stand vor active correction routine
@@ -1,181 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# This Script creates a lookup table from the measured error CSV
|
||||
# Wayne Glettig, 16.7.2021
|
||||
|
||||
import rospy
|
||||
from sensor_msgs.msg import JointState
|
||||
import matplotlib.pyplot as plt
|
||||
import requests
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
import numpy as np
|
||||
import epics
|
||||
import csv
|
||||
import math
|
||||
|
||||
DMS_X=[];
|
||||
DMS_Y=[];
|
||||
DMS_Z=[];
|
||||
DMS_Seq=[];
|
||||
DMS_Secs=[];
|
||||
DMS_Nsecs=[];
|
||||
OMEGA_inst=0
|
||||
OMEGA=[];
|
||||
|
||||
def callback_LJUE9_JointState(data):
|
||||
|
||||
global OMEGA_inst
|
||||
OMEGA_inst = data.position[0]
|
||||
|
||||
|
||||
def callback_readbackCAL_JointState(data):
|
||||
|
||||
global OMEGA,DMS_X,DMS_Y,DMS_Z,DMS_Seq,DMS_Secs,DMS_Nsecs
|
||||
|
||||
DMS_X.append(data.position[0])
|
||||
DMS_Y.append(data.position[1])
|
||||
DMS_Z.append(data.position[2])
|
||||
DMS_Secs.append(data.header.stamp.secs)
|
||||
DMS_Nsecs.append(data.header.stamp.nsecs)
|
||||
DMS_Seq.append(data.header.seq)
|
||||
OMEGA.append(OMEGA_inst)
|
||||
|
||||
def getCurrentPoint():
|
||||
return [DMS_X[-1],DMS_Y[-1],DMS_Z[-1]]
|
||||
|
||||
|
||||
def set_axes_equal(ax):
|
||||
'''Make axes of 3D plot have equal scale so that spheres appear as spheres,
|
||||
cubes as cubes, etc.. This is one possible solution to Matplotlib's
|
||||
ax.set_aspect('equal') and ax.axis('equal') not working for 3D.
|
||||
|
||||
Input
|
||||
ax: a matplotlib axis, e.g., as output from plt.gca().
|
||||
'''
|
||||
|
||||
x_limits = ax.get_xlim3d()
|
||||
y_limits = ax.get_ylim3d()
|
||||
z_limits = ax.get_zlim3d()
|
||||
|
||||
x_range = abs(x_limits[1] - x_limits[0])
|
||||
x_middle = np.mean(x_limits)
|
||||
y_range = abs(y_limits[1] - y_limits[0])
|
||||
y_middle = np.mean(y_limits)
|
||||
z_range = abs(z_limits[1] - z_limits[0])
|
||||
z_middle = np.mean(z_limits)
|
||||
|
||||
print (f"x_range: {x_range}")
|
||||
print (f"y_range: {y_range}")
|
||||
print (f"z_range: {z_range}")
|
||||
print (f"x_middle: {x_middle}")
|
||||
print (f"y_middle: {y_middle}")
|
||||
print (f"z_middle: {z_middle}")
|
||||
# The plot bounding box is a sphere in the sense of the infinity
|
||||
# norm, hence I call half the max range the plot radius.
|
||||
plot_radius = 0.5*max([x_range, y_range, z_range])
|
||||
|
||||
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
|
||||
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
|
||||
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
|
||||
|
||||
|
||||
def calculate_correction(VECT):
|
||||
current = VECT[0]
|
||||
centre = (max(VECT) + min(VECT))/2.
|
||||
correction = -(current-centre)
|
||||
print (f"MAX= {max(VECT)}, MIN= {min(VECT)}")
|
||||
print (f"current {current}")
|
||||
print (f"centre {centre}")
|
||||
print (f"CORRECTION: {correction}")
|
||||
|
||||
#if __name__ == '__main__':
|
||||
### START SCRIPT HERE #########################################################
|
||||
#AEROTECH_EPICS_RECORD = "X06MX-ES-DF1"
|
||||
AEROTECH_EPICS_RECORD = "X06SA-ES-DF1"
|
||||
|
||||
print ("This script rotates the Aerotech OMEGA axis from 0-360deg,")
|
||||
print ("and records the calibration tool position during this motion.")
|
||||
print ("Make sure:")
|
||||
print ("* OMEGA is ready to turn freely.")
|
||||
print ("* Calibration Tool is ready, in contact and feedback is active.")
|
||||
key=input ("OK to continue? (y/n) ")
|
||||
if (key != "y"):
|
||||
print ('Stopping script.')
|
||||
exit(code=None)
|
||||
|
||||
|
||||
print ("Setting up ROS")
|
||||
#connect to ROS topics for OMEGA and DMS values:
|
||||
rospy.init_node('DMS_Recorder', anonymous=True)
|
||||
subsOMEGA=rospy.Subscriber("/LJUE9_JointState", JointState, callback_LJUE9_JointState)
|
||||
subsDMS =rospy.Subscriber("/readbackCAL", JointState, callback_readbackCAL_JointState)
|
||||
print ("Starting data collection...")
|
||||
|
||||
smargopolo_server = "http://smargopolo:3000"
|
||||
|
||||
for i in range(0,5,1):
|
||||
print("Move SHY to +2")
|
||||
epics.caput("X06SA-ES-DF1:GMZ-INCP",2)
|
||||
time.sleep(2)
|
||||
startPoint = getCurrentPoint()
|
||||
print("Move SHX to +2")
|
||||
epics.caput("X06SA-ES-DF1:GMY-INCP",2)
|
||||
time.sleep(2)
|
||||
secondPoint = getCurrentPoint()
|
||||
print("Move SHY to -2")
|
||||
epics.caput("X06SA-ES-DF1:GMZ-INCP",-2)
|
||||
time.sleep(2)
|
||||
print("Move SHX to -2")
|
||||
epics.caput("X06SA-ES-DF1:GMY-INCP",-2)
|
||||
time.sleep(2)
|
||||
print("Move SHZ to +1")
|
||||
epics.caput("X06SA-ES-DF1:GMX-INCP",1)
|
||||
time.sleep(2)
|
||||
|
||||
|
||||
|
||||
#stop ROS to stop measuring.
|
||||
rospy.signal_shutdown('finished measuring')
|
||||
################################################################################
|
||||
|
||||
fig = plt.figure()
|
||||
ax=fig.add_subplot(111, projection='3d')
|
||||
ax.plot(DMS_Z,DMS_X,DMS_Y)
|
||||
ax.set_xlabel("DMS_Z")
|
||||
ax.set_ylabel("DMS_X")
|
||||
ax.set_zlabel("DMS_Y")
|
||||
ax.plot(DMS_Z[0:1],DMS_X[0],DMS_Y[0], 'rx')
|
||||
ax.plot([startPoint[2]],[startPoint[0]],[startPoint[1]],'rx')
|
||||
ax.plot([secondPoint[2]], [secondPoint[0]], [secondPoint[1]], 'ro')
|
||||
set_axes_equal(ax)
|
||||
fig.show()
|
||||
|
||||
fig2 = plt.figure()
|
||||
ax2=fig2.add_subplot(111)
|
||||
ax2.plot(OMEGA, DMS_X, label='DMS_X')
|
||||
ax2.plot(OMEGA, DMS_Y, label='DMS_Y')
|
||||
ax2.plot(OMEGA, DMS_Z, label='DMS_Z')
|
||||
ax2.set_xlabel("OMEGA")
|
||||
ax2.legend()
|
||||
fig2.show()
|
||||
|
||||
#Omega Offset in degree
|
||||
print ('Omega Offset in degree')
|
||||
YOffset= secondPoint[1]-startPoint[1]
|
||||
ZOffset= secondPoint[2]-startPoint[2]
|
||||
OmegaOffset = (math.tan(ZOffset/YOffset))*(180/math.pi)
|
||||
print (f"Omega Offset: {OmegaOffset}")
|
||||
##########################################i######################################
|
||||
# Save Data to CSV
|
||||
|
||||
rows = zip(OMEGA, DMS_X, DMS_Y, DMS_Z, DMS_Seq, DMS_Secs, DMS_Nsecs)
|
||||
with open('measure_repeatability_aerotech_2.csv', 'w', newline='') as file:
|
||||
writer = csv.writer(file)
|
||||
writer.writerow(["OMEGA", "DMS_X", "DMS_Y", "DMS_Z", "DMS_Seq", "DMS_Secs", "DMS_Nsecs"])
|
||||
for row in rows:
|
||||
writer.writerow(row)
|
||||
|
||||
|
||||
input("done.")
