igor-public/pearl/pearl-fitfuncs.ipf
matthias muntwiler c8a69460bc updates: igor 7, map projections, hemi cuts, longitudinal section
- pearl procedures compile under igor 7.
  some features may not work, e.g. 3D graphics with gizmo.
- add orthographic map projection to angle scans.
- add functions for azimuthal and polar cuts through hemispherical scan.
- add function to load longitudinal section from pshell data file.
2016-10-14 16:56:20 +02:00

717 lines
22 KiB
Igor

#pragma rtGlobals=3 // Use modern global access method and strict wave access.
#pragma IgorVersion = 6.2
#pragma ModuleName = PearlFitFuncs
#pragma version = 1.01
#include "mm-physconst", version >= 1.05
// various fit functions for photoelectron spectroscopy
// $Id$
// author: matthias.muntwiler@psi.ch
// Copyright (c) 2013-14 Paul Scherrer Institut
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//------------------------------------------------------------------------------
// Doniach-Sunjic fit functions
//------------------------------------------------------------------------------
threadsafe function DoniachSunjic(x, amp, pos, sing, fwhm)
// Doniach-Sunjic line shape
// [S. Doniach, M. Sunjic, J. Phys. C 3 (1970) 285]
variable x // independent variable
variable amp // amplitude
variable pos // position
variable sing // singularity index (0 <= sing < 1)
variable fwhm // width
variable nom, denom
nom = cos(pi * sing / 2 + (1 - sing) * atan((x - pos) / fwhm * 2))
denom = ((x - pos)^2 + fwhm^2 / 4)^((1 - sing) / 2)
return amp * nom / denom * fwhm / 2
end
threadsafe function ds1_bg(w, x): FitFunc
// Doniach-Sunjic fit function
// 0 <= sing < 1
wave w // coefficients - see below
variable x // independent variable
//CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will
//CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog.
//CurveFitDialog/ Equation:
//CurveFitDialog/ f(x) = DoniachSunjic(x, amp, pos, sing, fwhm) + bg
//CurveFitDialog/ End of Equation
//CurveFitDialog/ Independent Variables 1
//CurveFitDialog/ x
//CurveFitDialog/ Coefficients 5
//CurveFitDialog/ w[0] = bg
//CurveFitDialog/ w[1] = amp
//CurveFitDialog/ w[2] = pos
//CurveFitDialog/ w[3] = sing
//CurveFitDialog/ w[4] = FWHM
return DoniachSunjic(x, w[1], w[2], w[3], w[4]) + w[0]
end
threadsafe function ds2_bg(w,x) : FitFunc
Wave w
Variable x
//CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will
//CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog.
//CurveFitDialog/ Equation:
//CurveFitDialog/ f(x) = w_0+( w_1*cos(pi*w_3/2+(1-w_3)*atan((x-w_2)/w_4)))/(((x-w_2)^2+w_4^2)^((1-w_3)/2)) +(w_5*cos(pi*w_7/2+(1-w_7)*atan((x-(w_6))/w_8)))/(((x-w_6)^2+w_8^2)^((1-w_7)/2))
//CurveFitDialog/ End of Equation
//CurveFitDialog/ Independent Variables 1
//CurveFitDialog/ x
//CurveFitDialog/ Coefficients 9
//CurveFitDialog/ w[0] = bg
//CurveFitDialog/ w[1] = amp1
//CurveFitDialog/ w[2] = pos1
//CurveFitDialog/ w[3] = sing1
//CurveFitDialog/ w[4] = wid1
//CurveFitDialog/ w[5] = amp2
//CurveFitDialog/ w[6] = pos2
//CurveFitDialog/ w[7] = sing2
//CurveFitDialog/ w[8] = wid2
variable ds1 = DoniachSunjic(x, w[1], w[2], w[3], w[4])
variable ds2 = DoniachSunjic(x, w[5], w[6], w[7], w[8])
return w[0] + ds1 + ds2
End
Function ds4_bg(w,x) : FitFunc
Wave w
Variable x
//CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will
//CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog.
