public release 2.2.0 - see README.md and CHANGES.md for details

This commit is contained in:
2020-09-04 16:22:42 +02:00
parent fbd2d4fa8c
commit 7c61eb1b41
67 changed files with 2934 additions and 682 deletions

View File

@ -42,7 +42,7 @@ class Calculator(object):
or <code>output_file + '.etpai'</code> depending on scan mode.
all other intermediate files are deleted unless keep_temp_files is True.
@param params: a pmsco.project.Params object with all necessary values except cluster and output files set.
@param params: a pmsco.project.CalculatorParams object with all necessary values except cluster and output files set.
@param cluster: a pmsco.cluster.Cluster(format=FMT_EDAC) object with all atom positions set.

View File

@ -49,7 +49,7 @@ class EdacCalculator(calculator.Calculator):
if alpha is defined, theta is implicitly set to normal emission! (to be generalized)
@param params: a pmsco.project.Params object with all necessary values except cluster and output files set.
@param params: a pmsco.project.CalculatorParams object with all necessary values except cluster and output files set.
@param scan: a pmsco.project.Scan() object describing the experimental scanning scheme.
@ -173,7 +173,7 @@ class EdacCalculator(calculator.Calculator):
f.write(" ".join(format(order, "d") for order in params.orders) + "\n")
f.write("emission angle window {0:F}\n".format(params.angular_resolution / 2.0))
# scattering factor output (see project.Params.phase_output_classes)
# scattering factor output (see project.CalculatorParams.phase_output_classes)
if params.phase_output_classes is not None:
fn = "{0}.clu".format(params.output_file)
f.write("cluster output l(A) {fn}\n".format(fn=fn))
@ -197,7 +197,7 @@ class EdacCalculator(calculator.Calculator):
"""
run EDAC with the given parameters and cluster.
@param params: a pmsco.project.Params object with all necessary values except cluster and output files set.
@param params: a pmsco.project.CalculatorParams object with all necessary values except cluster and output files set.
@param cluster: a pmsco.cluster.Cluster(format=FMT_EDAC) object with all atom positions set.

View File

@ -62,7 +62,7 @@ class MscCalculator(calculator.Calculator):
"""
run the MSC program with the given parameters and cluster.
@param params: a project.Params() object with all necessary values except cluster and output files set.
@param params: a project.CalculatorParams() object with all necessary values except cluster and output files set.
@param cluster: a cluster.Cluster(format=FMT_MSC) object with all atom positions set.

View File

@ -28,7 +28,7 @@ PYTHON_EXT_SUFFIX ?= $(shell ${PYTHON_CONFIG} --extension-suffix)
all: phagen
phagen: phagen.exe phagen$(EXT_SUFFIX)
phagen: phagen.exe phagen$(PYTHON_EXT_SUFFIX)
phagen.exe: phagen_scf.f msxas3.inc msxasc3.inc
$(FC) $(FCOPTS) -o phagen.exe phagen_scf.f
@ -36,7 +36,7 @@ phagen.exe: phagen_scf.f msxas3.inc msxasc3.inc
phagen.pyf: | phagen_scf.f
$(F2PY) -h phagen.pyf -m phagen phagen_scf.f only: libmain
phagen$(EXT_SUFFIX): phagen_scf.f phagen.pyf msxas3.inc msxasc3.inc
phagen$(PYTHON_EXT_SUFFIX): phagen_scf.f phagen.pyf msxas3.inc msxasc3.inc
$(F2PY) -c $(F2PYOPTS) -m phagen phagen.pyf phagen_scf.f
clean:

View File

@ -61,7 +61,7 @@ class PhagenCalculator(AtomicCalculator):
because PHAGEN generates a lot of files with hard-coded names,
the function creates a temporary directory for PHAGEN and deletes it before returning.
@param params: pmsco.project.Params object.
@param params: pmsco.project.CalculatorParams object.
the phase_files attribute is updated with the paths of the scattering files.
@param cluster: pmsco.cluster.Cluster object.
@ -76,6 +76,8 @@ class PhagenCalculator(AtomicCalculator):
@return (None, dict) where dict is a list of output files with their category.
the category is "atomic" for all output files.
"""
assert cluster.get_emitter_count() == 1, "PHAGEN cannot handle more than one emitter at a time"
transl = Translator()
transl.params.set_params(params)
transl.params.set_cluster(cluster)
@ -132,6 +134,14 @@ class PhagenCalculator(AtomicCalculator):
except IOError:
logger.error("error loading phagen cluster file {fi}".format(fi=clufile))
try:
listfile = outfile + ".list"
report_listfile = os.path.join(prev_wd, output_file + ".phagen.list")
shutil.copy(listfile, report_listfile)
files[report_listfile] = "log"
except IOError:
logger.error("error loading phagen list file {fi}".format(fi=listfile))
finally:
os.chdir(prev_wd)

View File

@ -19,6 +19,7 @@ from __future__ import print_function
import numpy as np
from pmsco.cluster import Cluster
from pmsco.compat import open
## rydberg energy in electron volts
@ -72,7 +73,7 @@ class TranslationParams(object):
"""
set the translation parameters.
@param params: a pmsco.project.Params object or
@param params: a pmsco.project.CalculatorParams object or
a dictionary containing some or all public fields of this class.
@return: None
"""
@ -125,6 +126,44 @@ class Translator(object):
6. call write_edac_scattering to produce the EDAC scattering matrix files.
7. call write_edac_emission to produce the EDAC emission matrix file.
"""
## @var params
#
# project parameters needed for translation.
#
# fill the attributes of this object before using any translator methods.
## @var scattering
#
# t-matrix storage
#
# the t-matrix is stored in a flat, one-dimensional numpy structured array consisting of the following fields:
# @arg e (float) energy (eV)
# @arg a (int) atom index (1-based)
# @arg l (int) angular momentum quantum number l
# @arg t (complex) scattering matrix element, t = exp(-i * delta) * sin delta
#
# @note PHAGEN uses the convention t = exp(-i * delta) * sin delta,
# whereas EDAC uses t = exp(i * delta) * sin delta (complex conjugate).
# this object stores the t-matrix according to the PHAGEN convention.
# the conversion to the EDAC convention occurs in write_edac_scattering_file().
## @var emission
#
# radial matrix element storage
#
# the radial matrix elemnts are stored in a flat, one-dimensional numpy structured array
# consisting of the following fields:
# @arg e (float) energy (eV)
# @arg dw (complex) matrix element for the transition to l-1
# @arg up (complex) matrix element for the transition to l+1
## @var cluster
#
# cluster object for PHAGEN
#
# this object is created by translate_cluster().
def __init__(self):
"""
initialize the object instance.
@ -134,18 +173,33 @@ class Translator(object):
self.scattering = np.empty(0, dtype=dt)
dt = [('e', 'f4'), ('dw', 'c16'), ('up', 'c16')]
self.emission = np.empty(0, dtype=dt)
self.cluster = None
def translate_cluster(self):
"""
translate the cluster into a form suitable for PHAGEN.
specifically, move the (first and hopefully only) emitter to the first atom position.
the method copies the cluster from self.params into a new object
and stores it under self.cluster.
@return: None
"""
self.cluster = Cluster()
self.cluster.copy_from(self.params.cluster)
ems = self.cluster.get_emitters(['i'])
self.cluster.move_to_first(idx=ems[0][0]-1)
def write_cluster(self, f):
"""
write the cluster section of the PHAGEN input file.
requires a valid pmsco.cluster.Cluster in self.params.cluster.
@param f: file or output stream (an object with a write method)
@return: None
"""
for atom in self.params.cluster.data:
for atom in self.cluster.data:
d = {k: atom[k] for k in atom.dtype.names}
f.write("{s} {t} {x} {y} {z}\n".format(**d))
f.write("-1 -1 0. 0. 0.\n")
@ -163,7 +217,7 @@ class Translator(object):
@return: None
"""
data = self.params.cluster.data
data = self.cluster.data
elements = np.unique(data['t'])
for element in elements:
idx = np.where(data['t'] == element)
@ -181,29 +235,34 @@ class Translator(object):
@return: None
"""
phagen_params = {}
self.translate_cluster()
phagen_params['absorber'] = 1
phagen_params['emin'] = self.params.kinetic_energies.min() / ERYDBERG
phagen_params['emax'] = self.params.kinetic_energies.max() / ERYDBERG
phagen_params['delta'] = (phagen_params['emax'] - phagen_params['emin']) / \
(self.params.kinetic_energies.shape[0] - 1)
if phagen_params['delta'] < 0.0001:
if self.params.kinetic_energies.shape[0] > 1:
phagen_params['delta'] = (phagen_params['emax'] - phagen_params['emin']) / \
(self.params.kinetic_energies.shape[0] - 1)
else:
phagen_params['delta'] = 0.1
phagen_params['edge'] = state_to_edge(self.params.initial_state) # possibly not used
phagen_params['edge'] = state_to_edge(self.params.initial_state)
phagen_params['edge1'] = 'm4' # auger not supported
phagen_params['edge2'] = 'm4' # auger not supported
phagen_params['cip'] = self.params.binding_energy / ERYDBERG
if phagen_params['cip'] < 0.001:
raise ValueError("binding energy parameter is zero.")
if np.sum(np.abs(self.params.cluster.data['q']) >= 0.001) > 0:
if np.sum(np.abs(self.cluster.data['q'])) > 0.:
phagen_params['ionzst'] = 'ionic'
else:
phagen_params['ionzst'] = 'neutral'
if hasattr(f, "write"):
if hasattr(f, "write") and callable(f.write):
f.write("&job\n")
f.write("calctype='xpd',\n")
f.write("coor='angs',\n")
f.write("cip={cip},\n".format(**phagen_params))
f.write("absorber={absorber},\n".format(**phagen_params))
f.write("edge='{edge}',\n".format(**phagen_params))
f.write("edge1='{edge1}',\n".format(**phagen_params))
f.write("edge2='{edge1}',\n".format(**phagen_params))
@ -254,13 +313,18 @@ class Translator(object):
@arg l angular momentum quantum number l
@arg t complex scattering matrix element
@note PHAGEN uses the convention t = exp(-i * delta) * sin delta,
whereas EDAC uses t = exp(i * delta) * sin delta (complex conjugate).
this class stores the t-matrix according to the PHAGEN convention.
the conversion to the EDAC convention occurs in write_edac_scattering_file().
@param f: file or path (any file-like or path-like object that can be passed to numpy.genfromtxt).
@return: None
"""
dt = [('e', 'f4'), ('x1', 'f4'), ('x2', 'f4'), ('na', 'i4'), ('nl', 'i4'),
('tr', 'f8'), ('ti', 'f8'), ('ph', 'f4')]
data = np.genfromtxt(f, dtype=dt)
data = np.atleast_1d(np.genfromtxt(f, dtype=dt))
self.scattering = np.resize(self.scattering, data.shape)
scat = self.scattering
@ -308,7 +372,7 @@ class Translator(object):
@return: None
"""
if hasattr(f, "write"):
if hasattr(f, "write") and callable(f.write):
energies = np.unique(scat['e'])
ne = energies.shape[0]
lmax = scat['l'].max()
@ -323,7 +387,7 @@ class Translator(object):
if ne > 1:
f.write("{0:.3f} ".format(energy))
for item in energy_scat:
f.write(" {0:.6f} {1:.6f}".format(item['t'].real, item['t'].imag))
f.write(" {0:.6f} {1:.6f}".format(item['t'].real, -item['t'].imag))
for i in range(len(energy_scat), lmax + 1):
f.write(" 0 0")
f.write("\n")
@ -341,7 +405,7 @@ class Translator(object):
@return: None
"""
if hasattr(f, "write"):
if hasattr(f, "write") and callable(f.write):
energies = np.unique(scat['e'])
ne = energies.shape[0]
lmax = scat['l'].max()
@ -356,7 +420,8 @@ class Translator(object):
if ne > 1:
f.write("{0:.3f} ".format(energy))
for item in energy_scat:
f.write(" {0:.6f}".format(np.angle(item['t'])))
pha = np.sign(item['t'].real) * np.arcsin(np.sqrt(np.abs(item['t'].imag)))
f.write(" {0:.6f}".format(pha))
for i in range(len(energy_scat), lmax + 1):
f.write(" 0")
f.write("\n")
@ -373,7 +438,7 @@ class Translator(object):
@return: None
"""
dt = [('ar', 'f8'), ('ai', 'f8'), ('br', 'f8'), ('bi', 'f8')]
data = np.genfromtxt(f, dtype=dt)
data = np.atleast_1d(np.genfromtxt(f, dtype=dt))
self.emission = np.resize(self.emission, data.shape)
emission = self.emission
@ -390,7 +455,7 @@ class Translator(object):
@return: None
"""
if hasattr(f, "write"):
if hasattr(f, "write") and callable(f.write):
l0 = self.params.l_init
energies = self.params.kinetic_energies
emission = self.emission