|
||||
@@ -1,184 +0,0 @@
|
||||
#!/usr/bin/env pythoni
|
||||
|
||||
# This Script creates a lookup table from the measured error CSV
|
||||
# Wayne Glettig, 16.7.2021
|
||||
|
||||
import rospy
|
||||
from sensor_msgs.msg import JointState
|
||||
import matplotlib.pyplot as plt
|
||||
import requests
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
import numpy as np
|
||||
import epics
|
||||
import csv
|
||||
import math
|
||||
|
||||
DMS_X=[];
|
||||
DMS_Y=[];
|
||||
DMS_Z=[];
|
||||
DMS_Seq=[];
|
||||
DMS_Secs=[];
|
||||
DMS_Nsecs=[];
|
||||
OMEGA_inst=0
|
||||
OMEGA=[];
|
||||
|
||||
def callback_LJUE9_JointState(data):
|
||||
|
||||
global OMEGA_inst
|
||||
OMEGA_inst = data.position[0]
|
||||
|
||||
|
||||
def callback_readbackCAL_JointState(data):
|
||||
|
||||
global OMEGA,DMS_X,DMS_Y,DMS_Z,DMS_Seq,DMS_Secs,DMS_Nsecs
|
||||
|
||||
DMS_X.append(data.position[0])
|
||||
DMS_Y.append(data.position[1])
|
||||
DMS_Z.append(data.position[2])
|
||||
DMS_Secs.append(data.header.stamp.secs)
|
||||
DMS_Nsecs.append(data.header.stamp.nsecs)
|
||||
DMS_Seq.append(data.header.seq)
|
||||
OMEGA.append(OMEGA_inst)
|
||||
|
||||
def getCurrentPoint():
|
||||
return [DMS_X[-1],DMS_Y[-1],DMS_Z[-1]]
|
||||
|
||||
|
||||
def set_axes_equal(ax):
|
||||
'''Make axes of 3D plot have equal scale so that spheres appear as spheres,
|
||||
cubes as cubes, etc.. This is one possible solution to Matplotlib's
|
||||
ax.set_aspect('equal') and ax.axis('equal') not working for 3D.
|
||||
|
||||
Input
|
||||
ax: a matplotlib axis, e.g., as output from plt.gca().
|
||||
'''
|
||||
|
||||
x_limits = ax.get_xlim3d()
|
||||
y_limits = ax.get_ylim3d()
|
||||
z_limits = ax.get_zlim3d()
|
||||
|
||||
x_range = abs(x_limits[1] - x_limits[0])
|
||||
x_middle = np.mean(x_limits)
|
||||
y_range = abs(y_limits[1] - y_limits[0])
|
||||
y_middle = np.mean(y_limits)
|
||||
z_range = abs(z_limits[1] - z_limits[0])
|
||||
z_middle = np.mean(z_limits)
|
||||
|
||||
print (f"x_range: {x_range}")
|
||||
print (f"y_range: {y_range}")
|
||||
print (f"z_range: {z_range}")
|
||||
print (f"x_middle: {x_middle}")
|
||||
print (f"y_middle: {y_middle}")
|
||||
print (f"z_middle: {z_middle}")
|
||||
# The plot bounding box is a sphere in the sense of the infinity
|
||||
# norm, hence I call half the max range the plot radius.
|
||||
plot_radius = 0.5*max([x_range, y_range, z_range])
|
||||
|
||||
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
|
||||
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
|
||||
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
|
||||
|
||||
|
||||
def calculate_correction(VECT):
|
||||
current = VECT[0]
|
||||
centre = (max(VECT) + min(VECT))/2.
|
||||
correction = -(current-centre)
|
||||
print (f"MAX= {max(VECT)}, MIN= {min(VECT)}")
|
||||
print (f"current {current}")
|
||||
print (f"centre {centre}")
|
||||
print (f"CORRECTION: {correction}")
|
||||
|
||||
|
||||
|
||||
#if __name__ == '__main__':
|
||||
### START SCRIPT HERE #########################################################
|
||||
#AEROTECH_EPICS_RECORD = "X06MX-ES-DF1"
|
||||
AEROTECH_EPICS_RECORD = "X06SA-ES-DF1"
|
||||
|
||||
print ("This script rotates the Aerotech OMEGA axis from 0-360deg,")
|
||||
print ("and records the calibration tool position during this motion.")
|
||||
print ("Make sure:")
|
||||
print ("* OMEGA is ready to turn freely.")
|
||||
print ("* Calibration Tool is ready, in contact and feedback is active.")
|
||||
key=input ("OK to continue? (y/n) ")
|
||||
if (key != "y"):
|
||||
print ('Stopping script.')
|
||||
exit(code=None)
|
||||
|
||||
|
||||
print ("Setting up ROS")
|
||||
#connect to ROS topics for OMEGA and DMS values:
|
||||
rospy.init_node('DMS_Recorder', anonymous=True)
|
||||
subsOMEGA=rospy.Subscriber("/LJUE9_JointState", JointState, callback_LJUE9_JointState)
|
||||
subsDMS =rospy.Subscriber("/readbackCAL", JointState, callback_readbackCAL_JointState)
|
||||
print ("Starting data collection...")
|
||||
|
||||
smargopolo_server = "http://smargopolo:3000"
|
||||
|
||||
for i in range(0,5,1):
|
||||
print("Move SHY to +2")
|
||||
response = requests.put(smargopolo_server+'/nudgeBCS?BZ=2')
|
||||
time.sleep(2)
|
||||
startPoint = getCurrentPoint()
|
||||
print("Move SHX to +1")
|
||||
response = requests.put(smargopolo_server+'/nudgeBCS?BY=2')
|
||||
time.sleep(2)
|
||||
secondPoint = getCurrentPoint()
|
||||
print("Move SHY to +1")
|
||||
response = requests.put(smargopolo_server+'/nudgeBCS?BZ=-2')
|
||||
time.sleep(2)
|
||||
print("Move SHX to +1")
|
||||
response = requests.put(smargopolo_server+'/nudgeBCS?BY=-2')
|
||||
time.sleep(2)
|
||||
print("Move SHZ to +1")
|
||||
response = requests.put(smargopolo_server+'/nudgeBCS?BX=1')
|
||||
time.sleep(2)
|
||||
|
||||
|
||||
|
||||
#stop ROS to stop measuring.