//CurveFitDialog/ Equation:
//CurveFitDialog/ f(x) = w_0+( w_1*cos(pi*w_3/2+(1-w_3)*atan((x-w_2)/w_4)))/(((x-w_2)^2+w_4^2)^((1-w_3)/2)) +(w_5*cos(pi*w_7/2+(1-w_7)*atan((x-(w_6))/w_8)))/(((x-w_6)^2+w_8^2)^((1-w_7)/2)) +( w_9*cos(pi*w_11/2+(1-w_11)*atan((x-w_10)/w_12)))/(((x-w_10)^2+w_12^2)^((1-w_11)/2)) +( w_13*cos(pi*w_15/2+(1-w_15)*atan((x-w_14)/w_16)))/(((x-w_14)^2+w_16^2)^((1-w_15)/2))
//CurveFitDialog/ End of Equation
//CurveFitDialog/ Independent Variables 1
//CurveFitDialog/ x
//CurveFitDialog/ Coefficients 17
//CurveFitDialog/ w[0] = w_0
//CurveFitDialog/ w[1] = w_11
//CurveFitDialog/ w[2] = w_12
//CurveFitDialog/ w[3] = w_13
//CurveFitDialog/ w[4] = w_14
//CurveFitDialog/ w[5] = w_21
//CurveFitDialog/ w[6] = w_22
//CurveFitDialog/ w[7] = w_23
//CurveFitDialog/ w[8] = w_24
//CurveFitDialog/ w[9] = w_31
//CurveFitDialog/ w[10] = w_32
//CurveFitDialog/ w[11] = w_33
//CurveFitDialog/ w[12] = w_34
//CurveFitDialog/ w[13] = w_41
//CurveFitDialog/ w[14] = w_42
//CurveFitDialog/ w[15] = w_43
//CurveFitDialog/ w[16] = w_44
Variable ds1, ds2, ds3, ds4
ds1=( w[1]*cos(pi*w[3]/2+(1-w[3])*atan((x-w[2])/w[4])))/(((x-w[2])^2+w[4]^2)^((1-w[3])/2))
ds2=( w[5]*cos(pi*w[7]/2+(1-w[7])*atan((x-w[6])/w[8])))/(((x-w[6])^2+w[8]^2)^((1-w[7])/2))
ds3=( w[9]*cos(pi*w[11]/2+(1-w[11])*atan((x-w[10])/w[12])))/(((x-w[10])^2+w[12]^2)^((1-w[11])/2))
ds4=( w[13]*cos(pi*w[15]/2+(1-w[15])*atan((x-w[14])/w[16])))/(((x-w[14])^2+w[16]^2)^((1-w[15])/2))
return w[0]+ds1+ds2+ds3+ds4
End
Function ds6_bg(w,x) : FitFunc
Wave w
Variable x
//CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will
//CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog.
//CurveFitDialog/ Equation:
//CurveFitDialog/
//CurveFitDialog/ Variable g, ds1, ds2, ds3, ds4, ds5, ds6
//CurveFitDialog/ ds1=( w_11*cos(pi*w_13/2+(1-w_13)*atan((x-w_12)/w_14)))/(((x-w_12)^2+w_14^2)^((1-w_13)/2))
//CurveFitDialog/ ds2=( w_21*cos(pi*w_23/2+(1-w_23)*atan((x-w_22)/w_24)))/(((x-w_22)^2+w_24^2)^((1-w_23)/2))
//CurveFitDialog/ ds3=( w_31*cos(pi*w_33/2+(1-w_33)*atan((x-w_32)/w_34)))/(((x-w_32)^2+w_34^2)^((1-w_33)/2))
//CurveFitDialog/ ds4=( w_41*cos(pi*w_43/2+(1-w_43)*atan((x-w_42)/w_44)))/(((x-w_42)^2+w_44^2)^((1-w_43)/2))
//CurveFitDialog/ ds5=( w_51*cos(pi*w_53/2+(1-w_53)*atan((x-w_52)/w_54)))/(((x-w_52)^2+w_54^2)^((1-w_53)/2))
//CurveFitDialog/ ds6=( w_61*cos(pi*w_63/2+(1-w_63)*atan((x-w_62)/w_64)))/(((x-w_62)^2+w_64^2)^((1-w_63)/2))
//CurveFitDialog/
//CurveFitDialog/ f(x) =w_0+ds1+ds2+ds3+ds4+ds5+ds6
//CurveFitDialog/
//CurveFitDialog/ End of Equation
//CurveFitDialog/ Independent Variables 1
//CurveFitDialog/ x
//CurveFitDialog/ Coefficients 25
//CurveFitDialog/ w[0] = w_0
//CurveFitDialog/ w[1] = w_11
//CurveFitDialog/ w[2] = w_12
//CurveFitDialog/ w[3] = w_13
//CurveFitDialog/ w[4] = w_14
//CurveFitDialog/ w[5] = w_21
//CurveFitDialog/ w[6] = w_22
//CurveFitDialog/ w[7] = w_23
//CurveFitDialog/ w[8] = w_24
//CurveFitDialog/ w[9] = w_31
//CurveFitDialog/ w[10] = w_32
//CurveFitDialog/ w[11] = w_33
//CurveFitDialog/ w[12] = w_34
//CurveFitDialog/ w[13] = w_41
//CurveFitDialog/ w[14] = w_42
//CurveFitDialog/ w[15] = w_43
//CurveFitDialog/ w[16] = w_44
//CurveFitDialog/ w[17] = w_51
//CurveFitDialog/ w[18] = w_52
//CurveFitDialog/ w[19] = w_53
//CurveFitDialog/ w[20] = w_54
//CurveFitDialog/ w[21] = w_61
//CurveFitDialog/ w[22] = w_62
//CurveFitDialog/ w[23] = w_63
//CurveFitDialog/ w[24] = w_64
Variable ds1, ds2, ds3, ds4, ds5, ds6
ds1=( w[1]*cos(pi*w[3]/2+(1-w[3])*atan((x-w[2])/w[4])))/(((x-w[2])^2+w[4]^2)^((1-w[3])/2))
ds2=( w[5]*cos(pi*w[7]/2+(1-w[7])*atan((x-w[6])/w[8])))/(((x-w[6])^2+w[8]^2)^((1-w[7])/2))
ds3=( w[9]*cos(pi*w[11]/2+(1-w[11])*atan((x-w[10])/w[12])))/(((x-w[10])^2+w[12]^2)^((1-w[11])/2))
ds4=( w[13]*cos(pi*w[15]/2+(1-w[15])*atan((x-w[14])/w[16])))/(((x-w[14])^2+w[16]^2)^((1-w[15])/2))
ds5=( w[17]*cos(pi*w[19]/2+(1-w[19])*atan((x-w[18])/w[20])))/(((x-w[18])^2+w[20]^2)^((1-w[19])/2))
ds6=( w[21]*cos(pi*w[23]/2+(1-w[23])*atan((x-w[22])/w[24])))/(((x-w[22])^2+w[24]^2)^((1-w[23])/2))
return w[0]+ds1+ds2+ds3+ds4+ds5+ds6
End
structure DoniachSunjicStruct
// data structure for DoniachSunjicBroadS structural function fit
// waves populated by the FuncFit operation
wave pw
wave yw
wave xw
// convolution parameters to be set upon creation of the structure
variable precision
variable oversampling
// auxiliary fields used internally by DoniachSunjicBroadS
// do not touch these
wave xdw
wave model
wave broadening
wave convolution
EndStructure
//------------------------------------------------------------------------------
threadsafe function DoniachSunjicBroadS(s) : FitFunc
//------------------------------------------------------------------------------
// Two-peak (bulk + surface) Doniach-Sunjic line shape with Gaussian broadening (convolution).
// Hold parameter 5 at 0 to fit just one peak.
// Structural fit function for efficient fitting in procedures.
// Calculating the convolution requires auxiliary waves and additional, non-fitting parameters.
// To eliminate the time-consuming overhead of creating and killing the auxiliary waves,
// these waves are held in the fitting structure.
// Caution: The function on its own is thread-safe.
// However, since FuncFit uses the same structure in all threads, the fitting cannot run in parallel.
// Set /NTHR=1.
// See also Fit_DoniachSunjicBroad (example), DoniachSunjicBroad (conventional fit function)
Struct DoniachSunjicStruct &s
// pw[0] = bulk amplitude
// pw[1] = bulk position
// pw[2] = Lorentzian FWHM
// pw[3] = Donjach-Sunjic singularity index (0..1)
// pw[4] = surface shift
// pw[5] = surface/bulk ratio
// pw[6] = Gaussian FWHM
// pw[7] = constant background
// pw[8] = linear background
wave xw = s.xw
wave yw = s.yw
wave pw = s.pw
variable precision = s.precision
variable oversampling = s.oversampling
if (WaveExists(s.xdw))
wave xdw = s.xdw
wave model = s.model
wave broadening = s.broadening
wave convolution = s.convolution
else
make /n=0 /free xdw, model, broadening, convolution
redimension /d xdw, model, broadening, convolution
wave fs.xdw = xdw
wave fs.model = model
wave fs.broadening = broadening
wave fs.convolution = convolution
endif
// calculate wave spacing based on minimum spacing of desired x points
differentiate /p xw /d=xdw
xdw = abs(xdw)
variable xd = wavemin(xdw) / oversampling
// calculate broadening wave size based on width and precision variable
variable x0b = pw[6] * precision
variable nb = 2 * floor(x0b / xd) + 1
// calculate model size based on desired range for yw
variable x0m = max(abs(wavemax(xw) - pw[1]), abs(wavemin(xw) - pw[1])) + x0b
variable nm = 2 * floor(x0m / xd) + 1
nb = min(nb, nm * 10) // limit wave size to avoid runtime errors for unphysically large parameter
// create and calculate initial waves, normalize exponential
redimension /n=(nb) broadening
redimension /n=(nm) model
setscale/i x -x0b, x0b, "", broadening
setscale/i x -x0m, x0m, "", model
broadening = exp( - (x / pw[6])^2 * 4 * ln(2))
variable nrm = area(broadening)
broadening /= nrm
model = DoniachSunjic(x, 1, 0, pw[3], pw[2]) // bulk
model += DoniachSunjic(x, pw[5], pw[4], pw[3], pw[2]) // surface
// calculate the convolution
Convolve /a broadening, model
variable scale = pw[0] / wavemax(model)
model *= scale
// prepare output
nm = numpnts(model)
x0m = xd * (nm - 1) / 2
setscale/i x -x0m, x0m, "", model
yw = model(xw[p] - pw[1]) + pw[7] + pw[8] * xw[p]
yw = numtype(yw) ? 0 : yw
end
//------------------------------------------------------------------------------
function DoniachSunjicBroad(pw, yw, xw) : FitFunc
//------------------------------------------------------------------------------
// Two-peak (bulk + surface) Doniach-Sunjic line shape with Gaussian broadening (convolution).
// Hold parameter 5 at 0 to fit just one peak.
// Conventional fit function for use with the curve-fitting dialog.
// Compared to DoniachSunjicBroadS this function incurs extra overhead
// because auxiliary waves are created and killed between function calls.
// See also DoniachSunjicBroadS (optimized structural fit function)
Wave pw
Wave yw
Wave xw
// pw[0] = bulk amplitude
// pw[1] = bulk position
// pw[2] = Lorentzian FWHM
// pw[3] = Donjach-Sunjic singularity index (0..1)
// pw[4] = surface shift
// pw[5] = surface/bulk ratio
// pw[6] = Gaussian FWHM
// pw[7] = constant background
// pw[8] = linear background
// set up data structure
struct DoniachSunjicStruct fs
fs.precision = 5
fs.oversampling = 4
wave fs.pw = pw
wave fs.xw = xw
wave fs.yw = yw
// create temporary calculation waves in a global folder
dfref df = root:packages:pearl_fitfuncs:doniach_sunjic
if (DataFolderRefStatus(df) == 0)
newdatafolder root:packages:pearl_fitfuncs:doniach_sunjic
dfref df = root:packages:pearl_fitfuncs:doniach_sunjic
endif
wave /z /sdfr=df fs.xdw = xdw
wave /z /sdfr=df fs.model = model
wave /z /sdfr=df fs.broadening = broadening
wave /z /sdfr=df fs.convolution = convolution
if (WaveExists(fs.xdw) == 0)
dfref savedf = GetDataFolderDFR()
setdatafolder df
make /n=0 /d xdw, model, broadening, convolution
wave fs.xdw = xdw
wave fs.model = model
wave fs.broadening = broadening
wave fs.convolution = convolution
setdatafolder savedf
endif
// calculate
DoniachSunjicBroadS(fs)
yw = fs.yw
end
//------------------------------------------------------------------------------
function Calc_DoniachSunjicBroad(pw, yw)
//------------------------------------------------------------------------------
// Calculate the DoniachSunjicBroadS line shape
Wave pw // coefficient wave
Wave yw // output wave, correct x-scaling required on input
struct DoniachSunjicStruct fs
fs.precision = 5
fs.oversampling = 4
duplicate /free pw, fs.pw
duplicate /free yw, fs.xw
fs.xw = x
duplicate /free yw, fs.yw
DoniachSunjicBroadS(fs)
yw = fs.yw
end
//------------------------------------------------------------------------------
Function Fit_DoniachSunjicBroad(pw, yw, xw, ww)
//------------------------------------------------------------------------------
// Fit the DoniachSunjicBroadS line shape.
// The function applies constraints which assume that the energy scale is in eV.
// Returns chi^2.
wave pw // coefficient wave- pre-load it with initial guess
wave yw
wave /z xw
wave /z ww // weights (standard deviation)
struct DoniachSunjicStruct fs
fs.precision = 5
fs.oversampling = 4
duplicate /free pw, fs.pw
if (WaveExists(xw))
duplicate /free xw, fs.xw
else
duplicate /free yw, fs.xw
fs.xw = x
endif
duplicate /free yw, fs.yw
variable v_chisq = nan
variable V_FitMaxIters = 100
make /n=1 /t /free constraints = {"K0 >= 0", "K2 > 0", "K2 < 10", "K3 >= 0", "K3 < 1", "K4 >= -10", "K4 <= 10", "K5 >= 0", "K5 <= 1", "K6 >= 0", "K6 < 10"}
// note: only single thread allowed
FuncFit /NTHR=1 DoniachSunjicBroadS, pw, yw /X=xw /D /STRC=fs /C=constraints /NWOK /I=1 /W=ww
return v_chisq
End
//------------------------------------------------------------------------------
// peak-specific fit functions
//------------------------------------------------------------------------------
function Au4f(w, x): fitfunc
// fit function for a nitrogen 1s-pi* absorption spectrum
// modelled as multiple Voigt shapes on a constant background
// similar to the Igor VoigtFit function
// but with a constant gaussian width (instrumental broadening) for all peaks
// gaussian and lorentzian widths are specified as FWHM
wave w // parameters
// w[0] constant background
// w[1] linear background
// w[2] global gaussian FWHM
// w[3 + 0 + (n-1) * 3] peak n area
// w[3 + 1 + (n-1) * 3] peak n position
// w[3 + 2 + (n-1) * 3] peak n lorentzian FWHM
// length of wave defines number of peaks
// for compatibility with older code the linear background term can be omitted.
// if the number of parameters divides by 3, the linear background term is added,
// otherwise only the constant background.
variable x
variable np = 15
variable ip, ip0
variable bg = w[0]
variable v = bg
if (mod(np, 3) == 0)
v += w[1] * x
ip0 = 3
else
ip0 = 2
endif
variable vc1, vc2, vc3, vc4
vc2 = 2 * sqrt(ln(2)) / w[ip0-1]
for (ip = ip0; ip < np; ip += 3)
vc1 = w[ip] / sqrt(pi) * vc2
vc3 = w[ip+1]
vc4 = vc2 * w[ip+2] / 2
v += vc1 * VoigtFunc(vc2 * (x - vc3), vc4)
endfor
return v
end
function Au4f_2p2(w, x): fitfunc
// Au 4f 5/2 and 7/2 2-component Voigt fit with a common gaussian width
// gaussian and lorentzian widths are specified as FWHM
wave w // parameters
// w[0] constant background
// w[1] linear background
// w[2] global gaussian FWHM
// w[3] 5/2 bulk area
// w[4] 5/2 bulk position
// w[5] 5/2 lorentzian FWHM
// w[6] 7/2 bulk area
// w[7] 7/2 bulk position
// w[8] 7/2 lorentzian FWHM
// w[9] surface/bulk area ratio
// w[10] surface core level shift
variable x
variable bg = w[0] + w[1] * x
variable v = bg
variable vc1 // amplitude
variable vc2 // width
variable vc3 // position
variable vc4 // shape
vc2 = 2 * sqrt(ln(2)) / w[2]
// 5/2 bulk
vc1 = w[3] / sqrt(pi) * vc2
vc3 = w[4]
vc4 = vc2 * w[5] / 2
v += vc1 * VoigtFunc(vc2 * (x - vc3), vc4)
// 5/2 surface
vc1 = w[3] / sqrt(pi) * vc2 * w[9]
vc3 = w[4] + w[10]
vc4 = vc2 * w[5] / 2
v += vc1 * VoigtFunc(vc2 * (x - vc3), vc4)
// 7/2 bulk
vc1 = w[6] / sqrt(pi) * vc2
vc3 = w[7]
vc4 = vc2 * w[8] / 2
v += vc1 * VoigtFunc(vc2 * (x - vc3), vc4)
// 7/2 surface
vc1 = w[6] / sqrt(pi) * vc2 * w[9]
vc3 = w[7] + w[10]
vc4 = vc2 * w[8] / 2
v += vc1 * VoigtFunc(vc2 * (x - vc3), vc4)
return v
end
function ShowComponents_Au4f_2p2(coef_wave, fit_wave)
wave coef_wave
wave fit_wave
duplicate /free coef_wave, coef1, coef2
coef1[9] = 0
coef2[3] *= coef_wave[9]
coef2[4] += coef_wave[10]
coef2[6] *= coef_wave[9]
coef2[7] += coef_wave[10]
coef2[9] = 0
string s_fit_wave = NameOfWave(fit_wave)
string s_fit_p1 = s_fit_wave + "_p1"
string s_fit_p2 = s_fit_wave + "_p2"
duplicate /o fit_wave, $(s_fit_p1) /wave=fit_p1
duplicate /o fit_wave, $(s_fit_p2) /wave=fit_p2
fit_p1 = Au4f_2p2(coef1, x)
fit_p2 = Au4f_2p2(coef2, x)
string traces = TraceNameList("", ";", 1)
if ((WhichListItem(s_fit_wave, traces, ";") >= 0) && (WhichListItem(s_fit_p1, traces, ";") < 0))
appendtograph fit_p1, fit_p2
ModifyGraph lstyle($s_fit_p1)=2
ModifyGraph lstyle($s_fit_p2)=2
ModifyGraph rgb($s_fit_p1)=(0,0,65280)
ModifyGraph rgb($s_fit_p2)=(0,0,65280)
endif
end
function Au4f_2p3(w, x): fitfunc
// Au 4f 5/2 and 7/2 3-component Voigt fit with a common gaussian width
// gaussian and lorentzian widths are specified as FWHM
wave w // parameters
// w[0] constant background
// w[1] linear background
// w[2] global gaussian FWHM
// w[3] 5/2 bulk area
// w[4] 5/2 bulk position
// w[5] 5/2 lorentzian FWHM
// w[6] 7/2 bulk area
// w[7] 7/2 bulk position
// w[8] 7/2 lorentzian FWHM
// w[9] surface/bulk area ratio
// w[10] surface core level shift
// w[11] 2nd layer/bulk area ratio
// w[12] 2nd layer core level shift
variable x
variable bg = w[0] + w[1] * x
variable v = bg
variable vc1 // amplitude
variable vc2 // width
variable vc3 // position
variable vc4 // shape
vc2 = 2 * sqrt(ln(2)) / w[2]
// 5/2 bulk
vc1 = w[3] / sqrt(pi) * vc2
vc3 = w[4]
vc4 = vc2 * w[5] / 2
v += vc1 * VoigtFunc(vc2 * (x - vc3), vc4)
// 5/2 surface
vc1 = w[3] / sqrt(pi) * vc2 * w[9]
vc3 = w[4] + w[10]
vc4 = vc2 * w[5] / 2
v += vc1 * VoigtFunc(vc2 * (x - vc3), vc4)
// 5/2 2nd layer
vc1 = w[3] / sqrt(pi) * vc2 * w[11]
vc3 = w[4] + w[12]
vc4 = vc2 * w[5] / 2
v += vc1 * VoigtFunc(vc2 * (x - vc3), vc4)
// 7/2 bulk
vc1 = w[6] / sqrt(pi) * vc2
vc3 = w[7]
vc4 = vc2 * w[8] / 2
v += vc1 * VoigtFunc(vc2 * (x - vc3), vc4)
// 7/2 surface
vc1 = w[6] / sqrt(pi) * vc2 * w[9]
vc3 = w[7] + w[10]
vc4 = vc2 * w[8] / 2
v += vc1 * VoigtFunc(vc2 * (x - vc3), vc4)
// 7/2 2nd layer
vc1 = w[6] / sqrt(pi) * vc2 * w[11]
vc3 = w[7] + w[12]
vc4 = vc2 * w[8] / 2
v += vc1 * VoigtFunc(vc2 * (x - vc3), vc4)
return v
end