View File

@ -17,7 +17,7 @@ pip install --user periodictable
@author Matthias Muntwiler
@copyright (c) 2015-19 by Paul Scherrer Institut @n
@copyright (c) 2015-20 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
@ -54,14 +54,14 @@ if sys.version_info[0] >= 3:
else:
_SYMBOL_TYPE = 'S2'
## numpy.array datatype of Cluster.data array
DTYPE_CLUSTER_INTERNAL = [('i', 'i4'), ('t', 'i4'), ('s', _SYMBOL_TYPE), ('x', 'f4'), ('y', 'f4'), ('z', 'f4'),
('e', 'u1'), ('q', 'f4'), ('c', 'i4')]
## file format of internal Cluster.data array
## numpy.array datatype of internal Cluster.data array
DTYPE_CLUSTER_INTERNAL = [('i', 'i4'), ('t', 'i4'), ('s', _SYMBOL_TYPE), ('c', 'i4'),
('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('e', 'u1'), ('q', 'f4')]
## string formatting of native file format
FMT_CLUSTER_INTERNAL = ["%5u", "%2u", "%s", "%5u", "%7.3f", "%7.3f", "%7.3f", "%1u", "%7.3f"]
## field (column) names of internal Cluster.data array
## field (column) names of native file format
FIELDS_CLUSTER_INTERNAL = ['i', 't', 's', 'c', 'x', 'y', 'z', 'e', 'q']
## column names for export
## column names of native file format
NAMES_CLUSTER_INTERNAL = {'i': 'index', 't': 'element', 's': 'symbol', 'c': 'class', 'x': 'x', 'y': 'y', 'z': 'z',
'e': 'emitter', 'q': 'charge'}
@ -178,12 +178,12 @@ class Cluster(object):
# @arg @c 'i' (int) atom index (1-based)
# @arg @c 't' (int) atom type (chemical element number)
# @arg @c 's' (string) chemical element symbol
# @arg @c 'c' (int) scatterer class
# @arg @c 'x' (float32) x coordinate of the atom position
# @arg @c 'y' (float32) t coordinate of the atom position
# @arg @c 'z' (float32) z coordinate of the atom position
# @arg @c 'e' (uint8) 1 = emitter, 0 = regular atom
# @arg @c 'q' (float32) charge/ionicity
# @arg @c 'c' (int) scatterer class
## @var comment (str)
# one-line comment that can be included in some cluster files
@ -227,7 +227,7 @@ class Cluster(object):
"""
self.rmax = r
def build_element(self, index, element_number, x, y, z, emitter, charge=0., scatterer=0):
def build_element(self, index, element_number, x, y, z, emitter, charge=0., scatterer_class=0):
"""
build a tuple in the format of the internal data array.
@ -241,10 +241,10 @@ class Cluster(object):
@param charge: (float) ionicity. default = 0
@param scatterer: (int) scatterer class. default = 0.
@param scatterer_class: (int) scatterer class. default = 0.
"""
symbol = pt.elements[element_number].symbol
element = (index, element_number, symbol, x, y, z, int(emitter), charge, scatterer)
element = (index, element_number, symbol, scatterer_class, x, y, z, int(emitter), charge)
return element
def add_atom(self, atomtype, v_pos, is_emitter=False, charge=0.):
@ -284,17 +284,18 @@ class Cluster(object):
"""
r_great = max(self.rmax, np.linalg.norm(v_pos))
n0 = self.data.shape[0] + 1
n1 = max(int(r_great / np.linalg.norm(v_lat1)) + 1, 3) * 2
n2 = max(int(r_great / np.linalg.norm(v_lat2)) + 1, 3) * 2
nn = 0
buf = np.empty((2 * n1 + 1) * (2 * n2 + 1), dtype=self.dtype)
for i1 in range(-n1, n1 + 1):
for i2 in range(-n2, n2 + 1):
v = v_pos + v_lat1 * i1 + v_lat2 * i2
if np.linalg.norm(v) <= self.rmax:
buf[nn] = self.build_element(nn + n0, atomtype, v[0], v[1], v[2], 0)
nn += 1
buf = np.resize(buf, nn)
n1 = max(int(r_great / np.linalg.norm(v_lat1)) + 1, 4) * 3
n2 = max(int(r_great / np.linalg.norm(v_lat2)) + 1, 4) * 3
idx = np.mgrid[-n1:n1+1, -n2:n2+1]
idx = idx.reshape(idx.shape[0], -1)
lat = np.array([v_lat1, v_lat2])
v = v_pos + np.matmul(idx.T, lat)
rsq = np.sum(np.square(v), axis=-1)
b1 = rsq <= self.rmax**2
sel = b1.nonzero()[0]
buf = np.empty((len(sel)), dtype=self.dtype)
for nn, ii in enumerate(sel):
buf[nn] = self.build_element(nn + n0, atomtype, v[ii, 0], v[ii, 1], v[ii, 2], 0)
self.data = np.append(self.data, buf)
def add_bulk(self, atomtype, v_pos, v_lat1, v_lat2, v_lat3, z_surf=0.0):
@ -322,16 +323,18 @@ class Cluster(object):
n1 = max(int(r_great / np.linalg.norm(v_lat1)) + 1, 4) * 3
n2 = max(int(r_great / np.linalg.norm(v_lat2)) + 1, 4) * 3
n3 = max(int(r_great / np.linalg.norm(v_lat3)) + 1, 4) * 3
nn = 0
buf = np.empty((2 * n1 + 1) * (2 * n2 + 1) * (n3 + 1), dtype=self.dtype)
for i1 in range(-n1, n1 + 1):
for i2 in range(-n2, n2 + 1):
for i3 in range(-n3, n3 + 1):
v = v_pos + v_lat1 * i1 + v_lat2 * i2 + v_lat3 * i3
if np.linalg.norm(v) <= self.rmax and v[2] <= z_surf:
buf[nn] = self.build_element(nn + n0, atomtype, v[0], v[1], v[2], 0)
nn += 1
buf = np.resize(buf, nn)
idx = np.mgrid[-n1:n1+1, -n2:n2+1, -n3:n3+1]
idx = idx.reshape(idx.shape[0], -1)
lat = np.array([v_lat1, v_lat2, v_lat3])
v = v_pos + np.matmul(idx.T, lat)
rsq = np.sum(np.square(v), axis=-1)
b1 = rsq <= self.rmax**2
b2 = v[:, 2] <= z_surf
ba = np.all([b1, b2], axis=0)
sel = ba.nonzero()[0]
buf = np.empty((len(sel)), dtype=self.dtype)
for nn, ii in enumerate(sel):
buf[nn] = self.build_element(nn + n0, atomtype, v[ii, 0], v[ii, 1], v[ii, 2], 0)
self.data = np.append(self.data, buf)
def add_cluster(self, cluster, check_rmax=False, check_unique=False, tol=0.001):
@ -426,15 +429,47 @@ class Cluster(object):
idx = np.where(b_all)
self.data['z'][idx] += z_shift
return idx
return idx[0]
def translate(self, vector, element=0):
def get_center(self, element=None):
"""
get the geometric center of the cluster or a class of atoms.
@param element: chemical element number (int) or symbol (str)
if atoms of a specific element should be considered only.
by default (element == None or 0 or ""),
all atoms are included in the calculation.
@return: (numpy.ndarray) 3-dimensional vector.
"""
if element:
try:
sel = self.data['t'] == int(element)
except ValueError:
sel = self.data['s'] == element
else:
sel = np.ones_like(self.data['t'])
idx = np.where(sel)
center = np.zeros(3)
center[0] = np.mean(self.data['x'][idx])
center[1] = np.mean(self.data['y'][idx])
center[2] = np.mean(self.data['z'][idx])
return center
def translate(self, vector, element=None):
"""
translate the cluster or all atoms of a specified element.
translation shifts each selected atom by the given vector.
@param vector: (numpy.ndarray) 3-dimensional displacement vector.
@param element: (int) chemical element number if atoms of a specific element should be affected.
by default (element = 0), all atoms are moved.
@param element: chemical element number (int) or symbol (str)
if atoms of a specific element should be affected only.
by default (element == None or 0 or ""),
all atoms are translated.
@return: (numpy.ndarray) indices of the atoms that have been shifted.
"""
if element:
@ -449,7 +484,7 @@ class Cluster(object):
self.data['y'][idx] += vector[1]
self.data['z'][idx] += vector[2]
return idx
return idx[0]
def matrix_transform(self, matrix):
"""
@ -461,47 +496,49 @@ class Cluster(object):
@return: None
"""
for atom in self.data:
v = np.matrix([atom['x'], atom['y'], atom['z']])
w = matrix * v.transpose()
atom['x'] = float(w[0])
atom['y'] = float(w[1])
atom['z'] = float(w[2])
pos = np.empty((3, self.data.shape[0]), np.float32)
pos[0, :] = self.data['x']
pos[1, :] = self.data['y']
pos[2, :] = self.data['z']
pos = np.matmul(matrix, pos)
self.data['x'] = pos[0, :]
self.data['y'] = pos[1, :]
self.data['z'] = pos[2, :]
def rotate_x(self, angle):
"""
rotate cluster about the surface normal axis
rotate cluster about the x-axis
@param angle (float) in degrees
"""
angle = math.radians(angle)
s = math.sin(angle)
c = math.cos(angle)
matrix = np.matrix([[1, 0, 0], [0, c, -s], [0, s, c]])
matrix = np.array([[1, 0, 0], [0, c, -s], [0, s, c]])
self.matrix_transform(matrix)
def rotate_y(self, angle):
"""
rotate cluster about the surface normal axis
rotate cluster about the y-axis
@param angle (float) in degrees
"""
angle = math.radians(angle)
s = math.sin(angle)
c = math.cos(angle)
matrix = np.matrix([[c, 0, s], [0, 1, 0], [-s, 0, c]])
matrix = np.array([[c, 0, s], [0, 1, 0], [-s, 0, c]])
self.matrix_transform(matrix)
def rotate_z(self, angle):
"""
rotate cluster about the surface normal axis
rotate cluster about the z-axis (surface normal)
@param angle (float) in degrees
"""
angle = math.radians(angle)
s = math.sin(angle)
c = math.cos(angle)
matrix = np.matrix([[c, -s, 0], [s, c, 0], [0, 0, 1]])
matrix = np.array([[c, -s, 0], [s, c, 0], [0, 0, 1]])
self.matrix_transform(matrix)
def find_positions(self, pos, tol=0.001):
@ -794,6 +831,53 @@ class Cluster(object):
idx = self.data['e'] != 0
return np.sum(idx)
def calc_scattering_angles(self, index_emitter, radius):
"""
calculate forward-scattering angles of the cluster atoms
for each atom within a given radius of the emitter,
the connecting vector between emitter and scatterer is calculated
and returned in cartesian and polar coordinates.
@param index_emitter: atom index of the emitter.
all angles are calculated with respect to this atom.
@param radius: include only atoms within this radius of the emitter.
@note back-scattering angles can be obtained by inverting the angle on the unit sphere:
th' = 180 - th, ph' = -ph.
@return dictionary with results.
each item is a numpy.ndarray of shape (N, M)
where N is the number of scatterers
and M = 3 for dict['xyz'] and M = 1 otherwise.
@arg dict['index']: atom index into the cluster array.
@arg dict['xyz']: connecting vector between the emitter and the atom in cartesian coordinates.
@arg dict['dist']: distance between the emitter and the atom.
@arg dict['polar']: polar angle with respect to the z-axis.
@arg dict['azimuth']: azimuthal angle with respect to the x-axis.
"""
# position of emitter atom
em = self.data[index_emitter]
em = np.asarray((em['x'], em['y'], em['z']))
# relative positions of scattering atoms
xyz = self.get_positions()
xyz -= em
dist = np.linalg.norm(xyz, axis=1)
sel1 = dist <= radius
sel2 = dist > 0.
idx = np.where(np.all([sel1, sel2], axis=0))
xyz = xyz[idx]
dist = dist[idx]
# angles
v1 = np.asarray([0, 0, 1])
v2 = np.transpose(xyz / dist.reshape((dist.shape[0], 1)))
th = np.degrees(np.arccos(np.clip(np.dot(v1, v2), -1., 1.)))
ph = np.degrees(np.arctan2(v2[1], v2[0]))
return {'index': idx[0], 'xyz': xyz, 'dist': dist, 'polar': th, 'azimuth': ph}
def load_from_file(self, f, fmt=FMT_DEFAULT):
"""
load a cluster from a file created by the scattering program.
@ -848,7 +932,7 @@ class Cluster(object):
else:
raise ValueError("unknown file format {}".format(fmt))
data = np.genfromtxt(f, dtype=dtype, skip_header=sh)
data = np.atleast_1d(np.genfromtxt(f, dtype=dtype, skip_header=sh))
if fmt == FMT_PHAGEN_IN and data['t'][-1] < 1:
data = data[:-1]
@ -920,7 +1004,7 @@ class Cluster(object):
or left at the default value 0 in which case PMSCO sets the correct values.
if the scattering factors are loaded from existing files,
the atom class corresponds to the key of the pmsco.project.Params.phase_files dictionary.
the atom class corresponds to the key of the pmsco.project.CalculatorParams.phase_files dictionary.
in this case the meaning of the class value is up to the project,
and the class must be set either by the cluster generator
or the project's after_atomic_scattering hook.
@ -956,7 +1040,7 @@ class Cluster(object):
the other cluster must contain the same atoms (same coordinates) in a possibly random order.
the atoms of this and the other cluster are matched up by sorting them by coordinate.
atomic scattering calculators often change the order of atoms in a cluster based on symmetry,
atomic scattering calculators often change the order of atoms in a cluster based on domain,
and return atom classes versus atomic coordinates.
this method allows to import the atom classes into the original cluster.
@ -1071,9 +1155,9 @@ class ClusterGenerator(object):
def count_emitters(self, model, index):
"""
return the number of emitter configurations for a particular model, scan and symmetry.
return the number of emitter configurations for a particular model, scan and domain.
the number of emitter configurations may depend on the model parameters, scan index and symmetry index.
the number of emitter configurations may depend on the model parameters, scan index and domain index.
by default, the method returns 1, which means that there is only one emitter configuration.
emitter configurations are mainly a way to distribute the calculations to multiple processes
@ -1100,9 +1184,9 @@ class ClusterGenerator(object):
@param index (named tuple CalcID) calculation index.
the method should consider only the following attributes:
@arg @c scan scan index (index into Project.scans)
@arg @c sym symmetry index (index into Project.symmetries)
@arg @c emit emitter index must be -1.
@arg scan scan index (index into Project.scans)
@arg domain domain index (index into Project.domains)
@arg emit emitter index must be -1.
@return number of emitter configurations.
this implementation returns the default value of 1.
@ -1114,23 +1198,23 @@ class ClusterGenerator(object):
create a Cluster object given the model parameters and calculation index.
the generated cluster will typically depend on the model parameters.
depending on the project, it may also depend on the scan index, symmetry index and emitter index.
depending on the project, it may also depend on the scan index, domain index and emitter index.
the scan index can be used to generate a different cluster for different scan geometry,
e.g., if some atoms can be excluded due to a longer mean free path.
if this is not the case for the specific project, the scan index can be ignored.
the symmetry index may select a particular domain that has a different atomic arrangement.
in this case, depending on the value of index.sym, the function must generate a cluster corresponding
to the particular domain/symmetry.
the method can ignore the symmetry index if the project defines only one symmetry,
or if the symmetry does not correspond to a different atomic structure.
the domain index may select a particular domain that has a different atomic arrangement.
in this case, depending on the value of index.domain, the function must generate a cluster corresponding
to the particular domain.
the method can ignore the domain index if the project defines only one domain,
or if the domain does not correspond to a different atomic structure.
the emitter index selects a particular emitter configuration.
depending on the value of the emitter index, the method must react differently:
1. if the value is -1, return the full cluster and mark all inequivalent emitter atoms.
emitters which are reproduced by a symmetry expansion in combine_emitters() should not be marked.
emitters which are reproduced by a domain expansion in combine_emitters() should not be marked.
the full diffraction scan will be calculated in one calculation.
2. if the value is greater or equal to zero, generate the cluster with the emitter configuration
@ -1152,9 +1236,9 @@ class ClusterGenerator(object):
@param index (named tuple CalcID) calculation index.
the method should consider only the following attributes:
@arg @c scan scan index (index into Project.scans)
@arg @c sym symmetry index (index into Project.symmetries)
@arg @c emit emitter index.
@arg scan scan index (index into Project.scans)
@arg domain domain index (index into Project.domains)
@arg emit emitter index.
if -1, generate the full cluster and mark all emitters.
if greater or equal to zero, the value is a zero-based index of the emitter configuration.

View File

@ -117,7 +117,7 @@ def load_plt(filename, int_column=-1):
data[i]['p'] = phi
data[i]['i'] = selected intensity column
"""
data = np.genfromtxt(filename, usecols=(0, 2, 3, int_column), dtype=DTYPE_ETPI)
data = np.atleast_1d(np.genfromtxt(filename, usecols=(0, 2, 3, int_column), dtype=DTYPE_ETPI))
sort_data(data)
return data
@ -189,7 +189,7 @@ def load_edac_pd(filename, int_column=-1, energy=0.0, theta=0.0, phi=0.0, fixed_
logger.warning("unexpected EDAC output file column name")
break
cols = tuple(cols)
raw = np.genfromtxt(filename, usecols=cols, dtype=dtype, skip_header=2)
raw = np.atleast_1d(np.genfromtxt(filename, usecols=cols, dtype=dtype, skip_header=2))
if fixed_cluster:
etpi = np.empty(raw.shape, dtype=DTYPE_ETPAI)

View File

@ -29,6 +29,7 @@ import sqlite3
import fasteners
import numpy as np
import pmsco.dispatch as dispatch
from pmsco.helpers import BraceMessage as BMsg
logger = logging.getLogger(__name__)
@ -60,7 +61,7 @@ DB_SPECIAL_PARAMS = {"job_id": "_db_job",
"result_id": "_db_result",
"model": "_model",
"scan": "_scan",
"sym": "_sym",
"domain": "_domain",
"emit": "_emit",
"region": "_region",
"gen": "_gen",
@ -77,7 +78,7 @@ DB_SPECIAL_NUMPY_TYPES = {"job_id": "i8",
"result_id": "i8",
"model": "i8",
"scan": "i8",
"sym": "i8",
"domain": "i8",
"emit": "i8",
"region": "i8",
"gen": "i8",
@ -259,7 +260,7 @@ class ResultsDatabase(object):
sql_select_model = """select id, job_id, model, gen, particle
from Models where id=:id"""
sql_select_model_model = """select id, job_id, model, gen, particle
from Models where model=:model"""
from Models where job_id=:job_id and model=:model"""
sql_select_model_job = """select id, job_id, model, gen, particle
from Models where job_id=:job_id"""
sql_delete_model = """delete from Models where model_id = :model_id"""
@ -268,7 +269,7 @@ class ResultsDatabase(object):
`id` INTEGER PRIMARY KEY,
`model_id` INTEGER,
`scan` integer,
`sym` integer,
`domain` integer,
`emit` integer,
`region` integer,
`rfac` REAL,
@ -276,22 +277,29 @@ class ResultsDatabase(object):
)"""
sql_index_results_tasks = """create index if not exists
`index_results_tasks` ON `Results`
(`model_id`, `scan`,`sym`,`emit`,`region`)"""
(`model_id`, `scan`,`domain`,`emit`,`region`)"""
sql_drop_index_results_tasks = "drop index if exists index_results_tasks"
sql_index_results_models = """create index if not exists
`index_results_models` ON `Results`
(`id`, `model_id`)"""
sql_drop_index_results_models = "drop index if exists index_results_models"
sql_insert_result = """insert into Results(model_id, scan, sym, emit, region, rfac)
values (:model_id, :scan, :sym, :emit, :region, :rfac)"""
sql_insert_result = """insert into Results(model_id, scan, domain, emit, region, rfac)
values (:model_id, :scan, :domain, :emit, :region, :rfac)"""
sql_update_result = """update Results
set rfac=:rfac
where id=:result_id"""
sql_select_result = """select id, model_id, scan, sym, emit, region, rfac
sql_select_result = """select id, model_id, scan, domain, emit, region, rfac
from Results where id=:id"""
sql_select_result_index = """select id, model_id, scan, sym, emit, region, rfac
from Results where model_id=:model_id and scan=:scan and sym=:sym and emit=:emit and region=:region"""
sql_select_result_index = """select id, model_id, scan, domain, emit, region, rfac
from Results where model_id=:model_id and scan=:scan and domain=:domain and emit=:emit and region=:region"""
sql_delete_result = """delete from Results where id = :result_id"""
sql_view_results_models = """create view if not exists `ViewResultsModels` as
select project_id, job_id, model_id, Results.id as result_id, rfac, model, scan, domain, emit, region
from Models
join Results on Results.model_id = Models.id
join Jobs on Jobs.id = Models.job_id
order by project_id, job_id, rfac, model, scan, domain, emit, region
"""
sql_create_params = """CREATE TABLE IF NOT EXISTS `Params` (
`id` INTEGER PRIMARY KEY,
@ -422,16 +430,6 @@ class ResultsDatabase(object):
# @var _lock_filename (str).
# path and name of the lock file or an empty string if no locking is used.
# @var _lock (obj).
# context manager which provides a locking mechanism for the database.
#
# this is either a fasteners.InterprocessLock or _DummyLock.
# InterprocessLock allows to serialize access to the database by means of a lock file.
# _DummyLock is used with an in-memory database which does not require locking.
#
# @note InterprocessLock is re-usable but not re-entrant.
# Be careful not to nest contexts when calling other methods from within this class!
def __init__(self):
self._conn = None
self._db_filename = ""
@ -440,7 +438,6 @@ class ResultsDatabase(object):
self._model_params = {}
self._tags = {}
self._lock_filename = ""
self._lock = None
def connect(self, db_filename, lock_filename=""):
"""
@ -469,14 +466,10 @@ class ResultsDatabase(object):
self._lock_filename = ""
else:
self._lock_filename = db_filename + ".lock"
if self._lock_filename:
self._lock = fasteners.InterProcessLock(self._lock_filename)
else:
self._lock = _DummyLock()
self._conn = sqlite3.connect(self._db_filename)
self._conn.row_factory = sqlite3.Row
with self._lock:
with self.lock():
self._conn.execute("PRAGMA foreign_keys = 1")
self._conn.commit()
c = self._conn.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='Models'")
@ -496,7 +489,6 @@ class ResultsDatabase(object):
if self._conn is not None:
self._conn.close()
self._conn = None
self._lock = None
def check_connection(self):
"""
@ -511,9 +503,25 @@ class ResultsDatabase(object):
@raise AssertionError if the connection is not valid.
"""
assert self._lock is not None, "database not connected"
assert self._conn is not None, "database not connected"
def lock(self):
"""
create a file-lock context manager for the database.
this is either a fasteners.InterProcessLock object on self._lock_filename
or a _DummyLock object if the database is in memory.
InterprocessLock allows to serialize access to the database by means of a lock file.
this is necessary if multiple pmsco instances require access to the same database.
_DummyLock is used with an in-memory database which does not require locking.
the lock object can be used as context-manager in a with statement.
"""
if self._lock_filename:
return fasteners.InterProcessLock(self._lock_filename)
else:
return _DummyLock()
def create_schema(self):
"""
create the database schema (tables and indices).
@ -525,7 +533,7 @@ class ResultsDatabase(object):
@return: None
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
self._conn.execute(self.sql_create_projects)
self._conn.execute(self.sql_create_jobs)
self._conn.execute(self.sql_create_models)
@ -539,19 +547,23 @@ class ResultsDatabase(object):
self._conn.execute(self.sql_index_paramvalues)
self._conn.execute(self.sql_index_jobtags)
self._conn.execute(self.sql_index_models)
self._conn.execute(self.sql_view_results_models)
def register_project(self, name, code):
"""
register a project with the database.
@param name: name of the project. alphanumeric characters only. no spaces or special characters!
if a project of the same name exists in the database,
the id of the existing entry is returned.
the existing entry is not modified.
@param code: name of the pmsco module that defines the project.
@return: id value of the project in the database.
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
c = self._conn.execute(self.sql_select_project_name, {'name': name})
v = c.fetchone()
if v:
@ -574,7 +586,7 @@ class ResultsDatabase(object):
@return None
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
param_dict = {'project_id': project_id}
self._conn.execute(self.sql_delete_project, param_dict)
@ -585,7 +597,11 @@ class ResultsDatabase(object):
@param project_id: identifier of the project. see register_project().
@param name: name of the job. up to the user, must be unique within a project.
@param name: name of the job. alphanumeric characters only. no spaces or special characters!
must be unique within a project.
if a job of the same name and same project exists in the database,
the id of the existing entry is returned.
the existing entry is not modified.
@param mode: optimization mode string (should be same as command line argument).
@ -600,7 +616,7 @@ class ResultsDatabase(object):
@return: id value of the job in the database.
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
c = self._conn.execute(self.sql_select_job_name, {'project_id': project_id, 'name': name})
v = c.fetchone()
if v:
@ -630,7 +646,7 @@ class ResultsDatabase(object):
@return None
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
param_dict = {'job_id': job_id}
self._conn.execute(self.sql_delete_job, param_dict)
@ -669,7 +685,7 @@ class ResultsDatabase(object):
@return: id value of the job in the database
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
job_id = self._query_job_name(job_name, project_id=project_id)
return job_id
@ -686,7 +702,7 @@ class ResultsDatabase(object):
@return: id value of the parameter in the database.
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
return self._register_param(key)
def _register_param(self, key):
@ -721,7 +737,7 @@ class ResultsDatabase(object):
@return: None
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
for key in model_params:
if key[0] != '_':
self._register_param(key)
@ -762,7 +778,7 @@ class ResultsDatabase(object):
params = {}
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
c = self._conn.execute(sql, args)
for row in c:
params[row['key']] = row['param_id']
@ -790,7 +806,7 @@ class ResultsDatabase(object):
@return: id value of the tag in the database.
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
return self._register_tag(key)
def _register_tag(self, key):
@ -825,7 +841,7 @@ class ResultsDatabase(object):
@return: None
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
for key in tags:
self._register_tag(key)
@ -865,7 +881,7 @@ class ResultsDatabase(object):
tags = {}
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
c = self._conn.execute(sql, args)
for row in c:
tags[row['key']] = row['tag_id']
@ -889,7 +905,7 @@ class ResultsDatabase(object):
tags = {}
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
c = self._conn.execute(sql, args)
for row in c:
tags[row['key']] = row['value']
@ -912,7 +928,7 @@ class ResultsDatabase(object):
@return: None
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
for key, value in tags.items():
try:
tag_id = self._tags[key]
@ -965,7 +981,7 @@ class ResultsDatabase(object):
params = self.query_project_params(project_id, job_id)
params.update(self._model_params)
param_names = sorted(params, key=lambda s: s.lower())
with self._lock, self._conn:
with self.lock(), self._conn:
if job_id:
view_name = "ViewModelsJob{0}".format(job_id)
else:
@ -1009,7 +1025,7 @@ class ResultsDatabase(object):
@raise KeyError if a parameter hasn't been registered.
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
# insert model record
model_dict = {'job_id': self.job_id, 'gen': None, 'particle': None}
model_dict.update(special_params(model_params))
@ -1036,7 +1052,7 @@ class ResultsDatabase(object):
@return None
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
param_dict = {'model_id': model_id}
self._conn.execute(self.sql_delete_model, param_dict)
@ -1048,7 +1064,7 @@ class ResultsDatabase(object):
@return: dict
"""
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
c = self._conn.execute(self.sql_select_paramvalue_model, {'model_id': model_id})
d = {}
for row in c:
@ -1084,7 +1100,7 @@ class ResultsDatabase(object):
@param filter: list of filter expressions.
each expression is a relational expression of the form <code>field operator value</code>,
where field is a unique field name of the Projects, Jobs, Models or Results table, e.g.
`job_id`, `model`, `rfac`, `scan`, `sym`, etc.
`job_id`, `model`, `rfac`, `scan`, `domain`, etc.
operator is one of the relational operators in SQL syntax.
value is a numeric or string constant, the latter including single or double quotes.
if the list is empty, no filtering is applied.
@ -1102,7 +1118,7 @@ class ResultsDatabase(object):
"""
self.check_connection()
filter += [" project_id = {0} ".format(self.project_id)]
with self._lock, self._conn:
with self.lock(), self._conn:
sql = "select distinct Models.id as model_id, model "
sql += "from Models "
sql += "join Results on Models.id = Results.model_id "
@ -1147,7 +1163,7 @@ class ResultsDatabase(object):
@param filter: list of filter expressions.
each expression is a relational expression of the form <code>field operator value</code>,
where field is a unique field name of the Projects, Jobs, Models or Results table, e.g.
`job_id`, `model`, `rfac`, `scan`, `sym`, etc.
`job_id`, `model`, `rfac`, `scan`, `domain`, etc.
operator is one of the relational operators in SQL syntax.
value is a numeric or string constant, the latter including single or double quotes.
if the list is empty, no filtering is applied.
@ -1161,9 +1177,9 @@ class ResultsDatabase(object):
"""
self.check_connection()
filter += [" project_id = {0} ".format(self.project_id)]
with self._lock, self._conn:
with self.lock(), self._conn:
sql = "select Results.id as result_id, model_id, job_id, "
sql += "model, scan, sym, emit, region, rfac, gen, particle "
sql += "model, scan, domain, emit, region, rfac, gen, particle "
sql += "from Models "
sql += "join Results on Models.id = Results.model_id "
sql += "join Jobs on Models.job_id = Jobs.id "
@ -1172,7 +1188,7 @@ class ResultsDatabase(object):
sql += "where "
sql += " and ".join(filter)
sql += " "
sql += "order by rfac, job_id, model, scan, sym, emit, region "
sql += "order by rfac, job_id, model, scan, domain, emit, region "
if limit:
sql += "limit {0} ".format(limit)
c = self._conn.execute(sql)
@ -1240,7 +1256,7 @@ class ResultsDatabase(object):
level_name = dispatch.CALC_LEVELS[4]
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
sql = "select Models.id from Models "
sql += "join Results on Models.id = Results.model_id "
sql += "join Jobs on Models.job_id = Jobs.id "
@ -1250,7 +1266,7 @@ class ResultsDatabase(object):
sql += "and Models.job_id in ({0}) ".format(",".join(map(str, job_ids)))
sql += "group by Models.job_id "
sql += "having min(rfac) "
sql += "order by rfac, job_id, model, scan, sym, emit, region "
sql += "order by rfac, job_id, model, scan, domain, emit, region "
c = self._conn.execute(sql)
models = [row['id'] for row in c]
@ -1261,7 +1277,7 @@ class ResultsDatabase(object):
query the task index used in a calculation job.
this query neglects the model index
and returns the unique tuples (-1, scan, sym, emit, region).
and returns the unique tuples (-1, scan, domain, emit, region).
@param job_id: (int) id of the associated Jobs entry.
if 0, self.job_id is used.
@ -1273,8 +1289,8 @@ class ResultsDatabase(object):
job_id = self.job_id
self.check_connection()
with self._lock, self._conn:
sql = "select scan, sym, emit, region "
with self.lock(), self._conn:
sql = "select scan, domain, emit, region "
sql += "from Models "
sql += "join Results on Models.id = Results.model_id "
sql += "join Jobs on Models.job_id = Jobs.id "
@ -1323,7 +1339,7 @@ class ResultsDatabase(object):
sql += "join Results on Models.id = Results.model_id "
sql += "where Models.job_id = :job_id "
sql += "and scan = :scan "
sql += "and sym = :sym "
sql += "and domain = :domain "
sql += "and emit = :emit "
sql += "and region = :region "
sql += "order by rfac "
@ -1334,7 +1350,7 @@ class ResultsDatabase(object):
tasks = self.query_tasks(job_id)
models = set([])
with self._lock, self._conn:
with self.lock(), self._conn:
for task in tasks:
if task.numeric_level <= level:
d = task._asdict()
@ -1360,7 +1376,7 @@ class ResultsDatabase(object):
@param index: (pmsco.dispatch.CalcID or dict)
calculation index.
in case of dict, the keys must be the attribute names of CalcID prefixed with an underscore, i.e.,
'_model', '_scan', '_sym', '_emit', '_region'.
'_model', '_scan', '_domain', '_emit', '_region'.
extra values in the dictionary are ignored.
undefined indices must be -1.
@ -1377,11 +1393,13 @@ class ResultsDatabase(object):
job_id = self.job_id
self.check_connection()
with self._lock, self._conn:
with self.lock(), self._conn:
model_id = self._insert_result_model(job_id, index, result)
result_id = self._insert_result_data(model_id, index, result)
self._insert_result_paramvalues(model_id, result)
logger.debug(BMsg("database insert result: job {}, model {}, result {}", job_id, model_id, result_id))
return result_id
def _insert_result_model(self, job_id, index, result):
@ -1402,7 +1420,7 @@ class ResultsDatabase(object):
@param index: (pmsco.dispatch.CalcID or dict)
calculation index.
in case of dict, the keys must be the attribute names of CalcID prefixed with an underscore, i.e.,
'_model', '_scan', '_sym', '_emit', '_region'.
'_model', '_scan', '_domain', '_emit', '_region'.
extra values in the dictionary are ignored.
undefined indices must be -1.
@ -1448,7 +1466,7 @@ class ResultsDatabase(object):
@param index: (pmsco.dispatch.CalcID or dict)
calculation index.
in case of dict, the keys must be the attribute names of CalcID prefixed with an underscore, i.e.,
'_model', '_scan', '_sym', '_emit', '_region'.
'_model', '_scan', '_domain', '_emit', '_region'.
extra values in the dictionary are ignored.
undefined indices must be -1.
@param result: (dict) dictionary containing the parameter values and the '_rfac' result.
@ -1525,7 +1543,7 @@ class ResultsDatabase(object):
if not job_id:
job_id = self.job_id
data = np.genfromtxt(filename, names=True)
data = np.atleast_1d(np.genfromtxt(filename, names=True))
self.register_params(data.dtype.names)
try:
unique_models, unique_index = np.unique(data['_model'], True)
@ -1552,7 +1570,7 @@ class ResultsDatabase(object):
model = unique_models[0]
result_entry = {'model_id': model_ids[model],
'scan': -1,
'sym': -1,
'domain': -1,
'emit': -1,
'region': -1,
'rfac': None}
@ -1571,7 +1589,7 @@ class ResultsDatabase(object):
'value': value}
yield param_entry
with self._lock, self._conn:
with self.lock(), self._conn:
c = self._conn.execute(self.sql_select_model_job, {'job_id': job_id})
v = c.fetchone()
if v:

View File

@ -21,6 +21,8 @@ import signal
import collections
import copy
import logging
import math
from attrdict import AttrDict
from mpi4py import MPI
from pmsco.helpers import BraceMessage as BMsg
@ -53,7 +55,7 @@ TAG_ERROR_ABORTING = 4
## levels of calculation tasks
#
CALC_LEVELS = ('model', 'scan', 'sym', 'emit', 'region')
CALC_LEVELS = ('model', 'scan', 'domain', 'emit', 'region')
## intermediate sub-class of CalcID
#
@ -159,13 +161,13 @@ class CalculationTask(object):
@arg @c id.model structure number or iteration (handled by the mode module)
@arg @c id.scan scan number (handled by the project)
@arg @c id.sym symmetry number (handled by the project)
@arg @c id.domain domain number (handled by the project)
@arg @c id.emit emitter number (handled by the project)
@arg @c id.region region number (handled by the region handler)
specified members must be greater or equal to zero.
-1 is the wildcard which is used in parent tasks,
where, e.g., no specific symmetry is chosen.
where, e.g., no specific domain is chosen.
the root task has the ID (-1, -1, -1, -1, -1).
"""
@ -311,7 +313,8 @@ class CalculationTask(object):
format input or output file name including calculation index.
@param overrides optional keyword arguments override object fields.
the following keywords are handled: @c root, @c model, @c scan, @c sym, @c emit, @c region, @c ext.
the following keywords are handled:
`root`, `model`, `scan`, `domain`, `emit`, `region`, `ext`.
@return a string consisting of the concatenation of the base name, the ID, and the extension.
"""
@ -322,7 +325,7 @@ class CalculationTask(object):
for key in overrides.keys():
parts[key] = overrides[key]
filename = "{root}_{model}_{scan}_{sym}_{emit}_{region}{ext}".format(**parts)
filename = "{root}_{model}_{scan}_{domain}_{emit}_{region}{ext}".format(**parts)
return filename
def copy(self):
@ -462,7 +465,7 @@ class CachedCalculationMethod(object):
def wrapped_func(inst, model, index):
# note: _replace returns a new instance of the namedtuple
index = index._replace(emit=-1, region=-1)
cache_index = (id(inst), index.model, index.scan, index.sym)
cache_index = (id(inst), index.model, index.scan, index.domain)
try:
result = self._cache[cache_index]
except KeyError:
@ -565,6 +568,8 @@ class MscoProcess(object):
"""
clean up after all calculations.
this method must be called after run() has finished.
@return: None
"""
pass
@ -693,7 +698,7 @@ class MscoProcess(object):
parameters generation is delegated to the project's create_params method.
@param task: CalculationTask with all attributes set for the calculation.
@return: pmsco.project.Params object for the calculator.
@return: pmsco.project.CalculatorParams object for the calculator.
"""
par = self._project.create_params(task.model, task.id)
@ -711,7 +716,7 @@ class MscoProcess(object):
@param task: CalculationTask with all attributes set for the calculation.
@param par: pmsco.project.Params object for the calculator.
@param par: pmsco.project.CalculatorParams object for the calculator.
its phase_files attribute is updated with the created scattering files.
the radial matrix elements are not changed (but may be in a future version).
@ -740,7 +745,7 @@ class MscoProcess(object):
calculate the multiple scattering intensity.
@param task: CalculationTask with all attributes set for the calculation.
@param par: pmsco.project.Params object for the calculator.
@param par: pmsco.project.CalculatorParams object for the calculator.
@param clu: pmsco.cluster.Cluster object for the calculator.
@return: None
"""
@ -820,7 +825,7 @@ class MscoMaster(MscoProcess):
## @var task_handlers
# (AttrDict) dictionary of task handler objects
#
# the keys are the task levels 'model', 'scan', 'sym', 'emit' and 'region'.
# the keys are the task levels 'model', 'scan', 'domain', 'emit' and 'region'.
# the values are handlers.TaskHandler objects.
# the objects can be accessed in attribute or dictionary notation.
@ -854,12 +859,18 @@ class MscoMaster(MscoProcess):
the method notifies the handlers of the number of available slave processes (slots).
some of the tasks handlers adjust their branching according to the number of slots.
this mechanism may be used to balance the load between the task levels.
however, the current implementation is very coarse in this respect.
it advertises all slots to the model handler but a reduced number to the remaining handlers
depending on the operation mode.
the region handler receives a maximum of 4 slots except in single calculation mode.
in single calculation mode, all slots can be used by all handlers.
this mechanism may be used to adjust the priorities of the task levels,
i.e., whether one slot handles all calculations of one model
so that all models of a generation finish around the same time,
or whether a model is finished completely before the next one is calculated
so that a result is returned as soon as possible.
the current algorithm tries to pass as many slots as available
down to the lowest level (region) in order to minimize wall time.
the lowest level is restricted to the minimum number of splits
only if the intermediate levels create a lot of branches,
in which case splitting scans would not offer a performance benefit.
"""
super(MscoMaster, self).setup(project)
@ -869,7 +880,7 @@ class MscoMaster(MscoProcess):
self._root_task = CalculationTask()
self._root_task.file_root = project.output_file
self._root_task.model = project.create_domain().start
self._root_task.model = project.create_model_space().start
for level in self.task_levels:
self.task_handlers[level] = project.handler_classes[level]()
@ -877,14 +888,22 @@ class MscoMaster(MscoProcess):
self.task_handlers.model.datetime_limit = self.datetime_limit
slaves_adj = max(self._slaves, 1)
self.task_handlers.model.setup(project, slaves_adj)
if project.mode != "single":
slaves_adj = max(slaves_adj / 2, 1)
self.task_handlers.scan.setup(project, slaves_adj)
self.task_handlers.sym.setup(project, slaves_adj)
self.task_handlers.emit.setup(project, slaves_adj)
if project.mode != "single":
n_models = self.task_handlers.model.setup(project, slaves_adj)
if n_models > 1:
slaves_adj = max(int(slaves_adj / 2), 1)
n_scans = self.task_handlers.scan.setup(project, slaves_adj)
if n_scans > 1:
slaves_adj = max(int(slaves_adj / 2), 1)
n_doms = self.task_handlers.domain.setup(project, slaves_adj)
if n_doms > 1:
slaves_adj = max(int(slaves_adj / 2), 1)
n_emits = self.task_handlers.emit.setup(project, slaves_adj)
if n_emits > 1:
slaves_adj = max(int(slaves_adj / 2), 1)
n_extra = max(n_scans, n_doms, n_emits)
if n_extra > slaves_adj * 2:
slaves_adj = min(slaves_adj, 4)
logger.debug(BMsg("{regions} slots available for region handler", regions=slaves_adj))
self.task_handlers.region.setup(project, slaves_adj)
project.setup(self.task_handlers)
@ -911,6 +930,7 @@ class MscoMaster(MscoProcess):
else:
self._dispatch_tasks()
self._receive_result()
self._cleanup_tasks()
self._check_finish()
logger.debug("master exiting main loop")
@ -918,12 +938,32 @@ class MscoMaster(MscoProcess):
self._save_report()
def cleanup(self):
"""
clean up after all calculations.
this method must be called after run() has finished.
in the master process, this calls cleanup() of each task handler and of the project.
@return: None
"""
logger.debug("master entering cleanup")
for level in reversed(self.task_levels):
self.task_handlers[level].cleanup()
self._project.cleanup()
super(MscoMaster, self).cleanup()
def _cleanup_tasks(self):
"""
periodic clean-up in the main loop.
once per iteration of the main loop, this method cleans up unnecessary files.
this is done by the project's cleanup_files() method.
@return: None
"""
self._project.cleanup_files()
def _dispatch_results(self):
"""
pass results through the post-processing modules.
@ -1122,9 +1162,9 @@ class MscoMaster(MscoProcess):
scan_tasks = self.task_handlers.scan.create_tasks(task)
for scan_task in scan_tasks:
sym_tasks = self.task_handlers.sym.create_tasks(scan_task)
for sym_task in sym_tasks:
emitter_tasks = self.task_handlers.emit.create_tasks(sym_task)
dom_tasks = self.task_handlers.domain.create_tasks(scan_task)
for dom_task in dom_tasks:
emitter_tasks = self.task_handlers.emit.create_tasks(dom_task)
for emitter_task in emitter_tasks:
region_tasks = self.task_handlers.region.create_tasks(emitter_task)
for region_task in region_tasks:

View File

@ -0,0 +1,41 @@
"""
@package pmsco.elements
extended properties of the elements
this package extends the element table of the `periodictable` package
(https://periodictable.readthedocs.io/en/latest/index.html)
by additional attributes like the electron binding energies.
the package requires the periodictable package (https://pypi.python.org/pypi/periodictable).
@author Matthias Muntwiler
@copyright (c) 2020 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
import periodictable.core
def _load_binding_energy():
"""
delayed loading of the binding energy table.
"""
from . import bindingenergy
bindingenergy.init(periodictable.core.default_table())
def _load_photoionization():
"""
delayed loading of the binding energy table.
"""
from . import photoionization
photoionization.init(periodictable.core.default_table())
periodictable.core.delayed_load(['binding_energy'], _load_binding_energy)
periodictable.core.delayed_load(['photoionization'], _load_photoionization)

View File

@ -0,0 +1,93 @@
{ "1": {"1s": 13.6},
"2": {"1s": 24.6},
"3": {"1s": 54.7},
"4": {"1s": 111.5},
"5": {"1s": 188.0},
"6": {"1s": 284.2},
"7": {"1s": 399.6, "2s": 27.0},
"8": {"1s": 543.1, "2s": 41.6},
"9": {"1s": 696.7},
"10": {"1s": 870.2, "2s": 48.5, "2p1/2": 21.7, "2p3/2": 21.6},
"11": {"1s": 1070.8, "2s": 63.5, "2p1/2": 30.65, "2p3/2": 30.81},
"12": {"1s": 1303.0, "2s": 88.7, "2p1/2": 49.78, "2p3/2": 49.5},
"13": {"1s": 1559.6, "2s": 117.8, "2p1/2": 72.95, "2p3/2": 72.55},
"14": {"1s": 1839.0, "2s": 149.7, "2p1/2": 99.82, "2p3/2": 99.42},
"15": {"1s": 2145.5, "2s": 189.0, "2p1/2": 136.0, "2p3/2": 135.0},
"16": {"1s": 2472.0, "2s": 230.9, "2p1/2": 163.6, "2p3/2": 162.5},
"17": {"1s": 2822.4, "2s": 270.0, "2p1/2": 202.0, "2p3/2": 200.0},
"18": {"1s": 3205.9, "2s": 326.3, "2p1/2": 250.6, "2p3/2": 248.4, "3s": 29.3, "3p1/2": 15.9, "3p3/2": 15.7},
"19": {"1s": 3608.4, "2s": 378.6, "2p1/2": 297.3, "2p3/2": 294.6, "3s": 34.8, "3p1/2": 18.3, "3p3/2": 18.3},
"20": {"1s": 4038.5, "2s": 438.4, "2p1/2": 349.7, "2p3/2": 346.2, "3s": 44.3, "3p1/2": 25.4, "3p3/2": 25.4},
"21": {"1s": 4492.0, "2s": 498.0, "2p1/2": 403.6, "2p3/2": 398.7, "3s": 51.1, "3p1/2": 28.3, "3p3/2": 28.3},
"22": {"1s": 4966.0, "2s": 560.9, "2p1/2": 460.2, "2p3/2": 453.8, "3s": 58.7, "3p1/2": 32.6, "3p3/2": 32.6},
"23": {"1s": 5465.0, "2s": 626.7, "2p1/2": 519.8, "2p3/2": 512.1, "3s": 66.3, "3p1/2": 37.2, "3p3/2": 37.2},
"24": {"1s": 5989.0, "2s": 696.0, "2p1/2": 583.8, "2p3/2": 574.1, "3s": 74.1, "3p1/2": 42.2, "3p3/2": 42.2},
"25": {"1s": 6539.0, "2s": 769.1, "2p1/2": 649.9, "2p3/2": 638.7, "3s": 82.3, "3p1/2": 47.2, "3p3/2": 47.2},
"26": {"1s": 7112.0, "2s": 844.6, "2p1/2": 719.9, "2p3/2": 706.8, "3s": 91.3, "3p1/2": 52.7, "3p3/2": 52.7},
"27": {"1s": 7709.0, "2s": 925.1, "2p1/2": 793.2, "2p3/2": 778.1, "3s": 101.0, "3p1/2": 58.9, "3p3/2": 59.9},
"28": {"1s": 8333.0, "2s": 1008.6, "2p1/2": 870.0, "2p3/2": 852.7, "3s": 110.8, "3p1/2": 68.0, "3p3/2": 66.2},
"29": {"1s": 8979.0, "2s": 1096.7, "2p1/2": 952.3, "2p3/2": 932.7, "3s": 122.5, "3p1/2": 77.3, "3p3/2": 75.1},
"30": {"1s": 9659.0, "2s": 1196.2, "2p1/2": 1044.9, "2p3/2": 1021.8, "3s": 139.8, "3p1/2": 91.4, "3p3/2": 88.6, "3d3/2": 10.2, "3d5/2": 10.1},
"31": {"1s": 10367.0, "2s": 1299.0, "2p1/2": 1143.2, "2p3/2": 1116.4, "3s": 159.5, "3p1/2": 103.5, "3p3/2": 100.0, "3d3/2": 18.7, "3d5/2": 18.7},
"32": {"1s": 11103.0, "2s": 1414.6, "2p1/2": 1248.1, "2p3/2": 1217.0, "3s": 180.1, "3p1/2": 124.9, "3p3/2": 120.8, "3d3/2": 29.8, "3d5/2": 29.2},
"33": {"1s": 11867.0, "2s": 1527.0, "2p1/2": 1359.1, "2p3/2": 1323.6, "3s": 204.7, "3p1/2": 146.2, "3p3/2": 141.2, "3d3/2": 41.7, "3d5/2": 41.7},
"34": {"1s": 12658.0, "2s": 1652.0, "2p1/2": 1474.3, "2p3/2": 1433.9, "3s": 229.6, "3p1/2": 166.5, "3p3/2": 160.7, "3d3/2": 55.5, "3d5/2": 54.6},
"35": {"1s": 13474.0, "2s": 1782.0, "2p1/2": 1596.0, "2p3/2": 1550.0, "3s": 257.0, "3p1/2": 189.0, "3p3/2": 182.0, "3d3/2": 70.0, "3d5/2": 69.0},
"36": {"1s": 14326.0, "2s": 1921.0, "2p1/2": 1730.9, "2p3/2": 1678.4, "3s": 292.8, "3p1/2": 222.2, "3p3/2": 214.4, "3d3/2": 95.0, "3d5/2": 93.8, "4s": 27.5, "4p1/2": 14.1, "4p3/2": 14.1},
"37": {"1s": 15200.0, "2s": 2065.0, "2p1/2": 1864.0, "2p3/2": 1804.0, "3s": 326.7, "3p1/2": 248.7, "3p3/2": 239.1, "3d3/2": 113.0, "3d5/2": 112.0, "4s": 30.5, "4p1/2": 16.3, "4p3/2": 15.3},
"38": {"1s": 16105.0, "2s": 2216.0, "2p1/2": 2007.0, "2p3/2": 1940.0, "3s": 358.7, "3p1/2": 280.3, "3p3/2": 270.0, "3d3/2": 136.0, "3d5/2": 134.2, "4s": 38.9, "4p1/2": 21.3, "4p3/2": 20.1},
"39": {"1s": 17038.0, "2s": 2373.0, "2p1/2": 2156.0, "2p3/2": 2080.0, "3s": 392.0, "3p1/2": 310.6, "3p3/2": 298.8, "3d3/2": 157.7, "3d5/2": 155.8, "4s": 43.8, "4p1/2": 24.4, "4p3/2": 23.1},
"40": {"1s": 17998.0, "2s": 2532.0, "2p1/2": 2307.0, "2p3/2": 2223.0, "3s": 430.3, "3p1/2": 343.5, "3p3/2": 329.8, "3d3/2": 181.1, "3d5/2": 178.8, "4s": 50.6, "4p1/2": 28.5, "4p3/2": 27.1},
"41": {"1s": 18986.0, "2s": 2698.0, "2p1/2": 2465.0, "2p3/2": 2371.0, "3s": 466.6, "3p1/2": 376.1, "3p3/2": 360.6, "3d3/2": 205.0, "3d5/2": 202.3, "4s": 56.4, "4p1/2": 32.6, "4p3/2": 30.8},
"42": {"1s": 20000.0, "2s": 2866.0, "2p1/2": 2625.0, "2p3/2": 2520.0, "3s": 506.3, "3p1/2": 411.6, "3p3/2": 394.0, "3d3/2": 231.1, "3d5/2": 227.9, "4s": 63.2, "4p1/2": 37.6, "4p3/2": 35.5},
"43": {"1s": 21044.0, "2s": 3043.0, "2p1/2": 2793.0, "2p3/2": 2677.0, "3s": 544.0, "3p1/2": 447.6, "3p3/2": 417.7, "3d3/2": 257.6, "3d5/2": 253.9, "4s": 69.5, "4p1/2": 42.3, "4p3/2": 39.9},
"44": {"1s": 22117.0, "2s": 3224.0, "2p1/2": 2967.0, "2p3/2": 2838.0, "3s": 586.1, "3p1/2": 483.5, "3p3/2": 461.4, "3d3/2": 284.2, "3d5/2": 280.0, "4s": 75.0, "4p1/2": 46.3, "4p3/2": 43.2},
"45": {"1s": 23220.0, "2s": 3412.0, "2p1/2": 3146.0, "2p3/2": 3004.0, "3s": 628.1, "3p1/2": 521.3, "3p3/2": 496.5, "3d3/2": 311.9, "3d5/2": 307.2, "4s": 81.4, "4p1/2": 50.5, "4p3/2": 47.3},
"46": {"1s": 24350.0, "2s": 3604.0, "2p1/2": 3330.0, "2p3/2": 3173.0, "3s": 671.6, "3p1/2": 559.9, "3p3/2": 532.3, "3d3/2": 340.5, "3d5/2": 335.2, "4s": 87.1, "4p1/2": 55.7, "4p3/2": 50.9},
"47": {"1s": 25514.0, "2s": 3806.0, "2p1/2": 3524.0, "2p3/2": 3351.0, "3s": 719.0, "3p1/2": 603.8, "3p3/2": 573.0, "3d3/2": 374.0, "3d5/2": 368.3, "4s": 97.0, "4p1/2": 63.7, "4p3/2": 58.3},
"48": {"1s": 26711.0, "2s": 4018.0, "2p1/2": 3727.0, "2p3/2": 3538.0, "3s": 772.0, "3p1/2": 652.6, "3p3/2": 618.4, "3d3/2": 411.9, "3d5/2": 405.2, "4s": 109.8, "4p1/2": 63.9, "4p3/2": 63.9, "4d3/2": 11.7, "4d5/2": 10.7},
"49": {"1s": 27940.0, "2s": 4238.0, "2p1/2": 3938.0, "2p3/2": 3730.0, "3s": 827.2, "3p1/2": 703.2, "3p3/2": 665.3, "3d3/2": 451.4, "3d5/2": 443.9, "4s": 122.9, "4p1/2": 73.5, "4p3/2": 73.5, "4d3/2": 17.7, "4d5/2": 16.9},
"50": {"1s": 29200.0, "2s": 4465.0, "2p1/2": 4156.0, "2p3/2": 3929.0, "3s": 884.7, "3p1/2": 756.5, "3p3/2": 714.6, "3d3/2": 493.2, "3d5/2": 484.9, "4s": 137.1, "4p1/2": 83.6, "4p3/2": 83.6, "4d3/2": 24.9, "4d5/2": 23.9},
"51": {"1s": 30491.0, "2s": 4698.0, "2p1/2": 4380.0, "2p3/2": 4132.0, "3s": 946.0, "3p1/2": 812.7, "3p3/2": 766.4, "3d3/2": 537.5, "3d5/2": 528.2, "4s": 153.2, "4p1/2": 95.6, "4p3/2": 95.6, "4d3/2": 33.3, "4d5/2": 32.1},
"52": {"1s": 31814.0, "2s": 4939.0, "2p1/2": 4612.0, "2p3/2": 4341.0, "3s": 1006.0, "3p1/2": 870.8, "3p3/2": 820.0, "3d3/2": 583.4, "3d5/2": 573.0, "4s": 169.4, "4p1/2": 103.3, "4p3/2": 103.3, "4d3/2": 41.9, "4d5/2": 40.4},
"53": {"1s": 33169.0, "2s": 5188.0, "2p1/2": 4852.0, "2p3/2": 4557.0, "3s": 1072.0, "3p1/2": 931.0, "3p3/2": 875.0, "3d3/2": 630.8, "3d5/2": 619.3, "4s": 186.0, "4p1/2": 123.0, "4p3/2": 123.0, "4d3/2": 50.6, "4d5/2": 48.9},
"54": {"1s": 34561.0, "2s": 5453.0, "2p1/2": 5107.0, "2p3/2": 4786.0, "3s": 1148.7, "3p1/2": 1002.1, "3p3/2": 940.6, "3d3/2": 689.0, "3d5/2": 676.4, "4s": 213.2, "4p1/2": 146.7, "4p3/2": 145.5, "4d3/2": 69.5, "4d5/2": 67.5, "5s": 23.3, "5p1/2": 13.4, "5p3/2": 12.1},
"55": {"1s": 35985.0, "2s": 5714.0, "2p1/2": 5359.0, "2p3/2": 5012.0, "3s": 1211.0, "3p1/2": 1071.0, "3p3/2": 1003.0, "3d3/2": 740.5, "3d5/2": 726.6, "4s": 232.3, "4p1/2": 172.4, "4p3/2": 161.3, "4d3/2": 79.8, "4d5/2": 77.5, "5s": 22.7, "5p1/2": 14.2, "5p3/2": 12.1},
"56": {"1s": 37441.0, "2s": 5989.0, "2p1/2": 5624.0, "2p3/2": 5247.0, "3s": 1293.0, "3p1/2": 1137.0, "3p3/2": 1063.0, "3d3/2": 795.7, "3d5/2": 780.5, "4s": 253.5, "4p1/2": 192.0, "4p3/2": 178.6, "4d3/2": 92.6, "4d5/2": 89.9, "5s": 30.3, "5p1/2": 17.0, "5p3/2": 14.8},
"57": {"1s": 38925.0, "2s": 6266.0, "2p1/2": 5891.0, "2p3/2": 5483.0, "3s": 1362.0, "3p1/2": 1209.0, "3p3/2": 1128.0, "3d3/2": 853.0, "3d5/2": 836.0, "4s": 274.7, "4p1/2": 205.8, "4p3/2": 196.0, "4d3/2": 105.3, "4d5/2": 102.5, "5s": 34.3, "5p1/2": 19.3, "5p3/2": 16.8},
"58": {"1s": 40443.0, "2s": 6549.0, "2p1/2": 6164.0, "2p3/2": 5723.0, "3s": 1436.0, "3p1/2": 1274.0, "3p3/2": 1187.0, "3d3/2": 902.4, "3d5/2": 883.8, "4s": 291.0, "4p1/2": 223.2, "4p3/2": 206.5, "4d3/2": 109.0, "4f5/2": 0.1, "4f7/2": 0.1, "5s": 37.8, "5p1/2": 19.8, "5p3/2": 17.0},
"59": {"1s": 41991.0, "2s": 6835.0, "2p1/2": 6440.0, "2p3/2": 5964.0, "3s": 1511.0, "3p1/2": 1337.0, "3p3/2": 1242.0, "3d3/2": 948.3, "3d5/2": 928.8, "4s": 304.5, "4p1/2": 236.3, "4p3/2": 217.6, "4d3/2": 115.1, "4d5/2": 115.1, "4f5/2": 2.0, "4f7/2": 2.0, "5s": 37.4, "5p1/2": 22.3, "5p3/2": 22.3},
"60": {"1s": 43569.0, "2s": 7126.0, "2p1/2": 6722.0, "2p3/2": 6208.0, "3s": 1575.0, "3p1/2": 1403.0, "3p3/2": 1297.0, "3d3/2": 1003.3, "3d5/2": 980.4, "4s": 319.2, "4p1/2": 243.3, "4p3/2": 224.6, "4d3/2": 120.5, "4d5/2": 120.5, "4f5/2": 1.5, "4f7/2": 1.5, "5s": 37.5, "5p1/2": 21.1, "5p3/2": 21.1},
"61": {"1s": 45184.0, "2s": 7428.0, "2p1/2": 7013.0, "2p3/2": 6459.0, "3p1/2": 1471.0, "3p3/2": 1357.0, "3d3/2": 1052.0, "3d5/2": 1027.0, "4p1/2": 242.0, "4p3/2": 242.0, "4d3/2": 120.0, "4d5/2": 120.0},
"62": {"1s": 46834.0, "2s": 7737.0, "2p1/2": 7312.0, "2p3/2": 6716.0, "3s": 1723.0, "3p1/2": 1541.0, "3p3/2": 1420.0, "3d3/2": 1110.9, "3d5/2": 1083.4, "4s": 347.2, "4p1/2": 265.6, "4p3/2": 247.4, "4d3/2": 129.0, "4d5/2": 129.0, "4f5/2": 5.2, "4f7/2": 5.2, "5s": 37.4, "5p1/2": 21.3, "5p3/2": 21.3},
"63": {"1s": 48519.0, "2s": 8052.0, "2p1/2": 7617.0, "2p3/2": 6977.0, "3s": 1800.0, "3p1/2": 1614.0, "3p3/2": 1481.0, "3d3/2": 1158.6, "3d5/2": 1127.5, "4s": 360.0, "4p1/2": 284.0, "4p3/2": 257.0, "4d3/2": 133.0, "4d5/2": 127.7, "4f5/2": 0.0, "4f7/2": 0.0, "5s": 32.0, "5p1/2": 22.0, "5p3/2": 22.0},
"64": {"1s": 50239.0, "2s": 8376.0, "2p1/2": 7930.0, "2p3/2": 7243.0, "3s": 1881.0, "3p1/2": 1688.0, "3p3/2": 1544.0, "3d3/2": 1221.9, "3d5/2": 1189.6, "4s": 378.6, "4p1/2": 286.0, "4p3/2": 271.0, "4d5/2": 142.6, "4f5/2": 8.6, "4f7/2": 8.6, "5s": 36.0, "5p1/2": 28.0, "5p3/2": 21.0},
"65": {"1s": 51996.0, "2s": 8708.0, "2p1/2": 8252.0, "2p3/2": 7514.0, "3s": 1968.0, "3p1/2": 1768.0, "3p3/2": 1611.0, "3d3/2": 1276.9, "3d5/2": 1241.1, "4s": 396.0, "4p1/2": 322.4, "4p3/2": 284.1, "4d3/2": 150.5, "4d5/2": 150.5, "4f5/2": 7.7, "4f7/2": 2.4, "5s": 45.6, "5p1/2": 28.7, "5p3/2": 22.6},
"66": {"1s": 53789.0, "2s": 9046.0, "2p1/2": 8581.0, "2p3/2": 7790.0, "3s": 2047.0, "3p1/2": 1842.0, "3p3/2": 1676.0, "3d3/2": 1333.0, "3d5/2": 1292.6, "4s": 414.2, "4p1/2": 333.5, "4p3/2": 293.2, "4d3/2": 153.6, "4d5/2": 153.6, "4f5/2": 8.0, "4f7/2": 4.3, "5s": 49.9, "5p1/2": 26.3, "5p3/2": 26.3},
"67": {"1s": 55618.0, "2s": 9394.0, "2p1/2": 8918.0, "2p3/2": 8071.0, "3s": 2128.0, "3p1/2": 1923.0, "3p3/2": 1741.0, "3d3/2": 1392.0, "3d5/2": 1351.0, "4s": 432.4, "4p1/2": 343.5, "4p3/2": 308.2, "4d3/2": 160.0, "4d5/2": 160.0, "4f5/2": 8.6, "4f7/2": 5.2, "5s": 49.3, "5p1/2": 30.8, "5p3/2": 24.1},
"68": {"1s": 57486.0, "2s": 9751.0, "2p1/2": 9264.0, "2p3/2": 8358.0, "3s": 2207.0, "3p1/2": 2006.0, "3p3/2": 1812.0, "3d3/2": 1453.0, "3d5/2": 1409.0, "4s": 449.8, "4p1/2": 366.2, "4p3/2": 320.2, "4d3/2": 167.6, "4d5/2": 167.6, "4f7/2": 4.7, "5s": 50.6, "5p1/2": 31.4, "5p3/2": 24.7},
"69": {"1s": 59390.0, "2s": 10116.0, "2p1/2": 9617.0, "2p3/2": 8648.0, "3s": 2307.0, "3p1/2": 2090.0, "3p3/2": 1885.0, "3d3/2": 1515.0, "3d5/2": 1468.0, "4s": 470.9, "4p1/2": 385.9, "4p3/2": 332.6, "4d3/2": 175.5, "4d5/2": 175.5, "4f7/2": 4.6, "5s": 54.7, "5p1/2": 31.8, "5p3/2": 25.0},
"70": {"1s": 61332.0, "2s": 10486.0, "2p1/2": 9978.0, "2p3/2": 8944.0, "3s": 2398.0, "3p1/2": 2173.0, "3p3/2": 1950.0, "3d3/2": 1576.0, "3d5/2": 1528.0, "4s": 480.5, "4p1/2": 388.7, "4p3/2": 339.7, "4d3/2": 191.2, "4d5/2": 182.4, "4f5/2": 2.5, "4f7/2": 1.3, "5s": 52.0, "5p1/2": 30.3, "5p3/2": 24.1},
"71": {"1s": 63314.0, "2s": 10870.0, "2p1/2": 10349.0, "2p3/2": 9244.0, "3s": 2491.0, "3p1/2": 2264.0, "3p3/2": 2024.0, "3d3/2": 1639.0, "3d5/2": 1589.0, "4s": 506.8, "4p1/2": 412.4, "4p3/2": 359.2, "4d3/2": 206.1, "4d5/2": 196.3, "4f5/2": 8.9, "4f7/2": 7.5, "5s": 57.3, "5p1/2": 33.6, "5p3/2": 26.7},
"72": {"1s": 65351.0, "2s": 11271.0, "2p1/2": 10739.0, "2p3/2": 9561.0, "3s": 2601.0, "3p1/2": 2365.0, "3p3/2": 2108.0, "3d3/2": 1716.0, "3d5/2": 1662.0, "4s": 538.0, "4p1/2": 438.2, "4p3/2": 380.7, "4d3/2": 220.0, "4d5/2": 211.5, "4f5/2": 15.9, "4f7/2": 14.2, "5s": 64.2, "5p1/2": 38.0, "5p3/2": 29.9},
"73": {"1s": 67416.0, "2s": 11682.0, "2p1/2": 11136.0, "2p3/2": 9881.0, "3s": 2708.0, "3p1/2": 2469.0, "3p3/2": 2194.0, "3d3/2": 1793.0, "3d5/2": 1735.0, "4s": 563.4, "4p1/2": 463.4, "4p3/2": 400.9, "4d3/2": 237.9, "4d5/2": 226.4, "4f5/2": 23.5, "4f7/2": 21.6, "5s": 69.7, "5p1/2": 42.2, "5p3/2": 32.7},
"74": {"1s": 69525.0, "2s": 12100.0, "2p1/2": 11544.0, "2p3/2": 10207.0, "3s": 2820.0, "3p1/2": 2575.0, "3p3/2": 2281.0, "3d3/2": 1872.0, "3d5/2": 1809.0, "4s": 594.1, "4p1/2": 490.4, "4p3/2": 423.6, "4d3/2": 255.9, "4d5/2": 243.5, "4f5/2": 33.6, "4f7/2": 31.4, "5s": 75.6, "5p1/2": 45.3, "5p3/2": 36.8},
"75": {"1s": 71676.0, "2s": 12527.0, "2p1/2": 11959.0, "2p3/2": 10535.0, "3s": 2932.0, "3p1/2": 2682.0, "3p3/2": 2367.0, "3d3/2": 1949.0, "3d5/2": 1883.0, "4s": 625.4, "4p1/2": 518.7, "4p3/2": 446.8, "4d3/2": 273.9, "4d5/2": 260.5, "4f5/2": 42.9, "4f7/2": 40.5, "5s": 83.0, "5p1/2": 45.6, "5p3/2": 34.6},
"76": {"1s": 73871.0, "2s": 12968.0, "2p1/2": 12385.0, "2p3/2": 10871.0, "3s": 3049.0, "3p1/2": 2792.0, "3p3/2": 2457.0, "3d3/2": 2031.0, "3d5/2": 1960.0, "4s": 658.2, "4p1/2": 549.1, "4p3/2": 470.7, "4d3/2": 293.1, "4d5/2": 278.5, "4f5/2": 53.4, "4f7/2": 50.7, "5s": 84.0, "5p1/2": 58.0, "5p3/2": 44.5},
"77": {"1s": 76111.0, "2s": 13419.0, "2p1/2": 12824.0, "2p3/2": 11215.0, "3s": 3174.0, "3p1/2": 2909.0, "3p3/2": 2551.0, "3d3/2": 2116.0, "3d5/2": 2040.0, "4s": 691.1, "4p1/2": 577.8, "4p3/2": 495.8, "4d3/2": 311.9, "4d5/2": 296.3, "4f5/2": 63.8, "4f7/2": 60.8, "5s": 95.2, "5p1/2": 63.0, "5p3/2": 48.0},
"78": {"1s": 78395.0, "2s": 13880.0, "2p1/2": 13273.0, "2p3/2": 11564.0, "3s": 3296.0, "3p1/2": 3027.0, "3p3/2": 2645.0, "3d3/2": 2202.0, "3d5/2": 2122.0, "4s": 725.4, "4p1/2": 609.1, "4p3/2": 519.4, "4d3/2": 331.6, "4d5/2": 314.6, "4f5/2": 74.5, "4f7/2": 71.2, "5s": 101.7, "5p1/2": 65.3, "5p3/2": 51.7},
"79": {"1s": 80725.0, "2s": 14353.0, "2p1/2": 13734.0, "2p3/2": 11919.0, "3s": 3425.0, "3p1/2": 3148.0, "3p3/2": 2743.0, "3d3/2": 2291.0, "3d5/2": 2206.0, "4s": 762.1, "4p1/2": 642.7, "4p3/2": 546.3, "4d3/2": 353.2, "4d5/2": 335.1, "4f5/2": 87.6, "4f7/2": 84.0, "5s": 107.2, "5p1/2": 74.2, "5p3/2": 57.2},
"80": {"1s": 83102.0, "2s": 14839.0, "2p1/2": 14209.0, "2p3/2": 12284.0, "3s": 3562.0, "3p1/2": 3279.0, "3p3/2": 2847.0, "3d3/2": 2385.0, "3d5/2": 2295.0, "4s": 802.2, "4p1/2": 680.2, "4p3/2": 576.6, "4d3/2": 378.2, "4d5/2": 358.8, "4f5/2": 104.0, "4f7/2": 99.9, "5s": 127.0, "5p1/2": 83.1, "5p3/2": 64.5, "5d3/2": 9.6, "5d5/2": 7.8},
"81": {"1s": 85530.0, "2s": 15347.0, "2p1/2": 14698.0, "2p3/2": 12658.0, "3s": 3704.0, "3p1/2": 3416.0, "3p3/2": 2957.0, "3d3/2": 2485.0, "3d5/2": 2389.0, "4s": 846.2, "4p1/2": 720.5, "4p3/2": 609.5, "4d3/2": 405.7, "4d5/2": 385.0, "4f5/2": 122.2, "4f7/2": 117.8, "5s": 136.0, "5p1/2": 94.6, "5p3/2": 73.5, "5d3/2": 14.7, "5d5/2": 12.5},
"82": {"1s": 88005.0, "2s": 15861.0, "2p1/2": 15200.0, "2p3/2": 13035.0, "3s": 3851.0, "3p1/2": 3554.0, "3p3/2": 3066.0, "3d3/2": 2586.0, "3d5/2": 2484.0, "4s": 891.8, "4p1/2": 761.9, "4p3/2": 643.5, "4d3/2": 434.3, "4d5/2": 412.2, "4f5/2": 141.7, "4f7/2": 136.9, "5s": 147.0, "5p1/2": 106.4, "5p3/2": 83.3, "5d3/2": 20.7, "5d5/2": 18.1},
"83": {"1s": 90526.0, "2s": 16388.0, "2p1/2": 15711.0, "2p3/2": 13419.0, "3s": 3999.0, "3p1/2": 3696.0, "3p3/2": 3177.0, "3d3/2": 2688.0, "3d5/2": 2580.0, "4s": 939.0, "4p1/2": 805.2, "4p3/2": 678.8, "4d3/2": 464.0, "4d5/2": 440.1, "4f5/2": 162.3, "4f7/2": 157.0, "5s": 159.3, "5p1/2": 119.0, "5p3/2": 92.6, "5d3/2": 26.9, "5d5/2": 23.8},
"84": {"1s": 93105.0, "2s": 16939.0, "2p1/2": 16244.0, "2p3/2": 13814.0, "3s": 4149.0, "3p1/2": 3854.0, "3p3/2": 3302.0, "3d3/2": 2798.0, "3d5/2": 2683.0, "4s": 995.0, "4p1/2": 851.0, "4p3/2": 705.0, "4d3/2": 500.0, "4d5/2": 473.0, "4f5/2": 184.0, "4f7/2": 184.0, "5s": 177.0, "5p1/2": 132.0, "5p3/2": 104.0, "5d3/2": 31.0, "5d5/2": 31.0},
"85": {"1s": 95730.0, "2s": 17493.0, "2p1/2": 16785.0, "2p3/2": 14214.0, "3s": 4317.0, "3p1/2": 4008.0, "3p3/2": 3426.0, "3d3/2": 2909.0, "3d5/2": 2787.0, "4s": 1042.0, "4p1/2": 886.0, "4p3/2": 740.0, "4d3/2": 533.0, "4d5/2": 507.0, "4f5/2": 210.0, "4f7/2": 210.0, "5s": 195.0, "5p1/2": 148.0, "5p3/2": 115.0, "5d3/2": 40.0, "5d5/2": 40.0},
"86": {"1s": 98404.0, "2s": 18049.0, "2p1/2": 17337.0, "2p3/2": 14619.0, "3s": 4482.0, "3p1/2": 4159.0, "3p3/2": 3538.0, "3d3/2": 3022.0, "3d5/2": 2892.0, "4s": 1097.0, "4p1/2": 929.0, "4p3/2": 768.0, "4d3/2": 567.0, "4d5/2": 541.0, "4f5/2": 238.0, "4f7/2": 238.0, "5s": 214.0, "5p1/2": 164.0, "5p3/2": 127.0, "5d3/2": 48.0, "5d5/2": 48.0, "6s": 26.0},
"87": {"1s": 101137.0, "2s": 18639.0, "2p1/2": 17907.0, "2p3/2": 15031.0, "3s": 4652.0, "3p1/2": 4327.0, "3p3/2": 3663.0, "3d3/2": 3136.0, "3d5/2": 3000.0, "4s": 1153.0, "4p1/2": 980.0, "4p3/2": 810.0, "4d3/2": 603.0, "4d5/2": 577.0, "4f5/2": 268.0, "4f7/2": 268.0, "5s": 234.0, "5p1/2": 182.0, "5p3/2": 140.0, "5d3/2": 58.0, "5d5/2": 58.0, "6s": 34.0, "6p1/2": 15.0, "6p3/2": 15.0},
"88": {"1s": 103922.0, "2s": 19237.0, "2p1/2": 18484.0, "2p3/2": 15444.0, "3s": 4822.0, "3p1/2": 4490.0, "3p3/2": 3792.0, "3d3/2": 3248.0, "3d5/2": 3105.0, "4s": 1208.0, "4p1/2": 1058.0, "4p3/2": 879.0, "4d3/2": 636.0, "4d5/2": 603.0, "4f5/2": 299.0, "4f7/2": 299.0, "5s": 254.0, "5p1/2": 200.0, "5p3/2": 153.0, "5d3/2": 68.0, "5d5/2": 68.0, "6s": 44.0, "6p1/2": 19.0, "6p3/2": 19.0},
"89": {"1s": 106755.0, "2s": 19840.0, "2p1/2": 19083.0, "2p3/2": 15871.0, "3s": 5002.0, "3p1/2": 4656.0, "3p3/2": 3909.0, "3d3/2": 3370.0, "3d5/2": 3219.0, "4s": 1269.0, "4p1/2": 1080.0, "4p3/2": 890.0, "4d3/2": 675.0, "4d5/2": 639.0, "4f5/2": 319.0, "4f7/2": 319.0, "5s": 272.0, "5p1/2": 215.0, "5p3/2": 167.0, "5d3/2": 80.0, "5d5/2": 80.0},
"90": {"1s": 109651.0, "2s": 20472.0, "2p1/2": 19693.0, "2p3/2": 16300.0, "3s": 5182.0, "3p1/2": 4830.0, "3p3/2": 4046.0, "3d3/2": 3491.0, "3d5/2": 3332.0, "4s": 1330.0, "4p1/2": 1168.0, "4p3/2": 966.4, "4d3/2": 712.1, "4d5/2": 675.2, "4f5/2": 342.4, "4f7/2": 333.1, "5s": 290.0, "5p1/2": 229.0, "5p3/2": 182.0, "5d3/2": 92.5, "5d5/2": 85.4, "6s": 41.4, "6p1/2": 24.5, "6p3/2": 16.6},
"91": {"1s": 112601.0, "2s": 21105.0, "2p1/2": 20314.0, "2p3/2": 16733.0, "3s": 5367.0, "3p1/2": 5001.0, "3p3/2": 4174.0, "3d3/2": 3611.0, "3d5/2": 3442.0, "4s": 1387.0, "4p1/2": 1224.0, "4p3/2": 1007.0, "4d3/2": 743.0, "4d5/2": 708.0, "4f5/2": 371.0, "4f7/2": 360.0, "5s": 310.0, "5p1/2": 232.0, "5p3/2": 232.0, "5d3/2": 94.0, "5d5/2": 94.0},
"92": {"1s": 115606.0, "2s": 21757.0, "2p1/2": 20948.0, "2p3/2": 17166.0, "3s": 5548.0, "3p1/2": 5182.0, "3p3/2": 4303.0, "3d3/2": 3728.0, "3d5/2": 3552.0, "4s": 1439.0, "4p1/2": 1271.0, "4p3/2": 1043.0, "4d3/2": 778.3, "4d5/2": 736.2, "4f5/2": 388.2, "4f7/2": 377.4, "5s": 321.0, "5p1/2": 257.0, "5p3/2": 192.0, "5d3/2": 102.8, "5d5/2": 94.2, "6s": 43.9, "6p1/2": 26.8, "6p3/2": 16.8}
}