|
||||
rospy.signal_shutdown('finished measuring')
|
||||
################################################################################
|
||||
|
||||
fig = plt.figure()
|
||||
ax=fig.add_subplot(111, projection='3d')
|
||||
ax.plot(DMS_Z,DMS_X,DMS_Y)
|
||||
ax.set_xlabel("DMS_Z")
|
||||
ax.set_ylabel("DMS_X")
|
||||
ax.set_zlabel("DMS_Y")
|
||||
ax.plot(DMS_Z[0:1],DMS_X[0],DMS_Y[0], 'rx')
|
||||
ax.plot([startPoint[2]],[startPoint[0]],[startPoint[1]],'rx')
|
||||
ax.plot([secondPoint[2]], [secondPoint[0]], [secondPoint[1]], 'ro')
|
||||
set_axes_equal(ax)
|
||||
fig.show()
|
||||
|
||||
fig2 = plt.figure()
|
||||
ax2=fig2.add_subplot(111)
|
||||
ax2.plot(OMEGA, DMS_X, label='DMS_X')
|
||||
ax2.plot(OMEGA, DMS_Y, label='DMS_Y')
|
||||
ax2.plot(OMEGA, DMS_Z, label='DMS_Z')
|
||||
ax2.set_xlabel("OMEGA")
|
||||
ax2.legend()
|
||||
fig2.show()
|
||||
|
||||
#Omega Offset in degree
|
||||
print ('Omega Offset in degree')
|
||||
YOffset= secondPoint[1]-startPoint[1]
|
||||
ZOffset= secondPoint[2]-startPoint[2]
|
||||
OmegaOffset = (math.tan(ZOffset/YOffset))*(180/math.pi)
|
||||
print (f"Omega Offset: {OmegaOffset}")
|
||||
|
||||
##########################################i######################################
|
||||
# Save Data to CSV
|
||||
|
||||
rows = zip(OMEGA, DMS_X, DMS_Y, DMS_Z, DMS_Seq, DMS_Secs, DMS_Nsecs)
|
||||
with open('measure_repeatability_smargon_2.csv', 'w', newline='') as file:
|
||||
writer = csv.writer(file)
|
||||
writer.writerow(["OMEGA", "DMS_X", "DMS_Y", "DMS_Z", "DMS_Seq", "DMS_Secs", "DMS_Nsecs"])
|
||||
for row in rows:
|
||||
writer.writerow(row)
|
||||
|
||||
|
||||
input("done.")
|
||||
|
Before Width: | Height: | Size: 30 KiB |
|
Before Width: | Height: | Size: 32 KiB |
|
Before Width: | Height: | Size: 30 KiB |
|
Before Width: | Height: | Size: 48 KiB |
|
Before Width: | Height: | Size: 34 KiB |
|
Before Width: | Height: | Size: 32 KiB |
@@ -1,181 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# This Script creates a lookup table from the measured error CSV
|
||||
# Wayne Glettig, 16.7.2021
|
||||
|
||||
import rospy
|
||||
from sensor_msgs.msg import JointState
|
||||
import matplotlib.pyplot as plt
|
||||
import requests
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
import numpy as np
|
||||
import epics
|
||||
import csv
|
||||
import math
|
||||
|
||||
DMS_X=[];
|
||||
DMS_Y=[];
|
||||
DMS_Z=[];
|
||||
DMS_Seq=[];
|
||||
DMS_Secs=[];
|
||||
DMS_Nsecs=[];
|
||||
OMEGA_inst=0
|
||||
OMEGA=[];
|
||||
|
||||
def callback_LJUE9_JointState(data):
|
||||
|
||||
global OMEGA_inst
|
||||
OMEGA_inst = data.position[0]
|
||||
|
||||
|
||||
def callback_readbackCAL_JointState(data):
|
||||
|
||||
global OMEGA,DMS_X,DMS_Y,DMS_Z,DMS_Seq,DMS_Secs,DMS_Nsecs
|
||||
|
||||
DMS_X.append(data.position[0])
|
||||
DMS_Y.append(data.position[1])
|
||||
DMS_Z.append(data.position[2])
|
||||
DMS_Secs.append(data.header.stamp.secs)
|
||||
DMS_Nsecs.append(data.header.stamp.nsecs)
|
||||
DMS_Seq.append(data.header.seq)
|
||||
OMEGA.append(OMEGA_inst)
|
||||
|
||||
def getCurrentPoint():
|
||||
return [DMS_X[-1],DMS_Y[-1],DMS_Z[-1]]
|
||||
|
||||
|
||||
def set_axes_equal(ax):
|
||||
'''Make axes of 3D plot have equal scale so that spheres appear as spheres,
|
||||
cubes as cubes, etc.. This is one possible solution to Matplotlib's
|
||||
ax.set_aspect('equal') and ax.axis('equal') not working for 3D.
|
||||
|
||||
Input
|
||||
ax: a matplotlib axis, e.g., as output from plt.gca().
|
||||
'''
|
||||
|
||||
x_limits = ax.get_xlim3d()
|
||||
y_limits = ax.get_ylim3d()
|
||||
z_limits = ax.get_zlim3d()
|
||||
|
||||
x_range = abs(x_limits[1] - x_limits[0])
|
||||
x_middle = np.mean(x_limits)
|
||||
y_range = abs(y_limits[1] - y_limits[0])
|
||||
y_middle = np.mean(y_limits)
|
||||
z_range = abs(z_limits[1] - z_limits[0])
|
||||
z_middle = np.mean(z_limits)
|
||||
|
||||
print (f"x_range: {x_range}")
|
||||
print (f"y_range: {y_range}")
|
||||
print (f"z_range: {z_range}")
|
||||
print (f"x_middle: {x_middle}")
|
||||
print (f"y_middle: {y_middle}")
|
||||
print (f"z_middle: {z_middle}")
|
||||
# The plot bounding box is a sphere in the sense of the infinity
|
||||
# norm, hence I call half the max range the plot radius.
|
||||
plot_radius = 0.5*max([x_range, y_range, z_range])
|
||||
|
||||
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
|
||||
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
|
||||
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
|
||||
|
||||
|
||||
def calculate_correction(VECT):
|
||||
current = VECT[0]
|
||||
centre = (max(VECT) + min(VECT))/2.
|
||||
correction = -(current-centre)
|
||||
print (f"MAX= {max(VECT)}, MIN= {min(VECT)}")
|
||||
print (f"current {current}")
|
||||
print (f"centre {centre}")
|
||||
print (f"CORRECTION: {correction}")
|
||||
|
||||
#if __name__ == '__main__':
|
||||
### START SCRIPT HERE #########################################################
|
||||
#AEROTECH_EPICS_RECORD = "X06MX-ES-DF1"
|
||||
AEROTECH_EPICS_RECORD = "X06SA-ES-DF1"
|
||||
|
||||
print ("This script rotates the Aerotech OMEGA axis from 0-360deg,")
|
||||
print ("and records the calibration tool position during this motion.")
|
||||
print ("Make sure:")
|
||||
print ("* OMEGA is ready to turn freely.")
|
||||
print ("* Calibration Tool is ready, in contact and feedback is active.")
|
||||
key=input ("OK to continue? (y/n) ")
|
||||
if (key != "y"):
|
||||
print ('Stopping script.')
|
||||
exit(code=None)
|
||||
|
||||
|
||||
print ("Setting up ROS")
|
||||
#connect to ROS topics for OMEGA and DMS values:
|
||||
rospy.init_node('DMS_Recorder', anonymous=True)
|
||||
subsOMEGA=rospy.Subscriber("/LJUE9_JointState", JointState, callback_LJUE9_JointState)
|
||||
subsDMS =rospy.Subscriber("/readbackCAL", JointState, callback_readbackCAL_JointState)
|
||||
print ("Starting data collection...")
|
||||
|
||||
smargopolo_server = "http://smargopolo:3000"
|
||||
|
||||
for i in range(0,5,1):
|
||||
print("Move SHY to +2")
|
||||
epics.caput("X06SA-ES-DF1:GMZ-INCP",2)
|
||||
time.sleep(2)
|
||||
startPoint = getCurrentPoint()
|
||||
print("Move SHX to +2")
|
||||
epics.caput("X06SA-ES-DF1:GMY-INCP",2)
|
||||
time.sleep(2)
|
||||
secondPoint = getCurrentPoint()
|
||||
print("Move SHY to -2")
|
||||
epics.caput("X06SA-ES-DF1:GMZ-INCP",-2)
|
||||
time.sleep(2)
|
||||
print("Move SHX to -2")
|
||||
epics.caput("X06SA-ES-DF1:GMY-INCP",-2)
|
||||
time.sleep(2)
|
||||
print("Move SHZ to +1")
|
||||
epics.caput("X06SA-ES-DF1:GMX-INCP",1)
|
||||
time.sleep(2)
|
||||
|
||||
|
||||
|
||||
#stop ROS to stop measuring.
|
||||
rospy.signal_shutdown('finished measuring')
|
||||
################################################################################
|
||||
|
||||
fig = plt.figure()
|
||||
ax=fig.add_subplot(111, projection='3d')
|
||||
ax.plot(DMS_Z,DMS_X,DMS_Y)
|
||||
ax.set_xlabel("DMS_Z")
|
||||
ax.set_ylabel("DMS_X")
|
||||
ax.set_zlabel("DMS_Y")
|
||||
ax.plot(DMS_Z[0:1],DMS_X[0],DMS_Y[0], 'rx')
|
||||
ax.plot([startPoint[2]],[startPoint[0]],[startPoint[1]],'rx')
|
||||
ax.plot([secondPoint[2]], [secondPoint[0]], [secondPoint[1]], 'ro')
|
||||
set_axes_equal(ax)
|
||||
fig.show()
|
||||
|
||||
fig2 = plt.figure()
|
||||
ax2=fig2.add_subplot(111)
|
||||
ax2.plot(OMEGA, DMS_X, label='DMS_X')
|
||||
ax2.plot(OMEGA, DMS_Y, label='DMS_Y')
|
||||
ax2.plot(OMEGA, DMS_Z, label='DMS_Z')
|
||||
ax2.set_xlabel("OMEGA")
|
||||
ax2.legend()
|
||||
fig2.show()
|
||||
|
||||
#Omega Offset in degree
|
||||
print ('Omega Offset in degree')
|
||||
YOffset= secondPoint[1]-startPoint[1]
|
||||
ZOffset= secondPoint[2]-startPoint[2]
|
||||
OmegaOffset = (math.tan(ZOffset/YOffset))*(180/math.pi)
|
||||
print (f"Omega Offset: {OmegaOffset}")
|
||||
##########################################i######################################
|
||||
# Save Data to CSV
|
||||
|
||||
rows = zip(OMEGA, DMS_X, DMS_Y, DMS_Z, DMS_Seq, DMS_Secs, DMS_Nsecs)
|
||||
with open('measure_repeatability_aerotech_2.csv', 'w', newline='') as file:
|
||||
writer = csv.writer(file)
|
||||
writer.writerow(["OMEGA", "DMS_X", "DMS_Y", "DMS_Z", "DMS_Seq", "DMS_Secs", "DMS_Nsecs"])
|
||||
for row in rows:
|
||||
writer.writerow(row)
|
||||
|
||||
|
||||
input("done.")
|
||||
@@ -1,184 +0,0 @@
|
||||
#!/usr/bin/env pythoni
|
||||
|
||||
# This Script creates a lookup table from the measured error CSV
|
||||
# Wayne Glettig, 16.7.2021
|
||||
|
||||
import rospy
|
||||
from sensor_msgs.msg import JointState
|
||||
import matplotlib.pyplot as plt
|
||||
import requests
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
import numpy as np
|
||||
import epics
|
||||
import csv
|
||||
import math
|
||||
|
||||
DMS_X=[];
|
||||
DMS_Y=[];
|
||||
DMS_Z=[];
|
||||
DMS_Seq=[];
|
||||
DMS_Secs=[];
|
||||
DMS_Nsecs=[];
|
||||
OMEGA_inst=0
|
||||
OMEGA=[];
|
||||
|
||||
def callback_LJUE9_JointState(data):
|
||||
|
||||
global OMEGA_inst
|
||||
OMEGA_inst = data.position[0]
|
||||
|
||||
|
||||
def callback_readbackCAL_JointState(data):
|
||||
|
||||
global OMEGA,DMS_X,DMS_Y,DMS_Z,DMS_Seq,DMS_Secs,DMS_Nsecs
|
||||
|
||||
DMS_X.append(data.position[0])
|
||||
DMS_Y.append(data.position[1])
|
||||
DMS_Z.append(data.position[2])
|
||||
DMS_Secs.append(data.header.stamp.secs)
|
||||
DMS_Nsecs.append(data.header.stamp.nsecs)
|
||||
DMS_Seq.append(data.header.seq)
|
||||
OMEGA.append(OMEGA_inst)
|
||||
|
||||
def getCurrentPoint():
|
||||
return [DMS_X[-1],DMS_Y[-1],DMS_Z[-1]]
|
||||
|
||||
|
||||
def set_axes_equal(ax):
|
||||
'''Make axes of 3D plot have equal scale so that spheres appear as spheres,
|
||||
cubes as cubes, etc.. This is one possible solution to Matplotlib's
|
||||
ax.set_aspect('equal') and ax.axis('equal') not working for 3D.
|
||||
|
||||
Input
|
||||
ax: a matplotlib axis, e.g., as output from plt.gca().
|
||||
'''
|
||||
|
||||
x_limits = ax.get_xlim3d()
|
||||
y_limits = ax.get_ylim3d()
|
||||
z_limits = ax.get_zlim3d()
|
||||
|
||||
x_range = abs(x_limits[1] - x_limits[0])
|
||||
x_middle = np.mean(x_limits)
|
||||
y_range = abs(y_limits[1] - y_limits[0])
|
||||
y_middle = np.mean(y_limits)
|
||||
z_range = abs(z_limits[1] - z_limits[0])
|
||||
z_middle = np.mean(z_limits)
|
||||
|
||||
print (f"x_range: {x_range}")
|
||||
print (f"y_range: {y_range}")
|
||||
print (f"z_range: {z_range}")
|
||||
print (f"x_middle: {x_middle}")
|
||||
print (f"y_middle: {y_middle}")
|
||||
print (f"z_middle: {z_middle}")
|
||||
# The plot bounding box is a sphere in the sense of the infinity
|
||||
# norm, hence I call half the max range the plot radius.
|
||||
plot_radius = 0.5*max([x_range, y_range, z_range])
|
||||
|
||||
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
|
||||
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
|
||||
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
|
||||
|
||||
|
||||
def calculate_correction(VECT):
|
||||
current = VECT[0]
|
||||
centre = (max(VECT) + min(VECT))/2.
|
||||
correction = -(current-centre)
|
||||
print (f"MAX= {max(VECT)}, MIN= {min(VECT)}")
|
||||
print (f"current {current}")
|
||||
print (f"centre {centre}")
|
||||
print (f"CORRECTION: {correction}")
|
||||
|
||||
|
||||
|
||||
#if __name__ == '__main__':
|
||||
### START SCRIPT HERE #########################################################
|
||||
#AEROTECH_EPICS_RECORD = "X06MX-ES-DF1"
|
||||
AEROTECH_EPICS_RECORD = "X06SA-ES-DF1"
|
||||
|
||||
print ("This script rotates the Aerotech OMEGA axis from 0-360deg,")
|
||||
print ("and records the calibration tool position during this motion.")
