update public distribution

based on internal repository c9a2ac8 2019-01-03 16:04:57 +0100
tagged rev-master-2.0.0
This commit is contained in:
2019-01-31 15:45:02 +01:00
parent bbd16d0f94
commit acea809e4e
92 changed files with 165828 additions and 143181 deletions

View File

@ -1,5 +1,3 @@
#!/usr/bin/env python
"""
@package projects.twoatom
Two-atom demo scattering calculation project
@ -8,30 +6,129 @@ this file is specific to the project and the state of the data analysis,
as it contains particular parameter values.
"""
from __future__ import absolute_import
from __future__ import division
import sys
import os
import math
import numpy as np
import periodictable as pt
from __future__ import print_function
import argparse
import logging
import math
import numpy as np
import os.path
import periodictable as pt
# adjust the system path so that the main PMSCO code is found
base_dir = os.path.dirname(__file__) or '.'
package_dir = os.path.join(base_dir, '../..')
package_dir = os.path.abspath(package_dir)
sys.path.append(package_dir)
import pmsco.pmsco
import pmsco.cluster as mc
import pmsco.project as mp
import pmsco.data as md
from pmsco.helpers import BraceMessage as BMsg
logger = logging.getLogger(__name__)
class TwoatomCluster(mc.ClusterGenerator):
"""
cluster of two atoms.
atom A (top) is set at position (0, 0, 0), atom B (bottom) at (-dx, -dy, -dz)
where dx, dy and dz are calculated from model parameters.
the type of the atoms is set upon construction.
the model parameters are:
@arg @c model['dAB'] : distance between the two atoms in Angstrom.
@arg @c model['th'] : polar angle of the connection line, 0 = on top geometry.
@arg @c model['ph'] : azimuthal angle of the connection line, 0 = polar angle affects X coordinate.
the class is designed to be reusable in various projects.
object attributes refine the atom types and the mapping of project-specific model parameters.
"""
## @var atom_types (dict)
# chemical element numbers of the cluster atoms.
#
# atom 'A' is the top atom, 'B' the bottom one.
# upon construction both atoms are set to oxygen.
# to customize, call @ref set_atom_type.
## @var model_dict (dict)
# mapping of model parameters to cluster parameters
#
# the default model parameters used by the cluster are 'dAB', 'th' and 'ph'.
# if the project uses other parameter names, e.g. 'dCO' instead of 'dAB',
# the project-specific names can be declared here.
# in the example, set model_dict['dAB'] = 'dCO'.
def __init__(self, project):
"""
initialize the cluster generator.
the atoms and model dictionary are given default values.
see @ref set_atom_type and @ref model_dict for customization.
@param project: project instance.
"""
super(TwoatomCluster, self).__init__(project)
self.atom_types = {'A': pt.O.number, 'B': pt.O.number}
self.model_dict = {'dAB': 'dAB', 'th': 'th', 'ph': 'ph'}
def set_atom_type(self, atom, element):
"""
set the type (chemical element) of an atom.
@param atom: atom key, 'A' (top) or 'B' (bottom).
@param element: chemical element number or symbol.
"""
try:
self.atom_types[atom] = int(element)
except ValueError:
self.atom_types[atom] = pt.elements.symbol(element.strip()).number
def count_emitters(self, model, index):
"""
return the number of emitter configurations.
this cluster supports only one configuration.
@param model:
@param index:
@return 1
"""
return 1
def create_cluster(self, model, index):
"""
create a cluster given the model parameters and index.
@param model:
@param index:
@return a pmsco.cluster.Cluster object containing the atomic coordinates.
"""
r = model[self.model_dict['dAB']]