View File

@ -0,0 +1,155 @@
"""
@package pmsco.elements.bindingenergy
electron binding energies of the elements
extends the element table of the `periodictable` package
(https://periodictable.readthedocs.io/en/latest/index.html)
by the electron binding energies.
the binding energies are compiled from Gwyn Williams' web page
(https://userweb.jlab.org/~gwyn/ebindene.html).
please refer to the original web page or the x-ray data booklet
for original sources, definitions and remarks.
usage
-----
this module requires the periodictable package (https://pypi.python.org/pypi/periodictable).
~~~~~~{.py}
import periodictable as pt
import pmsco.elements.bindingenergy
# read any periodictable's element interfaces, e.g.
print(pt.gold.binding_energy['4f7/2'])
print(pt.elements.symbol('Au').binding_energy['4f7/2'])
print(pt.elements.name('gold').binding_energy['4f7/2'])
print(pt.elements[79].binding_energy['4f7/2'])
~~~~~~
note that attributes are writable.
you may assign refined values in your instance of the database.
the query_binding_energy() function queries all terms with a particular binding energy.
@author Matthias Muntwiler
@copyright (c) 2020 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
import json
import numpy as np
import os
import periodictable as pt
from pmsco.compat import open
index_energy = np.zeros(0)
index_number = np.zeros(0)
index_term = []
def load_data():
data_path = os.path.join(os.path.dirname(__file__), "bindingenergy.json")
with open(data_path) as fp:
data = json.load(fp)
return data
def init(table, reload=False):
if 'binding_energy' in table.properties and not reload:
return
table.properties.append('binding_energy')
pt.core.Element.binding_energy = {}
pt.core.Element.binding_energy_units = "eV"
data = load_data()
for el_key, el_data in data.items():
try:
el = table[int(el_key)]
except ValueError:
el = table.symbol(el_key)
el.binding_energy = el_data
def build_index():
"""
build an index for query_binding_energy().
the index is kept in global variables of the module.
@return None
"""
global index_energy
global index_number
global index_term
n = 0
for element in pt.elements:
n += len(element.binding_energy)
index_energy = np.zeros(n)
index_number = np.zeros(n)
index_term = []
for element in pt.elements:
for term, energy in element.binding_energy.items():
index_term.append(term)
i = len(index_term) - 1
index_energy[i] = energy
index_number[i] = element.number
def query_binding_energy(energy, tol=1.0):
"""
search the periodic table for a specific binding energy and return all matching terms.
@param energy: binding energy in eV.
@param tol: tolerance in eV.
@return: list of dictionaries containing element and term specification.
the list is ordered arbitrarily.
each dictionary contains the following keys:
@arg 'number': element number
@arg 'symbol': element symbol
@arg 'term': spectroscopic term
@arg 'energy': actual binding energy
"""
if len(index_energy) == 0:
build_index()
sel = np.abs(index_energy - energy) < tol
idx = np.where(sel)
result = []
for i in idx[0]:
el_num = int(index_number[i])
d = {'number': el_num,
'symbol': pt.elements[el_num].symbol,
'term': index_term[i],
'energy': index_energy[i]}
result.append(d)
return result
def export_flat_text(f):
"""
export the binding energies to a flat general text file.
@param f: file path or open file object
@return: None
"""
if hasattr(f, "write") and callable(f.write):
f.write("number symbol term energy\n")
for element in pt.elements:
for term, energy in element.binding_energy.items():
f.write(f"{element.number} {element.symbol} {term} {energy}\n")
else:
with open(f, "w") as fi:
export_flat_text(fi)

Binary file not shown.

View File

@ -0,0 +1,248 @@
"""
@package pmsco.elements.photoionization
photoionization cross-sections of the elements
extends the element table of the `periodictable` package
(https://periodictable.readthedocs.io/en/latest/index.html)
by a table of photoionization cross-sections.
the data is available from (https://vuo.elettra.eu/services/elements/)
or (https://figshare.com/articles/dataset/Digitisation_of_Yeh_and_Lindau_Photoionisation_Cross_Section_Tabulated_Data/12389750).
both sources are based on the original atomic data tables by Yeh and Lindau (1985).
the Elettra data includes interpolation at finer steps,
whereas the Kalha data contains only the original data points by Yeh and Lindau
plus an additional point at 8 keV.
the tables go up to 1500 eV photon energy and do not resolve spin-orbit splitting.
usage
-----
this module requires python 3.6, numpy and the periodictable package (https://pypi.python.org/pypi/periodictable).
~~~~~~{.py}
import numpy as np
import periodictable as pt
import pmsco.elements.photoionization
# read any periodictable's element interfaces as follows.
# eph and cs are numpy arrays of identical shape that hold the photon energies and cross sections.
eph, cs = pt.gold.photoionization.cross_section['4f']
eph, cs = pt.elements.symbol('Au').photoionization.cross_section['4f']
eph, cs = pt.elements.name('gold').photoionization.cross_section['4f']
eph, cs = pt.elements[79].photoionization.cross_section['4f']
# interpolate for specific photon energy
print(np.interp(photon_energy, eph, cs)
~~~~~~
the data is loaded from the cross-sections.dat file which is a python-pickled data file.
to switch between data sources, use one of the load functions defined here
and dump the data to the cross-sections.dat file.
@author Matthias Muntwiler
@copyright (c) 2020 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
import numpy as np
from pathlib import Path
import periodictable as pt
import pickle
import urllib.request
import urllib.error
from . import bindingenergy
def load_kalha_data():
"""
load all cross-sections from csv-files by Kalha et al.
the files must be placed in the 'kalha' directory next to this file.
@return: cross-section data in a nested dictionary, cf. load_pickled_data().
"""
data = {}
p = Path(Path(__file__).parent, "kalha")
for entry in p.glob('*_*.csv'):
if entry.is_file():
try:
element = int(entry.stem.split('_')[0])
except ValueError:
pass
else:
data[element] = load_kalha_file(entry)
return data
def load_kalha_file(path):
"""
load the cross-sections of an element from a csv-file by Kalha et al.
@param path: file path
@return: (dict) dictionary of 'nl' terms.
the data items are tuples (photon_energy, cross_sections) of 1-dimensional numpy arrays.
"""
a = np.genfromtxt(path, delimiter=',', names=True)
b = ~np.isnan(a['Photon_Energy__eV'])
a = a[b]
eph = a['Photon_Energy__eV'].copy()
data = {}
for n in range(1, 8):
for l in 'spdf':
col = f"{n}{l}"
try:
data[col] = (eph, a[col].copy())
except ValueError:
pass
return data
def load_kalha_configuration(path):
"""
load the electron configuration from a csv-file by Kalha et al.
@param path: file path
@return: (dict) dictionary of 'nl' terms mapping to number of electrons in the sub-shell.
"""
p = Path(path)
subshells = []
electrons = []
config = {}
with p.open() as f:
for l in f.readlines():
s = l.split(',')
k_eph = "Photon Energy"
k_el = "#electrons"
if s[0][0:len(k_eph)] == k_eph:
subshells = s[1:]
elif s[0][0:len(k_el)] == k_el:
electrons = s[1:]
for i, sh in enumerate(subshells):
if sh:
config[sh] = electrons[i]
return config
def load_elettra_file(symbol, nl):
"""
download the cross sections of one level from the Elettra webelements web site.
@param symbol: (str) element symbol
@param nl: (str) nl term, e.g. '2p' (no spin-orbit)
@return: (photon_energy, cross_section) tuple of 1-dimensional numpy arrays.
"""
url = f"https://vuo.elettra.eu/services/elements/data/{symbol.lower()}{nl}.txt"
try:
data = urllib.request.urlopen(url)
except urllib.error.HTTPError:
eph = None
cs = None
else:
a = np.genfromtxt(data)
try:
eph = a[:, 0]
cs = a[:, 1]
except IndexError:
eph = None
cs = None
return eph, cs
def load_elettra_data():
"""
download the cross sections from the Elettra webelements web site.
@return: cross-section data in a nested dictionary, cf. load_pickled_data().
"""
data = {}
for element in pt.elements:
element_data = {}
for nlj in element.binding_energy:
nl = nlj[0:2]
eb = element.binding_energy[nlj]
if nl not in element_data and eb <= 2000:
eph, cs = load_elettra_file(element.symbol, nl)
if eph is not None and cs is not None:
element_data[nl] = (eph, cs)
if len(element_data):
data[element.symbol] = element_data
return data
def save_pickled_data(path, data):
"""
save a cross section data dictionary to a python-pickled file.
@param path: file path
@param data: cross-section data in a nested dictionary, cf. load_pickled_data().
@return: None
"""
with open(path, "wb") as f:
pickle.dump(data, f)
def load_pickled_data(path):
"""
load the cross section data from a python-pickled file.
the file can be generated by the save_pickled_data() function.
@param path: file path
@return: cross-section data in a nested dictionary.
the first-level keys are element symbols.
the second-level keys are 'nl' terms (e.g. '2p').
note that the Yeh and Lindau tables do not resolve spin-orbit splitting.
the data items are (photon_energy, cross_sections) tuples
of 1-dimensional numpy arrays holding the data table.
cross section values are given in Mb.
"""
with open(path, "rb") as f:
data = pickle.load(f)
return data
class Photoionization(object):
def __init__(self):
self.cross_section = {}
self.cross_section_units = "Mb"
def init(table, reload=False):
"""
loads cross section data into the periodic table.
this function is called by the periodictable to load the data on demand.
@param table:
@param reload:
@return:
"""
if 'photoionization' in table.properties and not reload:
return
table.properties.append('photoionization')
# default value
pt.core.Element.photoionization = Photoionization()
p = Path(Path(__file__).parent, "cross-sections.dat")
data = load_pickled_data(p)
for el_key, el_data in data.items():
try:
el = table[int(el_key)]
except ValueError:
el = table.symbol(el_key)
pi = Photoionization()
pi.cross_section = el_data
pi.cross_section_units = "Mb"
el.photoionization = pi

198
pmsco/elements/spectrum.py Normal file
View File

@ -0,0 +1,198 @@
"""
@package pmsco.elements.spectrum
photoelectron spectrum simulator
this module calculates the basic structure of a photoelectron spectrum.
it calculates positions and approximate amplitude of elastic peaks
based on photon energy, binding energy, photoionization cross section, and stoichiometry.
escape depth, photon flux, analyser transmission are not accounted for.
usage
-----
this module requires python 3.6, numpy, matplotlib and
the periodictable package (https://pypi.python.org/pypi/periodictable).
~~~~~~{.py}
import numpy as np
import periodictable as pt
import pmsco.elements.spectrum as spec
# for working with the data
labels, energy, intensity = spec.build_spectrum(800., {"Ti": 1, "O": 2})
# for plotting
spec.plot_spectrum(800., {"Ti": 1, "O": 2})
~~~~~~
@author Matthias Muntwiler
@copyright (c) 2020 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from matplotlib import pyplot as plt
import numpy as np
import periodictable as pt
from . import bindingenergy
from . import photoionization
def get_element(number_or_symbol):
"""
return the given Element object of the periodic table.
@param number_or_symbol: atomic number (int) or chemical symbol (str).
@return: Element object.
"""
try:
el = pt.elements[number_or_symbol]
except KeyError:
el = pt.elements.symbol(number_or_symbol)
return el
def get_binding_energy(photon_energy, element, nlj):
"""
look up the binding energy of a core level and check whether it is smaller than the photon energy.
@param photon_energy: photon energy in eV.
@param element: Element object of the periodic table.
@param nlj: (str) spectroscopic term, e.g. '4f7/2'.
@return: (float) binding energy or numpy.nan.
"""
try:
eb = element.binding_energy[nlj]
except KeyError:
return np.nan
if eb < photon_energy:
return eb
else:
return np.nan
def get_cross_section(photon_energy, element, nlj):
"""
look up the photoionization cross section.
since the Yeh/Lindau tables do not resolve the spin-orbit splitting,
this function applies the normal relative weights of a full sub-shell.
the result is a linear interpolation between tabulated values.
@param photon_energy: photon energy in eV.
@param element: Element object of the periodic table.
@param nlj: (str) spectroscopic term, e.g. '4f7/2'.
@return: (float) cross section in Mb.
"""
nl = nlj[0:2]
try:
pet, cst = element.photoionization.cross_section[nl]
except KeyError:
return np.nan
# weights of spin-orbit peaks
d_wso = {"p1/2": 1./3.,
"p3/2": 2./3.,
"d3/2": 2./5.,
"d5/2": 3./5.,
"f5/2": 3./7.,
"f7/2": 4./7.}
wso = d_wso.get(nlj[1:], 1.)
cst = cst * wso
# todo: consider spline
return np.interp(photon_energy, pet, cst)
def build_spectrum(photon_energy, elements, binding_energy=False, work_function=4.5):
"""
calculate the positions and amplitudes of core-level photoemission lines.
the function looks up the binding energies and cross sections of all photoemission lines in the energy range
given by the photon energy and returns an array of expected spectral lines.
@param photon_energy: (numeric) photon energy in eV.
@param elements: list or dictionary of elements.
elements are identified by their atomic number (int) or chemical symbol (str).
if a dictionary is given, the (float) values are stoichiometric weights of the elements.
@param binding_energy: (bool) return binding energies (True) rather than kinetic energies (False, default).
@param work_function: (float) work function of the instrument in eV.
@return: tuple (labels, positions, intensities) of 1-dimensional numpy arrays representing the spectrum.
labels are in the format {Symbol}{n}{l}{j}.
"""
ekin = []
ebind = []
intens = []
labels = []
for element in elements:
el = get_element(element)
for n in range(1, 8):
for l in "spdf":
for j in ['', '1/2', '3/2', '5/2', '7/2']:
nlj = f"{n}{l}{j}"
eb = get_binding_energy(photon_energy, el, nlj)
cs = get_cross_section(photon_energy, el, nlj)
try:
cs = cs * elements[element]
except (KeyError, TypeError):
pass
if not np.isnan(eb) and not np.isnan(cs):
ekin.append(photon_energy - eb - work_function)
ebind.append(eb)
intens.append(cs)
labels.append(f"{el.symbol}{nlj}")
ebind = np.array(ebind)
ekin = np.array(ekin)
intens = np.array(intens)
labels = np.array(labels)
if binding_energy:
return labels, ebind, intens
else:
return labels, ekin, intens
def plot_spectrum(photon_energy, elements, binding_energy=False, work_function=4.5, show_labels=True):
"""
plot a simple spectrum representation of a material.
the function looks up the binding energies and cross sections of all photoemission lines in the energy range
given by the photon energy and returns an array of expected spectral lines.
the spectrum is plotted using matplotlib.pyplot.stem.
@param photon_energy: (numeric) photon energy in eV.
@param elements: list or dictionary of elements.
elements are identified by their atomic number (int) or chemical symbol (str).
if a dictionary is given, the (float) values are stoichiometric weights of the elements.
@param binding_energy: (bool) return binding energies (True) rather than kinetic energies (False, default).
@param work_function: (float) work function of the instrument in eV.
@param show_labels: (bool) show peak labels (True, default) or not (False).
@return: (figure, axes)
"""
labels, energy, intensity = build_spectrum(photon_energy, elements, binding_energy=binding_energy,
work_function=work_function)
fig, ax = plt.subplots()
ax.stem(energy, intensity, basefmt=' ', use_line_collection=True)
if show_labels:
for sxy in zip(labels, energy, intensity):
ax.annotate(sxy[0], xy=(sxy[1], sxy[2]), textcoords='data')
ax.grid()
if binding_energy:
ax.set_xlabel('binding energy')
else:
ax.set_xlabel('kinetic energy')
ax.set_ylabel('intensity')
ax.set_title(elements)
return fig, ax

View File

@ -27,20 +27,20 @@ logger = logging.getLogger(__name__)
#
# each string of this set marks a category of files.
#
# @arg @c 'input' : raw input files for calculator, including cluster and atomic files in custom format
# @arg @c 'output' : raw output files from calculator
# @arg @c 'atomic' : atomic scattering (phase, emission) files in portable format
# @arg @c 'cluster' : cluster files in portable XYZ format for report
# @arg @c 'log' : log files
# @arg @c 'debug' : debug files
# @arg @c 'model': output files in ETPAI format: complete simulation (a_-1_-1_-1_-1)
# @arg @c 'scan' : output files in ETPAI format: scan (a_b_-1_-1_-1)
# @arg @c 'symmetry' : output files in ETPAI format: symmetry (a_b_c_-1_-1)
# @arg @c 'emitter' : output files in ETPAI format: emitter (a_b_c_d_-1)
# @arg @c 'region' : output files in ETPAI format: region (a_b_c_d_e)
# @arg @c 'report': final report of results
# @arg @c 'population': final state of particle population
# @arg @c 'rfac': files related to models which give bad r-factors (dynamic category, see below).
# @arg 'input' : raw input files for calculator, including cluster and atomic files in custom format
# @arg 'output' : raw output files from calculator
# @arg 'atomic' : atomic scattering (phase, emission) files in portable format
# @arg 'cluster' : cluster files in portable XYZ format for report
# @arg 'log' : log files
# @arg 'debug' : debug files
# @arg 'model': output files in ETPAI format: complete simulation (a_-1_-1_-1_-1)
# @arg 'scan' : output files in ETPAI format: scan (a_b_-1_-1_-1)
# @arg 'domain' : output files in ETPAI format: domain (a_b_c_-1_-1)
# @arg 'emitter' : output files in ETPAI format: emitter (a_b_c_d_-1)
# @arg 'region' : output files in ETPAI format: region (a_b_c_d_e)
# @arg 'report': final report of results
# @arg 'population': final state of particle population
# @arg 'rfac': files related to models which give bad r-factors (dynamic category, see below).
#
# @note @c 'rfac' is a dynamic category not connected to a particular file or content type.
# no file should be marked @c 'rfac'.
@ -48,7 +48,7 @@ logger = logging.getLogger(__name__)
# if so, all files related to bad models are deleted, regardless of their static category.
#
FILE_CATEGORIES = {'cluster', 'atomic', 'input', 'output',
'report', 'region', 'emitter', 'scan', 'symmetry', 'model',
'report', 'region', 'emitter', 'scan', 'domain', 'model',
'log', 'debug', 'population', 'rfac'}
## @var FILE_CATEGORIES_TO_KEEP
@ -242,37 +242,52 @@ class FileTracker(object):
else:
self._complete_models.discard(model)
def delete_files(self, categories=None):
def delete_files(self, categories=None, incomplete_models=False):
"""
delete the files matching the list of categories.
delete all files matching a set of categories.
@version this method does not act on the 'rfac' category.
this function deletes all files that are tagged with one of the given categories.
tags are set by the code sections that create the files.
for a list of common categories, see FILE_CATEGORIES.
the categories can be given as an argument or taken from the categories_to_delete property.
files are deleted regardless of R-factor.
be sure to specify only categories that you don't need in the output at all.
by default, only files of complete models (cf. set_model_complete()) are deleted
to avoid interference with running calculations.
to clean up after calculations, the incomplete_models argument can override this.
@note this method does not act on the special 'rfac' category (see delete_bad_rfac()).
@param categories: set of file categories to delete.
defaults to self.categories_to_delete.
if the argument is None, it defaults to the categories_to_delete property.
@param incomplete_models: (bool) delete files of incomplete models as well.
by default (False), incomplete models are not deleted.
@return: None
"""
if categories is None:
categories = self.categories_to_delete
for cat in categories:
self.delete_category(cat)
self.delete_category(cat, incomplete_models=incomplete_models)
def delete_bad_rfac(self, keep=0, force_delete=False):
"""
delete the files of all models except a specified number of good models.
delete all files of all models except for a specified number of best ranking models.
the method first determines which models to keep.
models with R factor values of 0.0, without a specified R-factor, and
the specified number of best ranking non-zero models are kept.
the files belonging to the keeper models are kept, all others are deleted,
regardless of category.
files of incomplete models are also kept.
in addition, incomplete models, models with R factor = 0.0,
and those without a specified R-factor are kept.
all other files are deleted.
the method does not consider the file category.
the files are deleted from the list and the file system.
files are deleted only if 'rfac' is specified in self.categories_to_delete
or if force_delete is set to True.
the method executes only if 'rfac' is specified in self.categories_to_delete
or if force_delete is True.
otherwise the method does nothing.
@param keep: number of files to keep.
@ -330,18 +345,32 @@ class FileTracker(object):
return len(del_models)
def delete_category(self, category):
def delete_category(self, category, incomplete_models=False):
"""
delete all files of a specified category from the list and the file system.
only files of complete models (cf. set_model_complete()) are deleted, but regardless of R-factor.
this function deletes all files that are tagged with the given category.
tags are set by the code sections that create the files.
for a list of common categories, see FILE_CATEGORIES.
files are deleted regardless of R-factor.
be sure to specify only categories that you don't need in the output at all.
by default, only files of complete models (cf. set_model_complete()) are deleted
to avoid interference with running calculations.
to clean up after calculations, the incomplete_models argument can override this.
@param category: (str) category.
should be one of FILE_CATEGORIES. otherwise, the function has no effect.
@param incomplete_models: (bool) delete files of incomplete models as well.
by default (False), incomplete models are not deleted.
@return: None
"""
del_names = {name for (name, cat) in self._file_category.items() if cat == category}
del_names &= {name for (name, model) in self._file_model.items() if model in self._complete_models}
if not incomplete_models:
del_names &= {name for (name, model) in self._file_model.items() if model in self._complete_models}
for name in del_names:
self.delete_file(name)
@ -375,3 +404,33 @@ class FileTracker(object):
logger.warning("file system error deleting file {0}".format(path))
else:
logger.debug("delete file {0} ({1}, model {2})".format(path, cat, model))
def list_files_other_models(prefix, models):
"""
list input/output files except those of the given models.
this can be used to clean up all files except those belonging to the given models.
to delete the listed files:
for f in files:
os.remove(f)
@param prefix: file name prefix up to the first underscore.
only files starting with this prefix are listed.
@param models: sequence or set of model numbers that should not be listed.
@return: set of file names
"""
file_names = set([])
for entry in os.scandir():
if entry.is_file:
elements = entry.name.split('_')
try:
if len(elements) == 6 and elements[0] == prefix and int(elements[1]) not in models:
file_names.add(entry.name)
except (IndexError, ValueError):
pass
return file_names

View File

@ -182,7 +182,7 @@ def render_results(results_file, data=None):
"""
if data is None:
data = np.genfromtxt(results_file, names=True)
data = np.atleast_1d(np.genfromtxt(results_file, names=True))
summary = evaluate_results(data)

View File

@ -1,6 +1,6 @@
"""
@package pmsco.handlers
project-independent task handlers for models, scans, symmetries, emitters and energies.
project-independent task handlers for models, scans, domains, emitters and energies.
calculation tasks are organized in a hierarchical tree.
at each node, a task handler (feel free to find a better name)
@ -20,9 +20,9 @@ the handlers of the structural optimizers are declared in separate modules.
scans are defined by the project.
the actual merging step from multiple scans into one result dataset is delegated to the project class.
<em>symmetry handlers</em> split a task into one child per symmetry.
symmetries are defined by the project.
the actual merging step from multiple symmetries into one result dataset is delegated to the project class.
<em>domain handlers</em> split a task into one child per domain.
domains are defined by the project.
the actual merging step from multiple domains into one result dataset is delegated to the project class.
<em>emitter handlers</em> split a task into one child per emitter configuration (inequivalent sets of emitting atoms).
emitter configurations are defined by the project.
@ -35,8 +35,8 @@ code inspection and tests have shown that per-emitter results from EDAC can be s
in order to take advantage of parallel processing.
while several classes of model handlers are available,
the default handlers for scans, symmetries, emitters and energies should be sufficient in most situations.
the scan and symmetry handlers call methods of the project class to invoke project-specific functionality.
the default handlers for scans, domains, emitters and energies should be sufficient in most situations.
the scan and domain handlers call methods of the project class to invoke project-specific functionality.
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@ -60,6 +60,7 @@ import os
from pmsco.compat import open
import pmsco.data as md
import pmsco.dispatch as dispatch
import pmsco.graphics.scan as mgs
from pmsco.helpers import BraceMessage as BMsg
@ -127,10 +128,14 @@ class TaskHandler(object):
for best efficiency the number of tasks generated should be greater or equal the number of slots.
it should not exceed N times the number of slots, where N is a reasonably small number.
@return None
@return (int) number of children that create_tasks() will generate on average.
the number does not need to be accurate, a rough estimate or order of magnitude if greater than 10 is fine.
it is used to distribute processing slots across task levels.
see pmsco.dispatch.MscoMaster.setup().
"""
self._project = project
self._slots = slots
return 1
def cleanup(self):
"""
@ -416,6 +421,8 @@ class ScanHandler(TaskHandler):
def setup(self, project, slots):
"""
initialize the scan task handler and save processed experimental scans.
@return (int) number of scans defined in the project.
"""
super(ScanHandler, self).setup(project, slots)
@ -437,6 +444,8 @@ class ScanHandler(TaskHandler):
filename = project.output_file + ".modf" + ext
md.save_data(filename, project.combined_modf)
return len(self._project.scans)
def create_tasks(self, parent_task):
"""
generate a calculation task for each scan of the given parent task.
@ -526,7 +535,7 @@ class ScanHandler(TaskHandler):
return None
class SymmetryHandler(TaskHandler):
class DomainHandler(TaskHandler):
## @var _pending_ids_per_parent
# (dict) sets of child task IDs per parent
#
@ -546,20 +555,29 @@ class SymmetryHandler(TaskHandler):
# the values are sets of all child CalculationTask.id belonging to the parent.
def __init__(self):
super(SymmetryHandler, self).__init__()
super(DomainHandler, self).__init__()
self._pending_ids_per_parent = {}
self._complete_ids_per_parent = {}
def setup(self, project, slots):
"""
initialize the domain task handler.
@return (int) number of domains defined in the project.
"""
super(DomainHandler, self).setup(project, slots)
return len(self._project.domains)
def create_tasks(self, parent_task):
"""
generate a calculation task for each symmetry of the given parent task.
generate a calculation task for each domain of the given parent task.
all symmetries share the same model parameters.
all domains share the same model parameters.
@return list of CalculationTask objects, with one element per symmetry.
the symmetry index varies according to project.symmetries.
@return list of CalculationTask objects, with one element per domain.
the domain index varies according to project.domains.
"""
super(SymmetryHandler, self).create_tasks(parent_task)
super(DomainHandler, self).create_tasks(parent_task)
parent_id = parent_task.id
self._parent_tasks[parent_id] = parent_task
@ -567,10 +585,10 @@ class SymmetryHandler(TaskHandler):
self._complete_ids_per_parent[parent_id] = set()
out_tasks = []
for (i_sym, sym) in enumerate(self._project.symmetries):
for (i_dom, domain) in enumerate(self._project.domains):
new_task = parent_task.copy()
new_task.parent_id = parent_id
new_task.change_id(sym=i_sym)
new_task.change_id(domain=i_dom)
child_id = new_task.id
self._pending_tasks[child_id] = new_task
@ -579,25 +597,25 @@ class SymmetryHandler(TaskHandler):
out_tasks.append(new_task)
if not out_tasks:
logger.error("no symmetry tasks generated. your project must declare at least one symmetry.")
logger.error("no domain tasks generated. your project must declare at least one domain.")
return out_tasks
def add_result(self, task):
"""
collect and combine the calculation results versus symmetry.
collect and combine the calculation results versus domain.
* mark the task as complete
* store its result for later
* check whether this was the last pending task of the family (belonging to the same parent).
the actual merging of data is delegated to the project's combine_symmetries() method.
the actual merging of data is delegated to the project's combine_domains() method.
@param task: (CalculationTask) calculation task that completed.
@return parent task (CalculationTask) if the family is complete. None if the family is not complete yet.
"""
super(SymmetryHandler, self).add_result(task)
super(DomainHandler, self).add_result(task)
self._complete_tasks[task.id] = task
del self._pending_tasks[task.id]
@ -607,7 +625,7 @@ class SymmetryHandler(TaskHandler):
family_pending.remove(task.id)
family_complete.add(task.id)
# all symmetries complete?
# all domains complete?
if len(family_pending) == 0:
parent_task = self._parent_tasks[task.parent_id]
@ -624,7 +642,7 @@ class SymmetryHandler(TaskHandler):
parent_task.time = reduce(lambda a, b: a + b, child_times)
if parent_task.result_valid:
self._project.combine_symmetries(parent_task, child_tasks)
self._project.combine_domains(parent_task, child_tasks)
self._project.evaluate_result(parent_task, child_tasks)
self._project.files.add_file(parent_task.result_filename, parent_task.id.model, 'scan')
self._project.files.add_file(parent_task.modf_filename, parent_task.id.model, 'scan')
@ -669,6 +687,19 @@ class EmitterHandler(TaskHandler):
self._pending_ids_per_parent = {}
self._complete_ids_per_parent = {}
def setup(self, project, slots):
"""
initialize the emitter task handler.
@return (int) estimated number of emitter configurations that the cluster generator will generate.
the estimate is based on the start parameters, scan 0 and domain 0.
"""
super(EmitterHandler, self).setup(project, slots)
mock_model = self._project.create_model_space().start
mock_index = dispatch.CalcID(-1, 0, 0, -1, -1)
n_emitters = project.cluster_generator.count_emitters(mock_model, mock_index)
return n_emitters
def create_tasks(self, parent_task):
"""
generate a calculation task for each emitter configuration of the given parent task.
@ -750,11 +781,11 @@ class EmitterHandler(TaskHandler):
if parent_task.result_valid:
self._project.combine_emitters(parent_task, child_tasks)
self._project.evaluate_result(parent_task, child_tasks)
self._project.files.add_file(parent_task.result_filename, parent_task.id.model, 'symmetry')
self._project.files.add_file(parent_task.modf_filename, parent_task.id.model, 'symmetry')
self._project.files.add_file(parent_task.result_filename, parent_task.id.model, 'domain')
self._project.files.add_file(parent_task.modf_filename, parent_task.id.model, 'domain')
graph_file = mgs.render_scan(parent_task.modf_filename,
ref_data=self._project.scans[parent_task.id.scan].modulation)
self._project.files.add_file(graph_file, parent_task.id.model, 'symmetry')
self._project.files.add_file(graph_file, parent_task.id.model, 'domain')
del self._pending_ids_per_parent[parent_task.id]
del self._complete_ids_per_parent[parent_task.id]
@ -921,7 +952,7 @@ class EnergyRegionHandler(RegionHandler):
@param slots (int) number of calculation slots (processes).
@return None
@return (int) average number of child tasks
"""
super(EnergyRegionHandler, self).setup(project, slots)
@ -934,6 +965,8 @@ class EnergyRegionHandler(RegionHandler):
logger.debug(BMsg("region handler: split scan {file} into {slots} chunks",
file=os.path.basename(scan.filename), slots=self._slots_per_scan[i]))
return max(int(sum(self._slots_per_scan) / len(self._slots_per_scan)), 1)
def create_tasks(self, parent_task):
"""
generate a calculation task for each energy region of the given parent task.