function ShowComponents_Au4f_2p3(coef_wave, fit_wave)
wave coef_wave
wave fit_wave
duplicate /free coef_wave, coef1, coef2, coef3
coef1[9] = 0
coef1[11] = 0
coef2[3] *= coef_wave[9]
coef2[4] += coef_wave[10]
coef2[6] *= coef_wave[9]
coef2[7] += coef_wave[10]
coef2[9] = 0
coef2[11] = 0
coef3[3] *= coef_wave[11]
coef3[4] += coef_wave[12]
coef3[6] *= coef_wave[11]
coef3[7] += coef_wave[12]
coef3[9] = 0
coef3[11] = 0
string s_fit_wave = NameOfWave(fit_wave)
string s_fit_p1 = s_fit_wave + "_p1"
string s_fit_p2 = s_fit_wave + "_p2"
string s_fit_p3 = s_fit_wave + "_p3"
duplicate /o fit_wave, $(s_fit_p1) /wave=fit_p1
duplicate /o fit_wave, $(s_fit_p2) /wave=fit_p2
duplicate /o fit_wave, $(s_fit_p3) /wave=fit_p3
fit_p1 = Au4f_2p2(coef1, x)
fit_p2 = Au4f_2p2(coef2, x)
fit_p3 = Au4f_2p2(coef3, x)
string traces = TraceNameList("", ";", 1)
if ((WhichListItem(s_fit_wave, traces, ";") >= 0) && (WhichListItem(s_fit_p1, traces, ";") < 0))
appendtograph fit_p1, fit_p2, fit_p3
ModifyGraph lstyle($s_fit_p1)=2
ModifyGraph lstyle($s_fit_p2)=2
ModifyGraph lstyle($s_fit_p3)=2
ModifyGraph rgb($s_fit_p1)=(0,0,65280)
ModifyGraph rgb($s_fit_p2)=(0,0,65280)
ModifyGraph rgb($s_fit_p3)=(0,0,65280)
endif
end
/// convolution of Fermi-Dirac distribution and a Gaussian.
///
/// @arg pw[0] = constant background
/// @arg pw[1] = linear background
/// @arg pw[2] = amplitude
/// @arg pw[3] = Fermi level in eV
/// @arg pw[4] = temperature in K
/// @arg pw[5] = gaussian width = FWHM / 1.66511
///
function FermiGaussConv(pw, yw, xw) : FitFunc
WAVE pw, yw, xw
// half width of temporary gaussian wave is pw[5] multiplied by this factor (may be fractional)
variable precision_g = 5
variable oversampling = 4
// calculate wave spacing based on minimum spacing of desired x points
duplicate /free xw, xdw
differentiate /p xw /d=xdw
xdw = abs(xdw)
variable xd = wavemin(xdw) / oversampling
// calculate gausswave size based on pw[5] and precision variable
variable x0g = abs(pw[5]) * precision_g
variable ng = 2 * floor(x0g / xd) + 1
// calculate fermiwave size based on desired range for yw
variable emax = wavemax(xw)
variable emin = wavemin(xw)
variable x0f = max(abs(emax - pw[3]), abs(emin - pw[3])) + x0g
variable ne = 2 * floor(x0f / xd) + 1
// create and calculate initial waves, normalize exponential
make /d /n=(ng) /free gausswave
make /d /n=(ne) /free fermiwave
setscale/i x -x0g, x0g, "", gausswave
setscale/i x -x0f, x0f, "", fermiwave
gausswave = exp( - (x / pw[5] )^2 )
fermiwave = 1 / (exp( x / (kBoltzmann * pw[4])) + 1.0 )
// calculate the convolution
duplicate /free fermiwave, resultwave
Convolve /a gausswave, resultwave
variable rmax = wavemax(resultwave)
resultwave /= rmax
// prepare output
ng = numpnts(resultwave)
x0g = xd * (ng - 1) / 2
setscale/i x -x0g, x0g, "", resultwave
yw = pw[2] * resultwave(xw[p] - pw[3]) + pw[0] + pw[1] * xw[p]
end