|
||||
print ("Make sure:")
|
||||
print ("* OMEGA is ready to turn freely.")
|
||||
print ("* Calibration Tool is ready, in contact and feedback is active.")
|
||||
key=input ("OK to continue? (y/n) ")
|
||||
if (key != "y"):
|
||||
print ('Stopping script.')
|
||||
exit(code=None)
|
||||
|
||||
|
||||
print ("Setting up ROS")
|
||||
#connect to ROS topics for OMEGA and DMS values:
|
||||
rospy.init_node('DMS_Recorder', anonymous=True)
|
||||
subsOMEGA=rospy.Subscriber("/LJUE9_JointState", JointState, callback_LJUE9_JointState)
|
||||
subsDMS =rospy.Subscriber("/readbackCAL", JointState, callback_readbackCAL_JointState)
|
||||
print ("Starting data collection...")
|
||||
|
||||
smargopolo_server = "http://smargopolo:3000"
|
||||
|
||||
for i in range(0,5,1):
|
||||
print("Move SHY to +2")
|
||||
response = requests.put(smargopolo_server+'/nudgeBCS?BZ=2')
|
||||
time.sleep(2)
|
||||
startPoint = getCurrentPoint()
|
||||
print("Move SHX to +1")
|
||||
response = requests.put(smargopolo_server+'/nudgeBCS?BY=2')
|
||||
time.sleep(2)
|
||||
secondPoint = getCurrentPoint()
|
||||
print("Move SHY to +1")
|
||||
response = requests.put(smargopolo_server+'/nudgeBCS?BZ=-2')
|
||||
time.sleep(2)
|
||||
print("Move SHX to +1")
|
||||
response = requests.put(smargopolo_server+'/nudgeBCS?BY=-2')
|
||||
time.sleep(2)
|
||||
print("Move SHZ to +1")
|
||||
response = requests.put(smargopolo_server+'/nudgeBCS?BX=1')
|
||||
time.sleep(2)
|
||||
|
||||
|
||||
|
||||
#stop ROS to stop measuring.
|
||||
rospy.signal_shutdown('finished measuring')
|
||||
################################################################################
|
||||
|
||||
fig = plt.figure()
|
||||
ax=fig.add_subplot(111, projection='3d')
|
||||
ax.plot(DMS_Z,DMS_X,DMS_Y)
|
||||
ax.set_xlabel("DMS_Z")
|
||||
ax.set_ylabel("DMS_X")
|
||||
ax.set_zlabel("DMS_Y")
|
||||
ax.plot(DMS_Z[0:1],DMS_X[0],DMS_Y[0], 'rx')
|
||||
ax.plot([startPoint[2]],[startPoint[0]],[startPoint[1]],'rx')
|
||||
ax.plot([secondPoint[2]], [secondPoint[0]], [secondPoint[1]], 'ro')
|
||||
set_axes_equal(ax)
|
||||
fig.show()
|
||||
|
||||
fig2 = plt.figure()
|
||||
ax2=fig2.add_subplot(111)
|
||||
ax2.plot(OMEGA, DMS_X, label='DMS_X')
|
||||
ax2.plot(OMEGA, DMS_Y, label='DMS_Y')
|
||||
ax2.plot(OMEGA, DMS_Z, label='DMS_Z')
|
||||
ax2.set_xlabel("OMEGA")
|
||||
ax2.legend()
|
||||
fig2.show()
|
||||
|
||||
#Omega Offset in degree
|
||||
print ('Omega Offset in degree')
|
||||
YOffset= secondPoint[1]-startPoint[1]
|
||||
ZOffset= secondPoint[2]-startPoint[2]
|
||||
OmegaOffset = (math.tan(ZOffset/YOffset))*(180/math.pi)
|
||||
print (f"Omega Offset: {OmegaOffset}")
|
||||
|
||||
##########################################i######################################
|
||||
# Save Data to CSV
|
||||
|
||||
rows = zip(OMEGA, DMS_X, DMS_Y, DMS_Z, DMS_Seq, DMS_Secs, DMS_Nsecs)
|
||||
with open('measure_repeatability_smargon_2.csv', 'w', newline='') as file:
|
||||
writer = csv.writer(file)
|
||||
writer.writerow(["OMEGA", "DMS_X", "DMS_Y", "DMS_Z", "DMS_Seq", "DMS_Secs", "DMS_Nsecs"])
|
||||
for row in rows:
|
||||
writer.writerow(row)
|
||||
|
||||
|
||||
input("done.")
|
||||
@@ -1,166 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# This Script creates a lookup table from the measured error CSV
|
||||
# Wayne Glettig, 16.7.2021
|
||||
|
||||
import rospy
|
||||
from sensor_msgs.msg import JointState
|
||||
import matplotlib.pyplot as plt
|
||||
import requests
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
import numpy as np
|
||||
import csv
|
||||
|
||||
|
||||
DMS_X=[];
|
||||
DMS_Y=[];
|
||||
DMS_Z=[];
|
||||
DMS_Seq=[];
|
||||
DMS_Secs=[];
|
||||
DMS_Nsecs=[];
|
||||
OMEGA =0;
|
||||
|
||||
def callback_LJUE9_JointState(data):
|
||||
|
||||
global OMEGA
|
||||
OMEGA = data.position[0]
|
||||
|
||||
|
||||
def callback_readbackCAL_JointState(data):
|
||||
|
||||
global DMS_X,DMS_Y,DMS_Z,DMS_Seq,DMS_Secs,DMS_Nsecs
|
||||
|
||||
DMS_X.append(data.position[0])
|
||||
DMS_Y.append(data.position[1])
|
||||
DMS_Z.append(data.position[2])
|
||||
DMS_Secs.append(data.header.stamp.secs)
|
||||
DMS_Nsecs.append(data.header.stamp.nsecs)
|
||||
DMS_Seq.append(data.header.seq)
|
||||
|
||||
|
||||
def set_axes_equal(ax):
|
||||
'''Make axes of 3D plot have equal scale so that spheres appear as spheres,
|
||||
cubes as cubes, etc.. This is one possible solution to Matplotlib's
|
||||
ax.set_aspect('equal') and ax.axis('equal') not working for 3D.
|
||||
|
||||
Input
|
||||
ax: a matplotlib axis, e.g., as output from plt.gca().
|
||||
'''
|
||||
|
||||
x_limits = ax.get_xlim3d()
|
||||
y_limits = ax.get_ylim3d()
|
||||
z_limits = ax.get_zlim3d()
|
||||
|
||||
x_range = abs(x_limits[1] - x_limits[0])
|
||||
x_middle = np.mean(x_limits)
|
||||
y_range = abs(y_limits[1] - y_limits[0])
|
||||
y_middle = np.mean(y_limits)
|
||||
z_range = abs(z_limits[1] - z_limits[0])
|
||||
z_middle = np.mean(z_limits)
|
||||
|
||||
print (f"x_range: {x_range}")
|
||||
print (f"y_range: {y_range}")
|
||||
print (f"z_range: {z_range}")
|
||||
print (f"x_middle: {x_middle}")
|
||||
print (f"y_middle: {y_middle}")
|
||||
print (f"z_middle: {z_middle}")
|
||||
# The plot bounding box is a sphere in the sense of the infinity
|
||||
# norm, hence I call half the max range the plot radius.
|
||||
plot_radius = 0.5*max([x_range, y_range, z_range])
|
||||
|
||||
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
|
||||
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
|
||||
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
|
||||
|
||||
|
||||
def calculate_correction_SHX(VECT):
|
||||
current = VECT[0]
|
||||
centre = (max(VECT) + min(VECT))/2.
