#include #include #include #include "NewGon.h" //#include "Motion.h" int initialize (NewGon * myGon) { //get ready to loop myGon->setName("WayneGon"); myGon->axis[0].setName("Axis_1"); myGon->axis[0].setUnitUsr("mm"); myGon->axis[0].setUnitCtr("nm"); myGon->axis[0].scale = 1; myGon->axis[0].offset = 0; myGon->axis[0].LimNeg = -2.; myGon->axis[0].LimPos = 2.; myGon->axis[0].maxSpeed = 100.; myGon->axis[0].minSpeed = 0.; myGon->axis[0].maxJogSpeed = 100.; myGon->axis[0].minJogSpeed = 0.; myGon->axis[0].moveSpeed = 10.; myGon->axis[0].jogSpeed = 10.; myGon->axis[1].setName("Axis_2"); myGon->axis[1].setUnitUsr("mm"); myGon->axis[1].setUnitCtr("nm"); myGon->axis[1].scale = 1; myGon->axis[1].offset = 0; myGon->axis[1].LimNeg = -2.; myGon->axis[1].LimPos = 2.; myGon->axis[1].maxSpeed = 100.; myGon->axis[1].minSpeed = 0.; myGon->axis[1].maxJogSpeed = 100.; myGon->axis[1].minJogSpeed = 0.; myGon->axis[1].moveSpeed = 10.; myGon->axis[1].jogSpeed = 10.; myGon->axis[2].setName("Axis_3"); myGon->axis[2].setUnitUsr("mm"); myGon->axis[2].setUnitCtr("nm"); myGon->axis[2].scale = 1; myGon->axis[2].offset = 0; myGon->axis[2].LimNeg = -2.; myGon->axis[2].LimPos = 2.; myGon->axis[2].maxSpeed = 100.; myGon->axis[2].minSpeed = 0.; myGon->axis[2].maxJogSpeed = 100.; myGon->axis[2].minJogSpeed = 0.; myGon->axis[2].moveSpeed = 10.; myGon->axis[2].jogSpeed = 10.; myGon->axis[3].setName("Axis_4"); myGon->axis[3].setUnitUsr("mm"); myGon->axis[3].setUnitCtr("nm"); myGon->axis[3].scale = 1; myGon->axis[3].offset = 0; myGon->axis[3].LimNeg = -2.; myGon->axis[3].LimPos = 2.; myGon->axis[3].maxSpeed = 100.; myGon->axis[3].minSpeed = 0.; myGon->axis[3].maxJogSpeed = 100.; myGon->axis[3].minJogSpeed = 0.; myGon->axis[3].moveSpeed = 10.; myGon->axis[3].jogSpeed = 10.; myGon->axis[4].setName("Axis_5"); myGon->axis[4].setUnitUsr("mm"); myGon->axis[4].setUnitCtr("nm"); myGon->axis[4].scale = 1; myGon->axis[4].offset = 0; myGon->axis[4].LimNeg = -2.; myGon->axis[4].LimPos = 2.; myGon->axis[4].maxSpeed = 100.; myGon->axis[4].minSpeed = 0.; myGon->axis[4].maxJogSpeed = 100.; myGon->axis[4].minJogSpeed = 0.; myGon->axis[4].moveSpeed = 10.; myGon->axis[4].jogSpeed = 10.; myGon->axis[5].setName("Axis_6"); myGon->axis[5].setUnitUsr("mm"); myGon->axis[5].setUnitCtr("nm"); myGon->axis[5].scale = 1; myGon->axis[5].offset = 0; myGon->axis[5].LimNeg = -2.; myGon->axis[5].LimPos = 2.; myGon->axis[5].maxSpeed = 100.; myGon->axis[5].minSpeed = 0.; myGon->axis[5].maxJogSpeed = 100.; myGon->axis[5].minJogSpeed = 0.; myGon->axis[5].moveSpeed = 10.; myGon->axis[5].jogSpeed = 10.; return 0; } #define NSEC_PER_SEC (1000000000) /* The number of nsecs per sec. */ static inline void tsnorm(struct timespec *ts) { while (ts->tv_nsec >= NSEC_PER_SEC) { ts->tv_nsec -= NSEC_PER_SEC; ts->tv_sec++; } } /* Subtract the ‘struct timeval’ values X and Y, (X-Y) Return 1 if the difference is negative, otherwise 0. */ int timespec_subtract (struct timespec *result, struct timespec *x, struct timespec *y) { /* Perform