try:
th = math.radians(model[self.model_dict['th']])
except KeyError:
th = 0.
try:
ph = math.radians(model[self.model_dict['ph']])
except KeyError:
ph = 0.
dx = r * math.sin(th) * math.cos(ph)
dy = r * math.sin(th) * math.sin(ph)
dz = r * math.cos(th)
clu = mc.Cluster()
clu.comment = "{0} {1}".format(self.__class__, index)
clu.set_rmax(r * 2.0)
a_top = np.array((0.0, 0.0, 0.0))
a_bot = np.array((-dx, -dy, -dz))
clu.add_atom(self.atom_types['A'], a_top, 1)
clu.add_atom(self.atom_types['B'], a_bot, 0)
return clu
class TwoatomProject(mp.Project):
"""
two-atom calculation project class.
@ -49,31 +146,12 @@ class TwoatomProject(mp.Project):
def __init__(self):
super(TwoatomProject, self).__init__()
self.scan_dict = {}
def create_cluster(self, model, index):
"""
calculate a specific set of atom positions given the optimizable parameters.
the cluster contains a nitrogen in the top layer,
and a nickel atom in the second layer.
The layer distance and the angle can be adjusted by parameters.
@param model: (dict) optimizable parameters
"""
clu = mc.Cluster()
clu.comment = "{0} {1}".format(self.__class__, index)
clu.set_rmax(10.0)
a_N = np.array((0.0, 0.0, 0.0))
rad_pNNi = math.radians(model['pNNi'])
a_Ni1 = np.array((0.0,
-model['dNNi'] * math.sin(rad_pNNi),
-model['dNNi'] * math.cos(rad_pNNi)))
clu.add_atom(pt.N.number, a_N, 1)
clu.add_atom(pt.Ni.number, a_Ni1, 0)
return clu
self.cluster_generator = TwoatomCluster(self)
self.cluster_generator.set_atom_type('A', 'N')
self.cluster_generator.set_atom_type('B', 'Ni')
self.cluster_generator.model_dict['dAB'] = 'dNNi'
self.cluster_generator.model_dict['th'] = 'pNNi'
self.cluster_generator.model_dict['ph'] = 'aNNi'
def create_params(self, model, index):
"""
@ -93,13 +171,13 @@ class TwoatomProject(mp.Project):
params.scattering_level = 5
params.fcut = 15.0
params.cut = 15.0
params.angular_broadening = 0.0
params.angular_resolution = 0.0
params.lattice_constant = 1.0
params.z_surface = model['Zsurf']
params.atom_types = 3
params.atomic_number = [7, 28]
params.phase_file = ["hbn_n.pha", "ni.pha"]
params.msq_displacement = [0.01, 0.01, 0.00]
params.phase_files = {self.cluster_generator.atom_types['A']: "",
self.cluster_generator.atom_types['B']: ""}
params.msq_displacement = {self.cluster_generator.atom_types['A']: 0.01,
self.cluster_generator.atom_types['B']: 0.0}
params.planewave_attenuation = 1.0
params.inner_potential = model['V0']
params.work_function = 3.6
@ -153,6 +231,27 @@ class TwoatomProject(mp.Project):
return dom
def example_intensity(e, t, p, a):
"""
arbitrary intensity pattern for example data
this function can be used to calculate the intensity in example scan files.
the function implements an arbitrary modulation function
@param e: energy
@param t: theta
@param p: phi
@param a: alpha
@return intensity
"""
i = np.random.random() * 1e6 * \
np.cos(np.radians(t)) ** 2 * \
np.cos(np.radians(a)) ** 2 * \
np.cos(np.radians(p)) ** 2 * \
np.sin(e / 1000. * np.pi * 0.1 / np.sqrt(e)) ** 2
return i
def create_project():
"""
create a new TwoatomProject calculation project.
@ -230,20 +329,3 @@ def parse_project_args(_args):
parsed_args = parser.parse_args(_args)
return parsed_args
def main():
args, unknown_args = pmsco.pmsco.parse_cli()
if unknown_args:
project_args = parse_project_args(unknown_args)
else:
project_args = None
project = create_project()
pmsco.pmsco.set_common_args(project, args)
set_project_args(project, project_args)
pmsco.pmsco.run_project(project)
if __name__ == '__main__':
main()
sys.exit(0)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff