igor-public/pearl/pearl-vector-operations.ipf

136 lines
3.8 KiB
Igor

#pragma rtGlobals=3
#pragma version = 2.0
#pragma IgorVersion = 6.1
#pragma ModuleName = PearlVectorOperations
// author: matthias.muntwiler@psi.ch
// Copyright (c) 2011-13 Paul Scherrer Institut
// $Id$
function rotate2d_x(xx, yy, angle)
// rotates a 2D cartesian vector and returns its x component
variable xx, yy
variable angle // rotation angle in degrees
return xx * cos(angle * pi / 180) - yy * sin(angle * pi / 180)
end
function rotate2d_y(xx, yy, angle)
// rotates a 2D cartesian vector and returns its y component
variable xx, yy
variable angle // rotation angle in degrees
return xx * sin(angle * pi / 180) + yy * cos(angle * pi / 180)
end
function /wave create_rotation_matrix_free()
// creates a matrix which represents a 3-vector rotation
// the matrix is initialized as identity
make /n=(3,3)/free matrix
matrix = p == q // identity
return matrix
end
function /wave set_rotation_x(matrix, angle)
// calculates a matrix representing a 3-vector rotation around the x axis
wave matrix // rotation matrix
variable angle // rotation angle in degrees
variable si = sin(angle * pi / 180)
variable co = cos(angle * pi / 180)
matrix[1][1] = co
matrix[2][2] = co
matrix[2][1] = si
matrix[1][2] = -si
return matrix
end
function /wave set_rotation_y(matrix, angle)
// calculates a matrix representing a 3-vector rotation around the y axis
wave matrix // rotation matrix
variable angle // rotation angle in degrees
variable si = sin(angle * pi / 180)
variable co = cos(angle * pi / 180)
matrix[0][0] = co
matrix[2][2] = co
matrix[0][2] = si
matrix[2][0] = -si
return matrix
end
function /wave set_rotation_z(matrix, angle)
// calculates a matrix representing a 3-vector rotation around the z axis
wave matrix // rotation matrix
variable angle // rotation angle in degrees
variable si = sin(angle * pi / 180)
variable co = cos(angle * pi / 180)
matrix[0][0] = co
matrix[1][1] = co
matrix[1][0] = si
matrix[0][1] = -si
return matrix
end
function rotate_x_wave(inout, angle)
// rotates a wave of 3-vectors about the x axis
wave inout // wave with dimensions (3, N), N >= 1, (x, y, z)
// result will be in same wave
variable angle // rotation angle in degrees
wave m_rotation_x = create_rotation_matrix_free()
make /n=3/d/free w_temp_rotate_x
variable ivec, nvec
nvec = max(DimSize(inout, 1), 1)
for (ivec = 0; ivec < nvec; ivec += 1)
set_rotation_x(m_rotation_x, angle)
w_temp_rotate_x = inout[p][ivec]
matrixop /free w_temp_rotate_x_result = m_rotation_x x w_temp_rotate_x
inout[][ivec] = w_temp_rotate_x_result[p]
endfor
end
function rotate_y_wave(inout, angle)
// rotates a wave of 3-vectors about the y axis
wave inout // wave with dimensions (3, N), N >= 1, (x, y, z)
// result will be in same wave
variable angle // rotation angle in degrees
wave m_rotation_y = create_rotation_matrix_free()
make /n=3/d/free w_temp_rotate_y
variable ivec, nvec
nvec = max(DimSize(inout, 1), 1)
for (ivec = 0; ivec < nvec; ivec += 1)
set_rotation_y(m_rotation_y, angle)
w_temp_rotate_y = inout[p][ivec]
matrixop /free w_temp_rotate_y_result = m_rotation_y x w_temp_rotate_y
inout[][ivec] = w_temp_rotate_y_result[p]
endfor
end
function rotate_z_wave(inout, angle)
// rotates a wave of 3-vectors about the z axis
wave inout // wave with dimensions (3, N), N >= 1, (x, y, z)
// result will be in same wave
variable angle // rotation angle in degrees
wave m_rotation_z = create_rotation_matrix_free()
make /n=3/d/free w_temp_rotate_z
variable ivec, nvec
nvec = max(DimSize(inout, 1), 1)
for (ivec = 0; ivec < nvec; ivec += 1)
set_rotation_z(m_rotation_z, angle)
w_temp_rotate_z = inout[p][ivec]
matrixop /free w_temp_rotate_z_result = m_rotation_z x w_temp_rotate_z
inout[][ivec] = w_temp_rotate_z_result[p]
endfor
end