View File

@ -12,7 +12,7 @@ MUFPOT_DIR = mufpot
LOESS_DIR = loess
PHAGEN_DIR = calculators/phagen
all: edac loess
all: edac loess phagen
edac:
$(MAKE) -C $(EDAC_DIR)

View File

@ -45,7 +45,7 @@ class GeneticPopulation(population.Population):
4. mutation: a gene may mutate at random.
5. selection: the globally best individual is added to a parent population (and replaces the worst).
the main tuning parameter of the algorithm is the mutation_step which is copied from the domain.step.
the main tuning parameter of the algorithm is the mutation_step which is copied from the model_space.step.
it defines the width of a gaussian distribution of change under a weak mutation.
it should be large enough so that the whole parameter space can be probed,
but small enough that a frequent mutation does not throw the individual out of the convergence region.
@ -92,9 +92,9 @@ class GeneticPopulation(population.Population):
## @var mutation_step
#
# standard deviations of the exponential distribution function used in the mutate_weak() method.
# the variable is a dictionary with the same keys as model_step (the parameter domain).
# the variable is a dictionary with the same keys as model_step (the parameter space).
#
# it is initialized from the domain.step
# it is initialized from the model_space.step
# or set to a default value based on the parameter range and population size.
def __init__(self):
@ -110,15 +110,15 @@ class GeneticPopulation(population.Population):
self.position_constrain_mode = 'random'
self.mutation_step = {}
def setup(self, size, domain, **kwargs):
def setup(self, size, model_space, **kwargs):
"""
@copydoc Population.setup()
in addition to the inherited behaviour, this method initializes self.mutation_step.
mutation_step of a parameter is set to its domain.step if non-zero.
mutation_step of a parameter is set to its model_space.step if non-zero.
otherwise it is set to the parameter range divided by the population size.
"""
super(GeneticPopulation, self).setup(size, domain, **kwargs)
super(GeneticPopulation, self).setup(size, model_space, **kwargs)
for key in self.model_step:
val = self.model_step[key]
@ -131,7 +131,7 @@ class GeneticPopulation(population.Population):
this implementation is a new proposal.
the distribution is not completely random.
rather, a position vector (by parameter) is initialized with a linear function
that covers the parameter domain.
that covers the parameter space.
the linear function is then permuted randomly.
the method does not update the particle info fields.
@ -243,7 +243,7 @@ class GeneticPopulation(population.Population):
"""
apply a weak mutation to a model.
each parameter is changed to a different value in the domain of the parameter at the given probability.
each parameter is changed to a different value in the parameter space at the given probability.
the amount of change has a gaussian distribution with a standard deviation of mutation_step.
@param[in,out] model: structured numpy.ndarray holding the model parameters.
@ -263,7 +263,7 @@ class GeneticPopulation(population.Population):
"""
apply a strong mutation to a model.
each parameter is changed to a random value in the domain of the parameter at the given probability.
each parameter is changed to a random value in the parameter space at the given probability.
@param[in,out] model: structured numpy.ndarray holding the model parameters.
model is modified in place.

View File

@ -8,7 +8,7 @@ the optimization task is distributed over multiple processes using MPI.
the optimization must be started with N+1 processes in the MPI environment,
where N equals the number of fit parameters.
IMPLEMENTATION IN PROGRESS - DEBUGGING
THIS MODULE IS NOT INTEGRATED INTO PMSCO YET.
Requires: scipy, numpy
@ -109,7 +109,7 @@ class MscMaster(MscProcess):
def setup(self, project):
super(MscMaster, self).setup(project)
self.dom = project.create_domain()
self.dom = project.create_model_space()
self.running_slaves = self.slaves
self._outfile = open(self.project.output_file + ".dat", "w")

View File

@ -63,7 +63,7 @@ class GridPopulation(object):
## @var positions
# (numpy.ndarray) flat list of grid coordinates and results.
#
# the column names include the names of the model parameters, taken from domain.start,
# the column names include the names of the model parameters, taken from model_space.start,
# and the special names @c '_model', @c '_rfac'.
# the special fields have the following meanings:
#
@ -113,11 +113,12 @@ class GridPopulation(object):
dt.sort(key=lambda t: t[0].lower())
return dt
def setup(self, domain):
def setup(self, model_space):
"""
set up the population and result arrays.
@param domain: definition of initial and limiting model parameters
@param model_space: (pmsco.project.ModelSpace)
definition of initial and limiting model parameters
expected by the cluster and parameters functions.
the attributes have the following meanings:
@arg start: values of the fixed parameters.
@ -128,24 +129,24 @@ class GridPopulation(object):
if step <= 0, the parameter is kept constant.
"""
self.model_start = domain.start
self.model_min = domain.min
self.model_max = domain.max
self.model_step = domain.step
self.model_start = model_space.start
self.model_min = model_space.min
self.model_max = model_space.max
self.model_step = model_space.step
self.model_count = 1
self.search_keys = []
self.fixed_keys = []
scales = []
for p in domain.step.keys():
if domain.step[p] > 0:
n = np.round((domain.max[p] - domain.min[p]) / domain.step[p]) + 1
for p in model_space.step.keys():
if model_space.step[p] > 0:
n = int(np.round((model_space.max[p] - model_space.min[p]) / model_space.step[p]) + 1)
else:
n = 1
if n > 1:
self.search_keys.append(p)
scales.append(np.linspace(domain.min[p], domain.max[p], n))
scales.append(np.linspace(model_space.min[p], model_space.max[p], n))
else:
self.fixed_keys.append(p)
@ -221,7 +222,7 @@ class GridPopulation(object):
@raise AssertionError if the number of rows of the two files differ.
"""
data = np.genfromtxt(filename, names=True)
data = np.atleast_1d(np.genfromtxt(filename, names=True))
assert data.shape == array.shape
for name in data.dtype.names:
array[name] = data[name]
@ -298,12 +299,12 @@ class GridSearchHandler(handlers.ModelHandler):
the minimum number of slots is 1, the recommended value is 10 or greater.
the population size is set to at least 4.
@return:
@return (int) number of models to be calculated.
"""
super(GridSearchHandler, self).setup(project, slots)
self._pop = GridPopulation()
self._pop.setup(self._project.create_domain())
self._pop.setup(self._project.create_model_space())
self._invalid_limit = max(slots, self._invalid_limit)
self._outfile = open(self._project.output_file + ".dat", "w")
@ -311,7 +312,7 @@ class GridSearchHandler(handlers.ModelHandler):
self._outfile.write(" ".join(self._pop.positions.dtype.names))
self._outfile.write("\n")
return None
return self._pop.model_count
def cleanup(self):
self._outfile.close()

View File

@ -3,7 +3,7 @@
base classes for population-based optimizers.
a _population_ is a set of individuals or particles
that can assume coordinates from the parameter domain.
that can assume coordinates from the parameter space.
a tuple of coordinates is also called _model parameters_ which define the _model_.
the individuals travel through parameter space according to an algorithm defined separately.
depending on the algorithm, the population can converge towards the optimum coordinates based on calculated R-factors.
@ -117,7 +117,7 @@ class Population(object):
## @var pos
# (numpy.ndarray) current positions of each particle.
#
# the column names include the names of the model parameters, taken from domain.start,
# the column names include the names of the model parameters, taken from model_space.start,
# and the special names @c '_particle', @c '_model', @c '_rfac'.
# the special fields have the following meanings:
#
@ -299,7 +299,7 @@ class Population(object):
arr[k] = model_dict[k]
return arr
def setup(self, size, domain, **kwargs):
def setup(self, size, model_space, **kwargs):
"""
set up the population arrays seeded with previous results and the start model.
@ -315,12 +315,12 @@ class Population(object):
@param size: requested number of particles.
@param domain: definition of initial and limiting model parameters
@param model_space: definition of initial and limiting model parameters
expected by the cluster and parameters functions.
@arg domain.start: initial guess.
@arg domain.min: minimum values allowed.
@arg domain.max: maximum values allowed. if min == max, the parameter is kept constant.
@arg domain.step: depends on the actual algorithm.
@arg model_space.start: initial guess.
@arg model_space.min: minimum values allowed.
@arg model_space.max: maximum values allowed. if min == max, the parameter is kept constant.
@arg model_space.step: depends on the actual algorithm.
not used in particle swarm.
standard deviation of mutations in genetic optimization.
@ -335,14 +335,14 @@ class Population(object):
"""
self.size_req = size
self.size_act = size
self.model_start = domain.start
self.model_min = domain.min
self.model_max = domain.max
self.model_step = domain.step
self.model_start_array = self.get_model_array(domain.start)
self.model_min_array = self.get_model_array(domain.min)
self.model_max_array = self.get_model_array(domain.max)
self.model_step_array = self.get_model_array(domain.step)
self.model_start = model_space.start
self.model_min = model_space.min
self.model_max = model_space.max
self.model_step = model_space.step
self.model_start_array = self.get_model_array(model_space.start)
self.model_min_array = self.get_model_array(model_space.min)
self.model_max_array = self.get_model_array(model_space.max)
self.model_step_array = self.get_model_array(model_space.step)
# allocate arrays
dt = self.get_pop_dtype(self.model_start)
@ -378,8 +378,8 @@ class Population(object):
"""
initializes a random population.
the position array is filled with random values (uniform distribution) from the parameter domain.
velocity values are randomly chosen between -1/8 to 1/8 times the width (max - min) of the parameter domain.
the position array is filled with random values (uniform distribution) from the parameter space.
velocity values are randomly chosen between -1/8 to 1/8 times the width (max - min) of the parameter space.
the method does not update the particle info fields.
@ -402,8 +402,8 @@ class Population(object):
the method does not update the particle info fields.
@param params: dictionary of model parameters.
the keys must match the ones of domain.start.
values that lie outside of the domain are skipped.
the keys must match the ones of model_space.start.
values that lie outside of the model space are skipped.
@param index: index of the particle that is seeded.
the index must be in the allowed range of the self.pos array.
@ -440,7 +440,7 @@ class Population(object):
this method is called as a part of setup().
it must not be called after the optimization has started.
parameter values that lie outside the parameter domain (min/max) are left at their previous value.
parameter values that lie outside the model space (min/max) are left at their previous value.
@note this method does not initialize the remaining particles.
neither does it set the velocity and best position arrays of the seeded particles.
@ -488,7 +488,7 @@ class Population(object):
count_limit = self.pos.shape[0]
count_limit = min(count_limit, self.pos.shape[0] - first_particle)
seed = np.genfromtxt(seed_file, names=True)
seed = np.atleast_1d(np.genfromtxt(seed_file, names=True))
try:
seed = seed[seed['_rfac'] <= rfac_limit]
except ValueError:
@ -561,7 +561,7 @@ class Population(object):
this method does not handle exceptions coming from numpy.genfromtxt
such as missing file (IOError) or conversion errors (ValueError).
exception handling should be done by the owner of the population (typically the model handler).
patch values that lie outside the population domain aresilently ignored.
patch values that lie outside the model space are silently ignored.
@param patch_file: path and name of the patch file.
the file must have the correct format for load_array(),
@ -572,7 +572,7 @@ class Population(object):
@raise ValueError for conversion errors.
"""
self.pos_patch = np.genfromtxt(patch_file, names=True)
self.pos_patch = np.atleast_1d(np.genfromtxt(patch_file, names=True))
source_fields = set(self.pos_patch.dtype.names)
dest_fields = set(self.model_start.keys())
common_fields = source_fields & dest_fields
@ -592,7 +592,7 @@ class Population(object):
the method overwrites only parameter values, not control variables.
_particle indices that lie outside the range of available population items are ignored.
parameter values that lie outside the parameter domain (min/max) are ignored.
parameter values that lie outside the model space (min/max) are ignored.
"""
if self.pos_patch is not None:
logger.warning(BMsg("patching generation {gen} with new positions.", gen=self.generation))
@ -658,7 +658,7 @@ class Population(object):
elif isinstance(source, str):
for i in range(timeout):
try:
array = np.genfromtxt(source, names=True)
array = np.atleast_1d(np.genfromtxt(source, names=True))
except IOError:
time.sleep(1)
else:
@ -708,7 +708,7 @@ class Population(object):
the method also performs a range check.
the parameter values are constrained according to self.position_constrain_mode
and the parameter domain self.model_min and self.model_max.
and the model space self.model_min and self.model_max.
if the constrain mode is `error`, models that violate the constraints are ignored
and removed from the import queue.
@ -844,18 +844,18 @@ class Population(object):
"""
constrain a position to the given bounds.
this method resolves violations of parameter boundaries, i.e. when a particle is leaving the designated domain.
if a violation is detected, the method calculates an updated position inside the domain
this method resolves violations of parameter boundaries, i.e. when a particle is leaving the designated model space.
if a violation is detected, the method calculates an updated position inside the model space
according to the selected algorithm.
in some cases the velocity or boundaries have to be updated as well.
the method distinguishes overshoot and undershoot violations.
overshoot is the normal case when the particle is leaving the domain.
overshoot is the normal case when the particle is leaving the model space.
it is handled according to the selected algorithm.
undershoot is a special case where the particle was outside the boundaries before the move.
this case can occur in the beginning if the population is seeded with out-of-bounds values.
undershoot is always handled by placing the particle at a random position in the domain
undershoot is always handled by placing the particle at a random position in the model space
regardless of the chosen constraint mode.
@note it is important to avoid bias while handling constraint violations.
@ -877,7 +877,7 @@ class Population(object):
@param _mode: what to do if a boundary constraint is violated:
@arg 're-enter': re-enter from the opposite side of the parameter interval.
@arg 'bounce': fold the motion vector at the boundary and move the particle back into the domain.
@arg 'bounce': fold the motion vector at the boundary and move the particle back into the model space.
@arg 'scatter': place the particle at a random place between its old position and the violated boundary.
@arg 'stick': place the particle at the violated boundary.
@arg 'expand': move the boundary so that the particle fits.
@ -982,7 +982,7 @@ class Population(object):
@param search_array: population-like numpy structured array to search for the model.
defaults to self.results if None.
@param precision: precision relative to model domain at which elements should be considered equal.
@param precision: precision relative to model space at which elements should be considered equal.
@return index of the first occurrence.
@ -1071,7 +1071,7 @@ class Population(object):
@raise AssertionError if the number of rows of the two files differ.
"""
data = np.genfromtxt(filename, names=True)
data = np.atleast_1d(np.genfromtxt(filename, names=True))
assert data.shape == array.shape
for name in data.dtype.names:
array[name] = data[name]
@ -1182,7 +1182,7 @@ class PopulationHandler(handlers.ModelHandler):
which may slow down convergence.
if calculations take a long time compared to the available computation time
or spawn a lot of sub-tasks due to complex symmetry,
or spawn a lot of sub-tasks due to complex model space,
and you prefer to allow for a good number of generations,
you should override the population size.
@ -1190,7 +1190,7 @@ class PopulationHandler(handlers.ModelHandler):
@param slots: number of calculation processes available through MPI.
@return: None
@return (int) population size
"""
super(PopulationHandler, self).setup(project, slots)
@ -1206,10 +1206,10 @@ class PopulationHandler(handlers.ModelHandler):
outfile.write(" ".join(self._pop.results.dtype.names))
outfile.write("\n")
return None
return self._pop_size
def setup_population(self):
self._pop.setup(self._pop_size, self._project.create_domain(), **self._project.optimizer_params)
self._pop.setup(self._pop_size, self._project.create_model_space(), **self._project.optimizer_params)
def cleanup(self):
super(PopulationHandler, self).cleanup()
@ -1235,7 +1235,7 @@ class PopulationHandler(handlers.ModelHandler):
the effect can be reduced by making the population larger than the number of processes.
the created tasks are returned as the function result and added to self._pending_tasks.
@return list of generated tasks.
empty list if the optimization has converged (see Population.is_converged())
or if the time limit is approaching.