|
||||
correction = -(current-centre)
|
||||
#print (f"MAX=: {max(VECT)}, MIN= {min(VECT)}")
|
||||
#print (f"current: {current}")
|
||||
#print (f"centre: {centre}")
|
||||
print (f"CORRECTION value for SHX: {correction}")
|
||||
|
||||
def calculate_correction_SHY(VECT):
|
||||
current = VECT[0]
|
||||
centre = (max(VECT) + min(VECT))/2.
|
||||
correction = -(current-centre)
|
||||
#print (f"MAX=: {max(VECT)}, MIN= {min(VECT)}")
|
||||
#print (f"current: {current}")
|
||||
#print (f"centre: {centre}")
|
||||
print (f"CORRECTION value for SHY: -{correction}")
|
||||
|
||||
|
||||
#if __name__ == '__main__':
|
||||
smargopolo_server = "http://smargopolo:3000"
|
||||
|
||||
response = requests.put(smargopolo_server+"/targetSCS?PHI=0")
|
||||
print ("Setting up ROS")
|
||||
#connect to ROS topics for OMEGA and DMS values:
|
||||
rospy.init_node('DMS_Recorder', anonymous=True)
|
||||
subsOMEGA=rospy.Subscriber("/LJUE9_JointState", JointState, callback_LJUE9_JointState)
|
||||
subsDMS =rospy.Subscriber("/readbackCAL", JointState, callback_readbackCAL_JointState)
|
||||
time.sleep(1)
|
||||
|
||||
print ("Moving phi to -180deg")
|
||||
response = requests.put(smargopolo_server+"/targetSCS?PHI=-90")
|
||||
time.sleep(5)
|
||||
response = requests.put(smargopolo_server+"/targetSCS?PHI=-180")
|
||||
time.sleep(5)
|
||||
print ("moving to phi=180deg")
|
||||
response = requests.put(smargopolo_server+"/targetSCS?PHI=-90")
|
||||
time.sleep(5)
|
||||
response = requests.put(smargopolo_server+"/targetSCS?PHI=0")
|
||||
time.sleep(5)
|
||||
response = requests.put(smargopolo_server+"/targetSCS?PHI=90")
|
||||
time.sleep(5)
|
||||
response = requests.put(smargopolo_server+"/targetSCS?PHI=180")
|
||||
time.sleep(5)
|
||||
|
||||
print ("moving to phi=0deg")
|
||||
response = requests.put(smargopolo_server+"/targetSCS?PHI=0")
|
||||
time.sleep(8)
|
||||
|
||||
#stop ROS to stop measuring.
|
||||
rospy.signal_shutdown('finished measuring')
|
||||
print ("Stopped collecting data.")
|
||||
|
||||
################################################################################
|
||||
|
||||
fig = plt.figure()
|
||||
ax=fig.add_subplot(111, projection='3d')
|
||||
ax.plot(DMS_Z,DMS_X,DMS_Y)
|
||||
ax.set_xlabel("DMS_Z")
|
||||
ax.set_ylabel("DMS_X")
|
||||
ax.set_zlabel("DMS_Y")
|
||||
ax.plot(DMS_Z[0:1],DMS_X[0],DMS_Y[0], 'rx')
|
||||
set_axes_equal(ax)
|
||||
|
||||
fig.show()
|
||||
|
||||
fig2 = plt.figure()
|
||||
ax2=fig2.add_subplot(111)
|
||||
ax2.plot(DMS_X, label='DMS_X')
|
||||
ax2.plot(DMS_Y, label='DMS_Y')
|
||||
ax2.plot(DMS_Z, label='DMS_Z')
|
||||
ax2.legend()
|
||||
fig2.show()
|
||||
|
||||
################################################################################
|
||||
|
||||
calculate_correction_SHX(DMS_Y)
|
||||
calculate_correction_SHY(DMS_Z)
|
||||
|
||||
|
||||
################################################################################
|
||||
# Save Data to CSV
|
||||
|
||||
rows = zip(DMS_X, DMS_Y, DMS_Z, DMS_Seq, DMS_Secs, DMS_Nsecs)
|
||||
with open('measure_Phi_rot.csv', 'w', newline='') as file:
|
||||
writer = csv.writer(file)
|
||||
writer.writerow(["DMS_X", "DMS_Y", "DMS_Z", "DMS_Seq", "DMS_Secs", "DMS_Nsecs"])
|
||||
for row in rows:
|
||||
writer.writerow(row)
|
||||
@@ -1,191 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# This Script creates a lookup table from the measured error CSV
|
||||
# Wayne Glettig, 16.7.2021
|
||||
|
||||
import rospy
|
||||
from sensor_msgs.msg import JointState
|
||||
import matplotlib.pyplot as plt
|
||||
import requests
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
import numpy as np
|
||||
import csv
|
||||
|
||||
DMS_X=[];
|
||||
DMS_Y=[];
|
||||
DMS_Z=[];
|
||||
DMS_Seq=[];
|
||||
DMS_Secs=[];
|
||||
DMS_Nsecs=[];
|
||||
SCS_CHI=[];
|
||||
#SCS_Seq=[];
|
||||
#SCS_Secs=[];
|
||||
#SCS_Nsecs=[];
|
||||
OMEGA =0
|
||||
CHI =0
|
||||
|
||||
def callback_LJUE9_JointState(data):
|
||||
global OMEGA
|
||||
OMEGA = data.position[0]
|
||||
|
||||
def callback_readbackCAL_JointState(data):
|
||||
global DMS_X,DMS_Y,DMS_Z,DMS_Seq,DMS_Secs,DMS_Nsecs,CHI
|
||||
DMS_X.append(data.position[0])
|
||||
DMS_Y.append(data.position[1])
|
||||
DMS_Z.append(data.position[2])
|
||||
DMS_Secs.append(data.header.stamp.secs)
|
||||
DMS_Nsecs.append(data.header.stamp.nsecs)
|
||||
DMS_Seq.append(data.header.seq)
|
||||
|
||||
SCS_CHI.append(CHI)
|
||||
|
||||
def callback_readbackSCS_JointState(data):
|
||||
global CHI
|
||||
CHI = data.position[4]
|
||||
|
||||
def getCurrentPoint():
|
||||
return [DMS_X[-1],DMS_Y[-1],DMS_Z[-1]]
|
||||
|
||||
def set_axes_equal(ax):
|
||||
'''Make axes of 3D plot have equal scale so that spheres appear as spheres,
|
||||
cubes as cubes, etc.. This is one possible solution to Matplotlib's
|
||||
ax.set_aspect('equal') and ax.axis('equal') not working for 3D.
|
||||
|
||||
Input
|
||||
ax: a matplotlib axis, e.g., as output from plt.gca().
|
||||
'''
|
||||
|
||||
x_limits = ax.get_xlim3d()
|
||||
y_limits = ax.get_ylim3d()
|
||||
z_limits = ax.get_zlim3d()
|
||||
|
||||
x_range = abs(x_limits[1] - x_limits[0])
|
||||
x_middle = np.mean(x_limits)
|
||||
y_range = abs(y_limits[1] - y_limits[0])
|
||||
y_middle = np.mean(y_limits)
|
||||
z_range = abs(z_limits[1] - z_limits[0])
|
||||
z_middle = np.mean(z_limits)
|
||||
|
||||
print (f"x_range: {x_range}")
|
||||
print (f"y_range: {y_range}")
|
||||
print (f"z_range: {z_range}")
|
||||
print (f"x_middle: {x_middle}")
|
||||
print (f"y_middle: {y_middle}")
|
||||
print (f"z_middle: {z_middle}")
|
||||
# The plot bounding box is a sphere in the sense of the infinity
|
||||
# norm, hence I call half the max range the plot radius.
|
||||
plot_radius = 0.5*max([x_range, y_range, z_range])
|
||||
|
||||
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
|
||||
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
|
||||
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
|
||||
|
||||
|
||||
def calculate_correction(VECT):
|
||||
current = VECT[0]
|
||||
centre = (max(VECT) + min(VECT))/2.