the carry for the later subtraction by updating y. */ if (x->tv_nsec < y->tv_nsec) { int n_sec = (y->tv_nsec - x->tv_nsec) / 1000000000 + 1; y->tv_nsec -= 1000000000 * n_sec; y->tv_sec += n_sec; } if (x->tv_nsec - y->tv_nsec > 1000000000) { int n_sec = (x->tv_nsec - y->tv_nsec) / 1000000000; y->tv_nsec += 1000000000 * n_sec; y->tv_sec -= n_sec; } /* Compute the time remaining to wait. tv_usec is certainly positive. */ result->tv_sec = x->tv_sec - y->tv_sec; result->tv_nsec = x->tv_nsec - y->tv_nsec; /* Return 1 if result is negative. */ return x->tv_sec < y->tv_sec; } int mainloop (NewGon * myGon) { //Variables for Loop Timing float period = 1000*1000; //in ns (1ms) static struct timespec t; long int loopcount=0; //Chronometry/statistics struct timespec t_toc, t_lasttoc, t_duration; double us_err, us_err_min=0, us_err_max=0, us_err_avg=0, us_err_rms=0; //Setup Loop Conditions int loopok = 1; clock_gettime(CLOCK_MONOTONIC, &t); //set t to current time while (loopok) { loopcount++; //Chronometry t_lasttoc = t_toc; clock_gettime(CLOCK_MONOTONIC, &t_toc); //TOC timespec_subtract (&t_duration, &t_toc, &t_lasttoc); //get duration us_err = ((t_duration.tv_nsec-period)/1000.); //in us if (loopcount > 2) { //do statistics, omit first 2 values if (us_err < us_err_min) us_err_min = us_err; if (us_err > us_err_max) us_err_max = us_err; us_err_avg = (us_err_avg*(loopcount-1)+us_err)/loopcount; us_err_rms = sqrt(((us_err_rms)*(us_err_rms)*(loopcount-1)+us_err*us_err)/loopcount); } if (!(loopcount%1)){ //print every n loops printf("%+5.2f [us] Min: %+5.2f [us] Max:%+5.2f [us] Avg:%+5.2f [us] RMS: %5.2f [us]\n",us_err, us_err_min, us_err_max, us_err_avg, us_err_rms); } //do stuff here: // stop loop after n cycles if (loopcount > 10000) loopok = 0; //Loop Timing t.tv_nsec += period; //add a period to the cycle tsnorm(&t); //reformat to ns //The famous sleep until next tick: clock_nanosleep(CLOCK_MONOTONIC, TIMER_ABSTIME, &t, &t); } return 0; } int finalize (NewGon * myGon) { return 0; } int main () { std::chrono::time_point start, end; start = std::chrono::high_resolution_clock::now(); //chrono start NewGon myGon; //Create Goniometer with 6 physical axes. initialize(&myGon); end = std::chrono::high_resolution_clock::now(); //chrono stop // myGon.print(); // Motion motion1(&myGon.axis[0]); //Create motion object for axis 1 linking to axis[0] // Motion motion2(&myGon.axis[1]); //Create motion object for axis 2 // Motion motion3(&myGon.axis[2]); //Create motion object for axis 3 // Motion motion4(&myGon.axis[3]); //Create motion object for axis 4 // Motion motion5(&myGon.axis[4]); //Create motion object for axis 5 // Motion motion6(&myGon.axis[5]); //Create motion object for axis 6 mainloop(&myGon); int elapsed_time = std::chrono::duration_cast (end-start).count(); std::time_t end_time = std::chrono::system_clock::to_time_t(end); std::cout << "finished computation at " << std::ctime(&end_time) << "elapsed time: " << elapsed_time << "us\n"; return 0; }