#!/usr/bin/env python # This Script creates a lookup table from the measured error CSV # Wayne Glettig, 16.7.2021 import rospy from sensor_msgs.msg import JointState import matplotlib.pyplot as plt import requests import time import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np DMS_X=[]; DMS_Y=[]; DMS_Z=[]; DMS_Seq=[]; DMS_Secs=[]; DMS_Nsecs=[]; OMEGA =0; def callback_LJUE9_JointState(data): global OMEGA OMEGA = data.position[0] def callback_readbackCAL_JointState(data): global DMS_X,DMS_Y,DMS_Z,DMS_Seq,DMS_Secs,DMS_Nsecs DMS_X.append(data.position[0]) DMS_Y.append(data.position[1]) DMS_Z.append(data.position[2]) DMS_Secs.append(data.header.stamp.secs) DMS_Nsecs.append(data.header.stamp.nsecs) DMS_Seq.append(data.header.seq) def set_axes_equal(ax): '''Make axes of 3D plot have equal scale so that spheres appear as spheres, cubes as cubes, etc.. This is one possible solution to Matplotlib's ax.set_aspect('equal') and ax.axis('equal') not working for 3D. Input ax: a matplotlib axis, e.g., as output from plt.gca(). ''' x_limits = ax.get_xlim3d() y_limits = ax.get_ylim3d() z_limits = ax.get_zlim3d() x_range = abs(x_limits[1] - x_limits[0]) x_middle = np.mean(x_limits) y_range = abs(y_limits[1] - y_limits[0]) y_middle = np.mean(y_limits) z_range = abs(z_limits[1] - z_limits[0]) z_middle = np.mean(z_limits) print (f"x_range: {x_range}") print (f"y_range: {y_range}") print (f"z_range: {z_range}") print (f"x_middle: {x_middle}") print (f"y_middle: {y_middle}") print (f"z_middle: {z_middle}") # The plot bounding box is a sphere in the sense of the infinity # norm, hence I call half the max range the plot radius. plot_radius = 0.5*max([x_range, y_range, z_range]) ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius]) ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius]) ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius]) def calculate_correction(VECT): current = VECT[0] centre = (max(VECT) + min(VECT))/2. correction = -(current-centre) print (f"MAX= {max(VECT)}, MIN= {min(VECT)}") print (f"current {current}") print (f"centre {centre}") print (f"CORRECTION: {correction}") #if __name__ == '__main__': smargopolo_server = "http://smargopolo:3000" response = requests.put(smargopolo_server+"/targetSCS?PHI=0") print ("Setting up ROS") #connect to ROS topics for OMEGA and DMS values: rospy.init_node('DMS_Recorder', anonymous=True) subsOMEGA=rospy.Subscriber("/LJUE9_JointState", JointState, callback_LJUE9_JointState) subsDMS =rospy.Subscriber("/readbackCAL", JointState, callback_readbackCAL_JointState) time.sleep(1) print ("Moving phi to -180deg") response = requests.put(smargopolo_server+"/targetSCS?PHI=-90") time.sleep(5) response = requests.put(smargopolo_server+"/targetSCS?PHI=-180") time.sleep(5) print ("moving to phi=180deg") response = requests.put(smargopolo_server+"/targetSCS?PHI=-90") time.sleep(5) response = requests.put(smargopolo_server+"/targetSCS?PHI=0") time.sleep(5) response = requests.put(smargopolo_server+"/targetSCS?PHI=90") time.sleep(5) response = requests.put(smargopolo_server+"/targetSCS?PHI=180") time.sleep(5) print ("moving to phi=0deg") response = requests.put(smargopolo_server+"/targetSCS?PHI=0") time.sleep(8) #stop ROS to stop measuring. rospy.signal_shutdown('finished measuring') print ("Stopped collecting data.") ################################################################################ fig = plt.figure() ax=fig.add_subplot(111, projection='3d') ax.plot(DMS_Z,DMS_X,DMS_Y) ax.set_xlabel("DMS_Z") ax.set_ylabel("DMS_X") ax.set_zlabel("DMS_Y") ax.plot(DMS_Z[0:1],DMS_X[0],DMS_Y[0], 'rx') set_axes_equal(ax) fig.show() fig2 = plt.figure() ax2=fig2.add_subplot(111) ax2.plot(DMS_X, label='DMS_X') ax2.plot(DMS_Y, label='DMS_Y') ax2.plot(DMS_Z, label='DMS_Z') ax2.legend() fig2.show() ################################################################################ calculate_correction(DMS_X) calculate_correction(DMS_Y) calculate_correction(DMS_Z)