|
||||
correction = -(current-centre)
|
||||
#print (f"MAX=: {max(VECT)}, MIN= {min(VECT)}")
|
||||
#print (f"current: {current}")
|
||||
#print (f"centre: {centre}")
|
||||
print (f"CORRECTION value for __: {correction}")
|
||||
|
||||
#######################################################################################
|
||||
#if __name__ == '__main__':
|
||||
smargopolo_server = "http://smargopolo:3000"
|
||||
|
||||
response = requests.put(smargopolo_server+"/targetSCS?CHI=0")
|
||||
print ("Setting up ROS")
|
||||
#connect to ROS topics for OMEGA and DMS values:
|
||||
rospy.init_node('DMS_Recorder', anonymous=True)
|
||||
subsOMEGA=rospy.Subscriber("/LJUE9_JointState", JointState, callback_LJUE9_JointState)
|
||||
subsDMS =rospy.Subscriber("/readbackCAL", JointState, callback_readbackCAL_JointState)
|
||||
subsSCS =rospy.Subscriber("/readbackSCS", JointState, callback_readbackSCS_JointState)
|
||||
time.sleep(1)
|
||||
|
||||
startPoint = getCurrentPoint()
|
||||
print ("Moving chi to 90deg")
|
||||
response = requests.put(smargopolo_server+"/targetSCS?CHI=30")
|
||||
time.sleep(5)
|
||||
response = requests.put(smargopolo_server+"/targetSCS?CHI=60")
|
||||
time.sleep(5)
|
||||
response = requests.put(smargopolo_server+"/targetSCS?CHI=90")
|
||||
time.sleep(5)
|
||||
|
||||
endPoint = getCurrentPoint()
|
||||
print ("Moving chi to 0deg")
|
||||
response = requests.put(smargopolo_server+"/targetSCS?CHI=60")
|
||||
time.sleep(5)
|
||||
response = requests.put(smargopolo_server+"/targetSCS?CHI=30")
|
||||
time.sleep(5)
|
||||
response = requests.put(smargopolo_server+"/targetSCS?CHI=0")
|
||||
time.sleep(7)
|
||||
|
||||
#response = requests.put(smargopolo_server+"/targetSCS?CHI=0")
|
||||
#time.sleep(8)
|
||||
|
||||
#stop ROS to stop measuring.
|
||||
rospy.signal_shutdown('finished measuring')
|
||||
print ("Stopped collecting data.")
|
||||
################################################################################
|
||||
|
||||
fig = plt.figure()
|
||||
ax=fig.add_subplot(111, projection='3d')
|
||||
ax.plot(DMS_Z,DMS_X,DMS_Y)
|
||||
ax.set_xlabel("DMS_Z")
|
||||
ax.set_ylabel("DMS_X")
|
||||
ax.set_zlabel("DMS_Y")
|
||||
ax.plot(DMS_Z[0:1],DMS_X[0],DMS_Y[0], 'rx')
|
||||
ax.plot([startPoint[2]],[startPoint[0]],[startPoint[1]],'rx')
|
||||
ax.plot([endPoint[2]], [endPoint[0]], [endPoint[1]], 'ro')
|
||||
set_axes_equal(ax)
|
||||
|
||||
fig.show()
|
||||
|
||||
fig2 = plt.figure()
|
||||
ax2=fig2.add_subplot(111)
|
||||
ax2.plot(DMS_X, label='DMS_X')
|
||||
ax2.plot(DMS_Y, label='DMS_Y')
|
||||
ax2.plot(DMS_Z, label='DMS_Z')
|
||||
ax2.legend()
|
||||
fig2.show()
|
||||
|
||||
################################################################################
|
||||
#calculate_correction(DMS_X)
|
||||
#calculate_correction(DMS_Y)
|
||||
#calculate_correction(DMS_Z)
|
||||
|
||||
################################################################################
|
||||
#Find Centre point of CHI rotation in DMS_X DMS_Y plane (2D projection)
|
||||
|
||||
P0 = [startPoint[0], startPoint[1]]
|
||||
P1 = [endPoint[0], endPoint[1]]
|
||||
|
||||
v01half = [ (P1[0]-P0[0]) / 2. , (P1[1]-P0[1]) / 2. ]
|
||||
v01half90 = [ -v01half[1] , v01half[0] ]
|
||||
v0c = [v01half[0]+v01half90[0], v01half[1]+v01half90[1]]
|
||||
|
||||
PC = [P0[0]+v0c[0], P0[1]+v0c[1]]
|
||||
|
||||
ax.plot([startPoint[2]], [PC[0]], [PC[1]], 'g+')
|
||||
fig.show()
|
||||
|
||||
print (f"Centre Point of Quarter Circle: DMS_X: {PC[0]} DMS_Y: {PC[1]}")
|
||||
|
||||
print (f"Correction from current postion: in DMS_X: {v0c[0]} in DMS_Y: {v0c[1]}")
|
||||
print (f"CORRECTION value for SHZ: {v0c[0]}")
|
||||
|
||||
################################################################################
|
||||
# Save Data to CSV
|
||||
|
||||
rows = zip(SCS_CHI, DMS_X, DMS_Y, DMS_Z, DMS_Seq, DMS_Secs, DMS_Nsecs)
|
||||
with open('measure_chi_rot_OUTPUT.csv', 'w', newline='') as file:
|
||||
writer = csv.writer(file)
|
||||
writer.writerow(["SCS_CHI", "DMS_X", "DMS_Y", "DMS_Z", "DMS_Seq", "DMS_Secs", "DMS_Nsecs"])
|
||||
for row in rows:
|
||||
writer.writerow(row)
|
||||
|
||||
################################################################################
|
||||
|
||||
|
Before Width: | Height: | Size: 59 KiB |
|
Before Width: | Height: | Size: 98 KiB |
|
Before Width: | Height: | Size: 50 KiB |
|
Before Width: | Height: | Size: 224 KiB |
|
Before Width: | Height: | Size: 122 KiB |
|
Before Width: | Height: | Size: 114 KiB |
|
Before Width: | Height: | Size: 26 KiB |
@@ -1,180 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# This Script creates a lookup table from the measured error CSV
|
||||
# Wayne Glettig, 16.7.2021
|
||||
|
||||
import rospy
|
||||
from sensor_msgs.msg import JointState
|
||||
import matplotlib.pyplot as plt
|
||||
import requests
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
from mpl_toolkits.mplot3d import Axes3D
|
||||
import numpy as np
|
||||
import epics
|
||||
import csv
|
||||
|
||||
DMS_X=[];
|
||||
DMS_Y=[];
|
||||
DMS_Z=[];
|
||||
DMS_Seq=[];
|
||||
DMS_Secs=[];
|
||||
DMS_Nsecs=[];
|
||||
OMEGA_inst=0
|
||||
OMEGA=[];
|
||||
|
||||
def callback_LJUE9_JointState(data):
|
||||
|
||||
global OMEGA_inst
|
||||
OMEGA_inst = data.position[0]
|
||||
|
||||
|
||||
def callback_readbackCAL_JointState(data):
|
||||
|
||||
global OMEGA,DMS_X,DMS_Y,DMS_Z,DMS_Seq,DMS_Secs,DMS_Nsecs
|
||||
|
||||
DMS_X.append(data.position[0])
|
||||
DMS_Y.append(data.position[1])
|
||||
DMS_Z.append(data.position[2])
|
||||
DMS_Secs.append(data.header.stamp.secs)
|
||||
DMS_Nsecs.append(data.header.stamp.nsecs)
|
||||
DMS_Seq.append(data.header.seq)
|
||||
OMEGA.append(OMEGA_inst)
|
||||
|
||||
def set_axes_equal(ax):
|
||||
'''Make axes of 3D plot have equal scale so that spheres appear as spheres,
|
||||
cubes as cubes, etc.. This is one possible solution to Matplotlib's
|
||||
ax.set_aspect('equal') and ax.axis('equal') not working for 3D.
