl.parse_phagen_phase(phafile)
report_phafile = os.path.join(prev_wd, output_file + ".phagen.pha")
shutil.copy(phafile, report_phafile)
files[report_phafile] = "output"
except IOError:
logger.error("error loading phagen phase file {fi}".format(fi=phafile))
try:
radfile = outfile + ".rad"
transl.parse_radial_file(radfile)
report_radfile = os.path.join(prev_wd, output_file + ".phagen.rad")
shutil.copy(radfile, report_radfile)
files[report_radfile] = "output"
except IOError:
logger.error("error loading phagen radial file {fi}".format(fi=radfile))
try:
clufile = outfile + ".clu"
phagen_cluster.load_from_file(clufile, pmsco.cluster.FMT_PHAGEN_OUT)
except IOError:
logger.error("error loading phagen cluster file {fi}".format(fi=clufile))
finally:
os.chdir(prev_wd)
# write edac files
scatfile = output_file + "_{}.scat"
scatfiles = transl.write_edac_scattering(scatfile)
params.phase_files = {c: scatfiles[c] for c in scatfiles}
files.update({scatfiles[c]: "atomic" for c in scatfiles})
rmefile = output_file + ".rme"
transl.write_edac_emission(rmefile)
files[rmefile] = "atomic"
cluster.update_atoms(phagen_cluster, {'c'})
clufile = output_file + ".pmsco.clu"
cluster.save_to_file(clufile, pmsco.cluster.FMT_PMSCO)
files[clufile] = "cluster"
return None, files

View File

@ -0,0 +1,411 @@
"""
@package pmsco.calculators.phagen.translator
Natoli/Sebilleau PHAGEN interface
this module provides conversion between input/output files of PHAGEN and EDAC.
@author Matthias Muntwiler
@copyright (c) 2015-19 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from pmsco.compat import open
## rydberg energy in electron volts
ERYDBERG = 13.6056923
def state_to_edge(state):
"""
translate spectroscopic notation to edge notation.
@param state: spectroscopic notation: "1s", "2s", "2p1/2", etc.
@return: edge notation: "k", "l1", "l2", etc.
note: if the j-value is not given, the lower j edge is returned.
"""
jshells = ['s', 'p1/2', 'p3/2', 'd3/2', 'd5/2', 'f5/2', 'f7/2']
lshells = [s[0] for s in jshells]
shell = int(state[0])
try:
subshell = jshells.index(state[1:]) + 1
except ValueError:
subshell = lshells.index(state[1]) + 1
except IndexError:
subshell = 1
edge = "klmnop"[shell-1]
if shell > 1:
edge += str(subshell)
return edge
class TranslationParams(object):
"""
project parameters needed for translation.
energy unit is eV.
"""
def __init__(self):
self.initial_state = "1s"
self.binding_energy = 0.
self.cluster = None
self.kinetic_energies = np.empty(0, dtype=np.float)
@property
def l_init(self):
return "spdf".index(self.initial_state[1])
@property
def edge(self):
return state_to_edge(self.initial_state)
def set_params(self, params):
"""
set the translation parameters.
@param params: a pmsco.project.Params object or
a dictionary containing some or all public fields of this class.
@return: None
"""
try:
self.initial_state = params.initial_state
self.binding_energy = params.binding_energy
except AttributeError:
for key in params:
self.__setattr__(key, params[key])
def set_scan(self, scan):
"""
set the scan parameters.
@param scan: a pmsco.project.Scan object
@return: None
"""
try:
energies = scan.energies
except AttributeError:
try:
energies = scan['e']
except KeyError:
energies = scan
if not isinstance(energies, np.ndarray):
energies = np.array(energies)
self.kinetic_energies = np.resize(self.kinetic_energies, energies.shape)
self.kinetic_energies = energies
def set_cluster(self, cluster):
"""
set the initial cluster.
@param cluster: a pmsco.cluster.Cluster object
@return: None
"""
self.cluster = cluster
class Translator(object):
"""
data conversion to/from phagen input/output files.
usage:
1. set the translation parameters self.params.
2. call write_input_file to create the phagen input files.
3. call phagen on the input file.
4. call parse_phagen_phase.
5. call parse_radial_file.
6. call write_edac_scattering to produce the EDAC scattering matrix files.
7. call write_edac_emission to produce the EDAC emission matrix file.
"""
def __init__(self):
"""
initialize the object instance.
