#!/usr/bin/env python # This Script creates a lookup table from the measured error CSV # Wayne Glettig, 16.7.2021 # Uses pandas, because pandas is fast, and needs less CPU & RAM usage than regular numpy import pandas as pd from pandas import read_csv import matplotlib.pyplot as plt # Read in CSV File into DataFrame rawdf: rawdf = read_csv('measure_chi_rot_OUTPUT.csv') rawdf['time']=rawdf['DMS_Secs']+rawdf['DMS_Nsecs']*1e-9 #Joins s & ns columns to one float #rawdf['X']=(rawdf['DMS1']-6006337873)*1e-9 #Set X Offset and scale #rawdf['Y']=(rawdf['DMS2']+43285290)*1e-9 #Set Y Offset and scale #rawdf['Z']=(rawdf['DMS3']+169185962)*1e-9 #Set Z Offset and scale # Select Data Window and save to new DataFrame df: #df = rawdf[615:2219] df = rawdf # Create LUT: Average values per omega window lut = pd.DataFrame(columns=['CHI', 'LUT_X', 'LUT_Y', 'LUT_Z']) window = 3 # degrees for om in range(0,90, window): Xavg = df[(df.SCS_CHI>om)&(df.SCS_CHIom)&(df.SCS_CHIom)&(df.SCS_CHI