|
||||
|
||||
Input
|
||||
ax: a matplotlib axis, e.g., as output from plt.gca().
|
||||
'''
|
||||
|
||||
x_limits = ax.get_xlim3d()
|
||||
y_limits = ax.get_ylim3d()
|
||||
z_limits = ax.get_zlim3d()
|
||||
|
||||
x_range = abs(x_limits[1] - x_limits[0])
|
||||
x_middle = np.mean(x_limits)
|
||||
y_range = abs(y_limits[1] - y_limits[0])
|
||||
y_middle = np.mean(y_limits)
|
||||
z_range = abs(z_limits[1] - z_limits[0])
|
||||
z_middle = np.mean(z_limits)
|
||||
|
||||
print (f"x_range: {x_range}")
|
||||
print (f"y_range: {y_range}")
|
||||
print (f"z_range: {z_range}")
|
||||
print (f"x_middle: {x_middle}")
|
||||
print (f"y_middle: {y_middle}")
|
||||
print (f"z_middle: {z_middle}")
|
||||
# The plot bounding box is a sphere in the sense of the infinity
|
||||
# norm, hence I call half the max range the plot radius.
|
||||
plot_radius = 0.5*max([x_range, y_range, z_range])
|
||||
|
||||
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
|
||||
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
|
||||
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
|
||||
|
||||
|
||||
def calculate_correction_OX(VECT):
|
||||
current = VECT[0]
|
||||
centre = (max(VECT) + min(VECT))/2.
|
||||
correction = -(current-centre)
|
||||
#print (f"MAX=: {max(VECT)}, MIN= {min(VECT)}")
|
||||
#print (f"current: {current}")
|
||||
#print (f"centre: {centre}")
|
||||
print (f"CORRECTION value for OX: {correction}")
|
||||
|
||||
def calculate_correction_OY(VECT):
|
||||
current = VECT[0]
|
||||
centre = (max(VECT) + min(VECT))/2.
|
||||
correction = -(current-centre)
|
||||
#print (f"MAX=: {max(VECT)}, MIN= {min(VECT)}")
|
||||
#print (f"current: {current}")
|
||||
#print (f"centre: {centre}")
|
||||
print (f"CORRECTION value for OY: {correction}")
|
||||
|
||||
|
||||
#if __name__ == '__main__':
|
||||
### START SCRIPT HERE #########################################################
|
||||
#AEROTECH_EPICS_RECORD = "X06MX-ES-DF1"
|
||||
AEROTECH_EPICS_RECORD = "X06SA-ES-DF1"
|
||||
|
||||
print ("This script rotates the Aerotech OMEGA axis from 0-360deg,")
|
||||
print ("and records the calibration tool position during this motion.")
|
||||
print ("Make sure:")
|
||||
print ("* OMEGA is ready to turn freely.")
|
||||
print ("* Calibration Tool is ready, in contact and feedback is active.")
|
||||
key=input ("OK to continue? (y/n) ")
|
||||
if (key != "y"):
|
||||
print ('Stopping script.')
|
||||
exit(code=None)
|
||||
|
||||
#make sure OMEGA is at 0deg
|
||||
print ("Moving OMEGA to 0deg")
|
||||
movebackSpeed = 40 # deg/s
|
||||
currentOMEGA = epics.caget(AEROTECH_EPICS_RECORD + ":OMEGA-GETP")
|
||||
epics.caput(AEROTECH_EPICS_RECORD + ":OMEGA-SETV", movebackSpeed)
|
||||
epics.caput(AEROTECH_EPICS_RECORD + ":OMEGA-SETP", 0)
|
||||
time.sleep(currentOMEGA/movebackSpeed + 2)
|
||||
|
||||
print ("Setting up ROS")
|
||||
#connect to ROS topics for OMEGA and DMS values:
|
||||
rospy.init_node('DMS_Recorder', anonymous=True)
|
||||
subsOMEGA=rospy.Subscriber("/LJUE9_JointState", JointState, callback_LJUE9_JointState)
|
||||
subsDMS =rospy.Subscriber("/readbackCAL", JointState, callback_readbackCAL_JointState)
|
||||
print ("Starting data collection...")
|
||||
|
||||
|
||||
print ("Moving OMEGA to 360deg ")
|
||||
dataCollectionSpeed = 5 #deg/s
|
||||
print (f"Data collection will take approx {360/dataCollectionSpeed+5} [s]")
|
||||
epics.caput(AEROTECH_EPICS_RECORD + ":OMEGA-SETV",dataCollectionSpeed)
|
||||
epics.caput(AEROTECH_EPICS_RECORD + ":OMEGA-SETP",360)
|
||||
time.sleep(360/dataCollectionSpeed + 5)
|
||||
|
||||
|
||||
#stop ROS to stop measuring.
|
||||
rospy.signal_shutdown('finished measuring')
|
||||
epics.caput(AEROTECH_EPICS_RECORD + ":OMEGA-SETV", movebackSpeed)
|
||||
epics.caput(AEROTECH_EPICS_RECORD + ":OMEGA-SETP",0)
|
||||
print ("Stopped collecting data.")
|
||||
################################################################################
|
||||
|
||||
fig = plt.figure()
|
||||
ax=fig.add_subplot(111, projection='3d')
|
||||
ax.plot(DMS_Z,DMS_X,DMS_Y)
|
||||
ax.set_xlabel("DMS_Z")
|
||||
ax.set_ylabel("DMS_X")
|
||||
ax.set_zlabel("DMS_Y")
|
||||
ax.plot(DMS_Z[0:1],DMS_X[0],DMS_Y[0], 'rx')
|
||||
set_axes_equal(ax)
|
||||
|
||||
fig.show()
|
||||
|
||||
fig2 = plt.figure()
|
||||
ax2=fig2.add_subplot(111)
|
||||
ax2.plot(OMEGA, DMS_X, label='DMS_X')
|
||||
ax2.plot(OMEGA, DMS_Y, label='DMS_Y')
|
||||
ax2.plot(OMEGA, DMS_Z, label='DMS_Z')
|
||||
ax2.set_xlabel("OMEGA")
|
||||
ax2.legend()
|
||||
fig2.show()
|
||||
|
||||
################################################################################
|
||||
|
||||
calculate_correction_OX(DMS_Y)
|
||||
calculate_correction_OY(DMS_Z)
|
||||
|
||||
################################################################################
|
||||
# Save Data to CSV
|
||||
|
||||
rows = zip(OMEGA, DMS_X, DMS_Y, DMS_Z, DMS_Seq, DMS_Secs, DMS_Nsecs)
|
||||
with open('measure_omega_rot_OUTPUT.csv', 'w', newline='') as file:
|
||||
writer = csv.writer(file)
|
||||
writer.writerow(["OMEGA", "DMS_X", "DMS_Y", "DMS_Z", "DMS_Seq", "DMS_Secs", "DMS_Nsecs"])
|
||||
for row in rows:
|
||||
writer.writerow(row)
|
||||
|
||||
|
||||
input("done.")
|
||||