"""
self.params = TranslationParams()
dt = [('e', 'f4'), ('a', 'i4'), ('l', 'i4'), ('t', 'c16')]
self.scattering = np.empty(0, dtype=dt)
dt = [('e', 'f4'), ('dw', 'c16'), ('up', 'c16')]
self.emission = np.empty(0, dtype=dt)
def write_cluster(self, f):
"""
write the cluster section of the PHAGEN input file.
requires a valid pmsco.cluster.Cluster in self.params.cluster.
@param f: file or output stream (an object with a write method)
@return: None
"""
for atom in self.params.cluster.data:
d = {k: atom[k] for k in atom.dtype.names}
f.write("{s} {t} {x} {y} {z}\n".format(**d))
f.write("-1 -1 0. 0. 0.\n")
def write_ionicity(self, f):
"""
write the ionicity section of the PHAGEN input file.
ionicity is read from the 'q' column of the cluster.
all atoms of a chemical element must have the same charge state
because ionicity has to be specified per element.
this function writes the average of all charge states of an element.
@param f: file or output stream (an object with a write method)
@return: None
"""
data = self.params.cluster.data
elements = np.unique(data['t'])
for element in elements:
idx = np.where(data['t'] == element)
charge = np.mean(data['q'][idx])
f.write("{t} {q}\n".format(t=element, q=charge))
f.write("-1\n")
def write_input(self, f):
"""
write the PHAGEN input file.
@param f: file path or output stream (an object with a write method).
@return: None
"""
phagen_params = {}
phagen_params['emin'] = self.params.kinetic_energies.min() / ERYDBERG
phagen_params['emax'] = self.params.kinetic_energies.max() / ERYDBERG
phagen_params['delta'] = (phagen_params['emax'] - phagen_params['emin']) / \
(self.params.kinetic_energies.shape[0] - 1)
if phagen_params['delta'] < 0.0001:
phagen_params['delta'] = 0.1
phagen_params['edge'] = state_to_edge(self.params.initial_state) # possibly not used
phagen_params['edge1'] = 'm4' # auger not supported
phagen_params['edge2'] = 'm4' # auger not supported
phagen_params['cip'] = self.params.binding_energy / ERYDBERG
if phagen_params['cip'] < 0.001:
raise ValueError("binding energy parameter is zero.")
if np.sum(np.abs(self.params.cluster.data['q']) >= 0.001) > 0:
phagen_params['ionzst'] = 'ionic'
else:
phagen_params['ionzst'] = 'neutral'
if hasattr(f, "write"):
f.write("&job\n")
f.write("calctype='xpd',\n")
f.write("coor='angs',\n")
f.write("cip={cip},\n".format(**phagen_params))
f.write("edge='{edge}',\n".format(**phagen_params))
f.write("edge1='{edge1}',\n".format(**phagen_params))
f.write("edge2='{edge1}',\n".format(**phagen_params))
f.write("gamma=0.03,\n")
f.write("lmax_mode=2,\n")
f.write("lmaxt=50,\n")
f.write("emin={emin},\n".format(**phagen_params))
f.write("emax={emax},\n".format(**phagen_params))
f.write("delta={delta},\n".format(**phagen_params))
f.write("potgen='in',\n")
f.write("potype='hedin',\n")
f.write("norman='stdcrm',\n")
f.write("ovlpfac=0.0,\n")
f.write("ionzst='{ionzst}',\n".format(**phagen_params))
f.write("charelx='ex',\n")
f.write("l2h=4\n")
f.write("&end\n")
f.write("comment 1\n")
f.write("comment 2\n")
f.write("\n")
self.write_cluster(f)
self.write_ionicity(f)
else:
with open(f, "w") as fi:
self.write_input(fi)
def parse_phagen_phase(self, f):
"""
parse the phase output file from PHAGEN.
the phase file is written to div/phases.dat.
it contains the following columns:
@arg e energy (Ry)
@arg x1 unknown 1
@arg x2 unknown 2
@arg na atom index (1-based)
@arg nl angular momentum quantum number l
@arg tr real part of the scattering matrix element
@arg ti imaginary part of the scattering matrix element
@arg ph phase shift
the data is translated into the self.scattering array.
@arg e energy (eV)
@arg a atom index (1-based)
@arg l angular momentum quantum number l
@arg t complex scattering matrix element
@param f: file or path (any file-like or path-like object that can be passed to numpy.genfromtxt).