View File

@ -83,8 +83,8 @@ class TablePopulation(population.Population):
although, a seed file is accepted, it is not used.
patching is allowed, but there is normally no advantage over modifying the table.
the domain is used to define the model parameters and the parameter range.
models violating the parameter domain are ignored.
the model space is used to define the model parameters and the parameter range.
models violating the parameter model space are ignored.
"""
## @var table_source
@ -103,20 +103,20 @@ class TablePopulation(population.Population):
self.table_source = None
self.position_constrain_mode = 'error'
def setup(self, size, domain, **kwargs):
def setup(self, size, model_space, **kwargs):
"""
set up the population arrays, parameter domain and data source.
set up the population arrays, parameter model space and data source.
@param size: requested number of particles.
this does not need to correspond to the number of table entries.
on each generation the population loads up to this number of new entries from the table source.
@param domain: definition of initial and limiting model parameters
@param model_space: definition of initial and limiting model parameters
expected by the cluster and parameters functions.
@arg domain.start: not used.
@arg domain.min: minimum values allowed.
@arg domain.max: maximum values allowed.
@arg domain.step: not used.
@arg model_space.start: not used.
@arg model_space.min: minimum values allowed.
@arg model_space.max: maximum values allowed.
@arg model_space.step: not used.
the following arguments are keyword arguments.
the method also accepts the inherited arguments for seeding. they do not have an effect, however.
@ -128,7 +128,7 @@ class TablePopulation(population.Population):
@return: None
"""
super(TablePopulation, self).setup(size, domain, **kwargs)
super(TablePopulation, self).setup(size, model_space, **kwargs)
self.table_source = kwargs['table_source']
def advance_population(self):

View File

@ -131,6 +131,8 @@ def set_common_args(project, args):
if args.output_file:
project.set_output(args.output_file)
log_file = args.output_file + ".log"
if args.db_file:
project.db_file = args.db_file
if args.log_file:
log_file = args.log_file
setup_logging(enable=args.log_enable, filename=log_file, level=args.log_level)
@ -246,6 +248,7 @@ class Args(object):
self.seed_limit = 0
self.data_dir = ""
self.output_file = output_file
self.db_file = ""
self.time_limit = 24.0
self.keep_files = files.FILE_CATEGORIES_TO_KEEP
self.keep_best = 10
@ -272,7 +275,7 @@ def get_cli_parser(default_args=None):
1) a project class derived from pmsco.project.Project.
the class implements/overrides all necessary methods of the calculation project,
in particular create_domain, create_cluster, and create_params.
in particular create_model_space, create_cluster, and create_params.
2) a global function named create_project.
the function accepts a namespace object from the argument parser.
@ -307,6 +310,8 @@ def get_cli_parser(default_args=None):
'default: working directory')
parser.add_argument('-o', '--output-file', default=default_args.output_file,
help='base path for intermediate and output files.')
parser.add_argument('-b', '--db-file', default=default_args.db_file,
help='name of an sqlite3 database file where the results should be stored.')
parser.add_argument('--table-file',
help='path and name of population table file for table optimization mode. ' +
'the file must have the same structure as the .pop or .dat files.')
@ -321,7 +326,7 @@ def get_cli_parser(default_args=None):
parser.add_argument('--keep-levels', type=int, choices=range(5),
default=default_args.keep_levels,
help='task level down to which result files of best models are kept. '
'0 = model, 1 = scan, 2 = symmetry, 3 = emitter, 4 = region.')
'0 = model, 1 = scan, 2 = domain, 3 = emitter, 4 = region.')
parser.add_argument('-t', '--time-limit', type=float, default=default_args.time_limit,
help='wall time limit in hours. the optimizers try to finish before the limit.')
parser.add_argument('--log-file', default=default_args.log_file,

View File

@ -4,7 +4,7 @@ project-independent classes which store and handle model parameters.
the most important class defined here is Project.
each calculation project needs to derive its own project class from it.
the Domain and Params classes are typically used unchanged.
the ModelSpace and CalculatorParams classes are typically used unchanged.
@note nomenclature: the term @e parameters has several meanings in the code and documentation.
the following distinctive terms are used in updated documentation sections.
@ -53,10 +53,10 @@ from pmsco.helpers import BraceMessage as BMsg
logger = logging.getLogger(__name__)
ParamDomain = collections.namedtuple('ParamDomain', ['start', 'min', 'max', 'step'])
ParamSpace = collections.namedtuple('ParamSpace', ['start', 'min', 'max', 'step'])
class Domain(object):
class ModelSpace(object):
"""
Domain of model parameters.
@ -151,14 +151,14 @@ class Domain(object):
@param name (string) name of the parameter.
@return named tuple ParamDomain(start, min, max, step) of the parameter.
@return named tuple ParamSpace(start, min, max, step) of the parameter.
@raise IndexError if the parameter is not defined.
"""
return ParamDomain(self.start[name], self.min[name], self.max[name], self.step[name])
return ParamSpace(self.start[name], self.min[name], self.max[name], self.step[name])
class Params(object):
class CalculatorParams(object):
"""
calculation parameters for a single scattering calculation job.
@ -166,7 +166,7 @@ class Params(object):
the class can hold parameters for both the MSC and EDAC codes.
some parameters are used by both codes, others are used just by one of them.
newer features such as multiple emitters, multiple symmetries, and others are supported in EDAC mode only.
newer features such as multiple emitters, multiple domains, and others are supported in EDAC mode only.
MSC mode is currently not maintained.
objects of this class are created by the implementation of the create_params() method
@ -253,7 +253,7 @@ class Params(object):
def __init__(self):
self.title = "default parameters"
self.comment = "set by project.Params()"
self.comment = "set by project.CalculatorParams()"
self.cluster_file = ""
self.output_file = ""
self.scan_file = ""
@ -580,7 +580,7 @@ class Project(object):
the results include a measure of the quality of the simulated data compared to experimental data.
each calculation project must derive from this class.
it must implement the create_domain(), create_cluster(), and create_params() methods.
it must implement the create_model_space(), create_cluster(), and create_params() methods.
the other methods and attributes of this class
are for passing command line parameters to the calculation modules.
@ -621,14 +621,14 @@ class Project(object):
#
# @c scans must be considered read-only. use project methods to change it.
## @var symmetries (list of arbitrary objects)
# list of symmetries for which calculations are to be run.
## @var domains (list of arbitrary objects)
# list of domains for which calculations are to be run.
#
# it is up to the derived class what kind of objects are stored in the list.
# the recommended kind of objects are dictionaries which hold parameter values,
# similar to the model dictionaries.
#
# the list must be populated by calling the add_symmetry() method.
# the list must be populated by calling the add_domain() method.
## @var cluster_generator (ClusterGenerator object)
# provides the cluster generator methods.
@ -684,6 +684,11 @@ class Project(object):
#
# output_dir and output_file are set at once by @ref set_output.
## @var db_file (string)
# name of an sqlite3 database file where the calculation results should be stored.
#
# the default value is ':memory:', which creates a volatile in-memory database.
## @var timedelta_limit (datetime.timedelta)
# wall time after which no new calculations should be started.
#
@ -715,7 +720,7 @@ class Project(object):
#
# @arg 0 = model level: combined results only.
# @arg 1 = scan level: scan nodes in addition to combined results (level 0).
# @arg 2 = symmetry level: symmetry nodes in addition to level 1.
# @arg 2 = domain level: domain nodes in addition to level 1.
# @arg 3 = emitter level: emitter nodes in addition to level 1.
# @arg 4 = region level: region nodes in addition to level 1.
@ -738,13 +743,14 @@ class Project(object):
def __init__(self):
self.mode = "single"
self.job_name = ""
self.job_tags = {}
self.git_hash = ""
self.description = ""
self.features = {}
self.cluster_format = mc.FMT_EDAC
self.cluster_generator = mc.LegacyClusterGenerator(self)
self.scans = []
self.symmetries = []
self.domains = []
self.optimizer_params = {
'pop_size': 0,
'seed_file': "",
@ -755,6 +761,7 @@ class Project(object):
self.data_dir = ""
self.output_dir = ""
self.output_file = "pmsco_data"
self.db_file = ':memory:'
self.timedelta_limit = datetime.timedelta(days=1)
self.combined_scan = None
self.combined_modf = None
@ -764,7 +771,7 @@ class Project(object):
self.handler_classes = {
'model': handlers.SingleModelHandler,
'scan': handlers.ScanHandler,
'sym': handlers.SymmetryHandler,
'domain': handlers.DomainHandler,
'emit': handlers.EmitterHandler,
'region': handlers.SingleRegionHandler
}
@ -773,27 +780,27 @@ class Project(object):
self._tasks_fields = []
self._db = database.ResultsDatabase()
def create_domain(self):
def create_model_space(self):
"""
create a msc_project.Domain object which defines the allowed range for model parameters.
create a project.ModelSpace object which defines the allowed range for model parameters.
this method must be implemented by the actual project class.
the Domain object must declare all model parameters used in the project.
the ModelSpace object must declare all model parameters used in the project.
@return Domain object
@return ModelSpace object
"""
return None
def create_params(self, model, index):
"""
create a Params object given the model parameters and calculation index.
create a CalculatorParams object given the model parameters and calculation index.
@param model (dictionary) model parameters to be used in the calculation.
@param index (named tuple CalcID) calculation index.
the method should consider only the following attributes:
@arg @c scan scan index (index into Project.scans)
@arg @c sym symmetry index (index into Project.symmetries)
@arg `scan` scan index (index into Project.scans)
@arg `domain` domain index (index into Project.domains)
"""
return None
@ -896,35 +903,35 @@ class Project(object):
return scan
def clear_symmetries(self):
def clear_domains(self):
"""
clear symmetries.
clear domains.
delete all symmetries in self.symmetries and empty the list.
delete all domains in self.domains and empty the list.
@return: None
"""
self.symmetries = []
self.domains = []
def add_symmetry(self, symmetry):
def add_domain(self, domain):
"""
add a symmetry to the list of symmetries.
add a domain to the list of domains.
this class declares the list of symmetries.
it does not define what should be in the list of symmetries.
however, there must be an entry for each symmetry to be calculated.
this class declares the list of domains.
it does not define what should be in the list of domains.
however, there must be an entry for each domain to be calculated.
if the list is empty, no calculation will be executed.
@attention initially, the symmetries list is empty.
your project needs to add at least one symmetry.
@attention initially, the domains list is empty.
your project needs to add at least one domain.
otherwise, no calculation will be executed.
@param symmetry: it is up to the derived project class to specify and interpret the data stored here.
it is recommended to store a dictionary with symmetry parameters similar to the model parameters.
@param domain: it is up to the derived project class to specify and interpret the data stored here.
it is recommended to store a dictionary with domain parameters similar to the model parameters.
@return: None
"""
self.symmetries.append(symmetry)
self.domains.append(domain)
def set_output(self, filename):
"""
@ -938,14 +945,29 @@ class Project(object):
self.output_file = filename
path, name = os.path.split(filename)
self.output_dir = path
self.job_name = name
def set_timedelta_limit(self, timedelta):
def set_timedelta_limit(self, timedelta, margin_minutes=10):
"""
set the walltime limit
timedelta (datetime.timedelta)
set the walltime limit with a safety margin.
this method sets the internal self.timedelta_limit attribute.
by default, a safety margin of 10 minutes is subtracted to the main argument
in order to increase the probability that the process ends in time.
if this is not wanted, the project class may override the method and provide its own margin.
the method is typically called with the command line time limit from the main module.
@note the safety margin could be applied at various levels.
it is done here because it can easily be overridden by the project subclass.
to keep run scripts simple, the command line can be given the same time limit
as the job scheduler of the computing cluster.
@param timedelta: (datetime.timedelta) max. duration of the calculation process (wall time).
@param margin_minutes: (int) safety margin in minutes to subtract from timedelta.
"""
self.timedelta_limit = timedelta
self.timedelta_limit = timedelta - datetime.timedelta(minutes=margin_minutes)
def log_project_args(self):
"""
@ -970,38 +992,40 @@ class Project(object):
logger.warning("data directory: {0}".format(self.data_dir))
logger.warning("output file: {0}".format(self.output_file))
logger.warning("database: {0}".format(self.db_file))
_files_to_keep = files.FILE_CATEGORIES - self.files.categories_to_delete
logger.warning("intermediate files to keep: {0}".format(", ".join(_files_to_keep)))
for idx, scan in enumerate(self.scans):
logger.warning(BMsg("scan {0}: {filename} ({emitter} {initial_state})", idx, **vars(scan)))
for idx, sym in enumerate(self.symmetries):
logger.warning(BMsg("symmetry {0}: {sym}", idx, sym=sym))
logger.warning(f"scan {idx}: {scan.filename} ({scan.emitter} {scan.initial_state}")
for idx, dom in enumerate(self.domains):
logger.warning(f"domain {idx}: {dom}")
except AttributeError:
logger.warning("AttributeError in log_project_args")
def combine_symmetries(self, parent_task, child_tasks):
def combine_domains(self, parent_task, child_tasks):
"""
combine results of different symmetry into one result and calculate the modulation function.
combine results of different domain into one result and calculate the modulation function.
the symmetry results are read from the file system using the indices defined by the child_tasks,
the domain results are read from the file system using the indices defined by the child_tasks,
and the combined result is written to the file system with the index defined by parent_task.
by default, this method adds all symmetries with equal weight.
weights can be defined in the model dictionary with keys 'wsym0', 'wsym1', etc.
by default, this method adds all domains with equal weight.
weights can be defined in the model dictionary with keys 'wdom0', 'wdom1', etc.
missing weights default to 1.
note: to avoid correlated parameters, one symmetry must always have a fixed weight.
to avoid correlated parameters, one domain must always have a fixed weight.
it is recommended to leave 'wdom0' at its default.
@param parent_task: (CalculationTask) parent task of the symmetry tasks.
@param parent_task: (CalculationTask) parent task of the domain tasks.
the method must write the results to the files indicated
by the @c result_filename and @c modf_filename attributes.
@param child_tasks: (sequence of CalculationTask) tasks which identify each symmetry.
@param child_tasks: (sequence of CalculationTask) tasks which identify each domain.
the method must read the source data from the files
indicated by the @c result_filename attributes.
the sequence is sorted by task ID, i.e., essentially, by symmetry index.
the sequence is sorted by task ID, i.e., essentially, by domain index.
@return: None
@ -1009,7 +1033,7 @@ class Project(object):
@raise IOError if a filename is missing
@note the weights of the symmetries (in derived classes) can be part of the optimizable model parameters.
@note the weights of the domains (in derived classes) can be part of the optimizable model parameters.
the model parameters are available as the @c model attribute of the calculation tasks.
"""
@ -1021,7 +1045,7 @@ class Project(object):
result_data = data.copy()
result_data['i'] = 0.
try:
weight = task.model['wsym{}'.format(task.id.sym)]
weight = task.model['wdom{}'.format(task.id.domain)]
except KeyError:
weight = 1.
result_data['i'] += weight * data['i']
@ -1212,9 +1236,12 @@ class Project(object):
this instance writes the header of the tasks.dat file
that will receive sub-task evaluation results from the evaluate_result() method.
it also initializes the database where the task results will be stored.
this is either a volatile in-memory database or a user-specified sqlite3 database file.
@param handlers: dictionary listing the initialized task handler instances.
the dictionary keys are the attribute names of pmsco.dispatch.CalcID:
'model', 'scan', 'sym', 'emit' and 'region'.
'model', 'scan', 'domain', 'emit' and 'region'.
@return: None
"""
@ -1223,8 +1250,8 @@ class Project(object):
fields.extend(dispatch.CalcID._fields)
fields.append("secs")
fields = ["_" + f for f in fields]
dom = self.create_domain()
model_fields = list(dom.start.keys())
mspace = self.create_model_space()
model_fields = list(mspace.start.keys())
model_fields.sort(key=lambda name: name.lower())
fields.extend(model_fields)
self._tasks_fields = fields
@ -1234,9 +1261,10 @@ class Project(object):
outfile.write(" ".join(fields))
outfile.write("\n")
# todo : change to file-database
self._db.connect(":memory:")
project_id = self._db.register_project(self.__class__.__name__, sys.argv[0])
self._db.connect(self.db_file)
project_name = self.__class__.__name__
project_module = self.__class__.__module__
project_id = self._db.register_project(project_name, project_module)
job_id = self._db.register_job(project_id,
self.job_name,
self.mode,
@ -1244,6 +1272,9 @@ class Project(object):
self.git_hash,
datetime.datetime.now(),
self.description)
logger.debug(BMsg("database {db_file}, project {proj}, job {job}",
db_file=self.db_file, proj=project_id, job=job_id))
self._db.insert_jobtags(job_id, self.job_tags)
self._db.register_params(model_fields)
self._db.create_models_view()
@ -1283,7 +1314,8 @@ class Project(object):
with open(self.output_file + ".tasks.dat", "a") as outfile:
outfile.write(" ".join(format(value) for value in values_list) + "\n")
self._db.insert_result(parent_task.id, values_dict)
db_id = self._db.insert_result(parent_task.id, values_dict)
logger.debug(BMsg("model {model}, database result {db_id}", model=parent_task.id.model, db_id=db_id))
return None
@ -1529,7 +1561,7 @@ class Project(object):
"""
project hook before atomic scattering factors are calculated.
this method derives modified Params and Cluster objects for the atomic scattering calculation
this method derives modified CalculatorParams and Cluster objects for the atomic scattering calculation
from the original objects that will be used in the multiple scattering calculation.
in the basic version, the method does not change the objects
@ -1542,7 +1574,7 @@ class Project(object):
or None if no global scattering factors should be calculated.
do not modify this object!
@param par: @ref pmsco.project.Params object representing the preliminary
@param par: @ref pmsco.project.CalculatorParams object representing the preliminary
multiple scattering input parameters of the current task.
the method can make modifications to this object instance directly.
@ -1565,7 +1597,7 @@ class Project(object):
"""
project hook after atomic scattering factors are calculated.
this method cleans up the Params and Cluster objects from the atomic scattering calculation
this method cleans up the CalculatorParams and Cluster objects from the atomic scattering calculation
so that they can be used in the multiple scattering calculation.
in the basic version, the method just passes the input parameters for model tasks
@ -1578,7 +1610,7 @@ class Project(object):
(to calculate the fixed scattering factors that will be used for all models)
or None if no global scattering factors should be calculated.
@param par: @ref pmsco.project.Params object representing the preliminary
@param par: @ref pmsco.project.CalculatorParams object representing the preliminary
multiple scattering input parameters of the current task.
@param clu: @ref pmsco.cluster.Cluster object representing the preliminary
@ -1597,18 +1629,18 @@ class Project(object):
def cleanup(self):
"""
delete unwanted files at the end of a project.
delete unwanted files at the end of a project and close the database.
@return: None
"""
self.cleanup_files()
self.cleanup_files(incomplete_models=True)
self._db.disconnect()
def cleanup_files(self, keep=0):
def cleanup_files(self, keep=0, incomplete_models=False):
"""
delete uninteresting files.
delete uninteresting files (any time).
these are all files that
delete all files that
belong to one of the self.files.categories_to_delete categories or
do not belong to one of the "best" models.
@ -1619,12 +1651,19 @@ class Project(object):
this means that in total up to `n = 10 + 10 * n_scans` models may be kept,
where n_scans is the number of scan files in the job.
this method can be called at any time during the calculation process.
it executes on complete models only
unless incomplete_models is True.
@param keep: minimum number of best models to keep.
0 (default): use the project parameter self.keep_best.
@param incomplete_models: (bool) delete files of incomplete models as well.
by default (False), incomplete models are not deleted.
@return None
"""
self.files.delete_files()
self.files.delete_files(incomplete_models=incomplete_models)
if 'rfac' in self.files.categories_to_delete:
keep = max(keep, self.keep_best)
keepers = self._db.query_best_task_models(self.keep_levels, keep)