@return: None
"""
dt = [('e', 'f4'), ('x1', 'f4'), ('x2', 'f4'), ('na', 'i4'), ('nl', 'i4'),
('tr', 'f8'), ('ti', 'f8'), ('ph', 'f4')]
data = np.genfromtxt(f, dtype=dt)
self.scattering = np.resize(self.scattering, data.shape)
scat = self.scattering
scat['e'] = data['e'] * ERYDBERG
scat['a'] = data['na']
scat['l'] = data['nl']
scat['t'] = data['tr'] + 1j * data['ti']
def write_edac_scattering(self, filename_format, phases=False):
"""
write scatterer files for EDAC.
produces one file for each atom class in self.scattering.
@param filename_format: file name including a placeholder {} for the atom class.
@param phases: write phase files instead of t-matrix files.
@return: dictionary that maps atom classes to file names
"""
if phases:
write = self.write_edac_phase_file
else:
write = self.write_edac_scattering_file
scat = self.scattering
atoms = np.unique(scat['a'])
files = {}
for atom in atoms:
f = filename_format.format(atom)
sel = scat['a'] == atom
idx = np.where(sel)
atom_scat = scat[idx]
write(f, atom_scat)
files[atom] = f
return files
def write_edac_scattering_file(self, f, scat):
"""
write a scatterer file for EDAC.
@param f: file path or output stream (an object with a write method).
@param scat: a slice of the self.scattering array belonging to the same atom class.
@return: None
"""
if hasattr(f, "write"):
energies = np.unique(scat['e'])
ne = energies.shape[0]
lmax = scat['l'].max()
if ne == 1:
f.write("1 {lmax} regular tl\n".format(lmax=lmax))
else:
f.write("{nk} E(eV) {lmax} regular tl\n".format(nk=ne, lmax=lmax))
for energy in energies:
sel = scat['e'] == energy
idx = np.where(sel)
energy_scat = scat[idx]
if ne > 1:
f.write("{0:.3f} ".format(energy))
for item in energy_scat:
f.write(" {0:.6f} {1:.6f}".format(item['t'].real, item['t'].imag))
for i in range(len(energy_scat), lmax + 1):
f.write(" 0 0")
f.write("\n")
else:
with open(f, "w") as fi:
self.write_edac_scattering_file(fi, scat)
def write_edac_phase_file(self, f, scat):
"""
write a phase file for EDAC.
@param f: file path or output stream (an object with a write method).
@param scat: a slice of the self.scattering array belonging to the same atom class.
@return: None
"""
if hasattr(f, "write"):
energies = np.unique(scat['e'])
ne = energies.shape[0]
lmax = scat['l'].max()
if ne == 1:
f.write("1 {lmax} regular real\n".format(lmax=lmax))
else:
f.write("{nk} E(eV) {lmax} regular real\n".format(nk=ne, lmax=lmax))
for energy in energies:
sel = scat['e'] == energy
idx = np.where(sel)
energy_scat = scat[idx]
if ne > 1:
f.write("{0:.3f} ".format(energy))
for item in energy_scat:
f.write(" {0:.6f}".format(np.angle(item['t'])))
for i in range(len(energy_scat), lmax + 1):
f.write(" 0")
f.write("\n")
else:
with open(f, "w") as fi:
self.write_edac_phase_file(fi, scat)
def parse_radial_file(self, f):
"""
parse the radial matrix element output file from phagen.
@param f: file or path (any file-like or path-like object that can be passed to numpy.genfromtxt).
@return: None
"""
dt = [('ar', 'f8'), ('ai', 'f8'), ('br', 'f8'), ('bi', 'f8')]
data = np.genfromtxt(f, dtype=dt)
self.emission = np.resize(self.emission, data.shape)
emission = self.emission
emission['dw'] = data['ar'] + 1j * data['ai']
emission['up'] = data['br'] + 1j * data['bi']
def write_edac_emission(self, f):
"""
write the radial photoemission matrix element in EDAC format.
requires self.emission, self.params.kinetic_energies and self.params.initial_state.
@param f: file path or output stream (an object with a write method).
@return: None
"""
if hasattr(f, "write"):
l0 = self.params.l_init
energies = self.params.kinetic_energies
emission = self.emission
emission['e'] = energies
ne = energies.shape[0]
if ne == 1:
f.write("1 regular2 {l0}\n".format(l0=l0))
else:
f.write("{nk} E(eV) regular2 {l0}\n".format(nk=ne, l0=l0))
for item in emission:
if ne > 1:
f.write("{0:.3f} ".format(item['e']))
f.write(" {0:.6f} {1:.6f}".format(item['up'].real, item['up'].imag))
f.write(" {0:.6f} {1:.6f}".format(item['dw'].real, item['dw'].imag))
f.write("\n")
else:
with open(f, "w") as of:
self.write_edac_emission(of)