added Dominik's Python Algorithms

This commit is contained in:
Wayne Glettig
2021-11-09 16:47:54 +01:00
parent dc7267ff18
commit 3c4f1b76ca
385 changed files with 1471757 additions and 0 deletions

View File

@@ -0,0 +1,223 @@
#!/usr/bin/env python
# Dieses Script verfaehrt den Aerotech translativ mit GMX,GMY und GMZ.
# Der Ausgangswert des Scripts beschreibt den Winkelversatz zwischen Aerotech und
# dem Kalibrier Tool.
# Dominik Buntschu, 2.8.2021
import rospy
from sensor_msgs.msg import JointState
import requests
import time
from datetime import date
from datetime import datetime
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import epics
import csv
import math
DMS_X=[];
DMS_Y=[];
DMS_Z=[];
DMS_Seq=[];
DMS_Secs=[];
DMS_Nsecs=[];
OMEGA_inst=0
OMEGA=[];
# Aktueller Tag
today = date.today()
current_day = today.strftime("%Y_%m_%d_")
#print(current_day)
# Aktuelle Zeit
now = datetime.now()
current_time = now.strftime("%H:%M:%S_")
#print(current_time)
#print(current_day+current_time)
# Auslesen der Omega Achse
def callback_LJUE9_JointState(data):
global OMEGA_inst
OMEGA_inst = data.position[0]
# Auselsen des Kalibriertools
# Auslesen Hinzufuegen eines Zeitstempels
# Einbinden des Aerotech Omegawinkels (OMEGA_inst)
def callback_readbackCAL_JointState(data):
global OMEGA,DMS_X,DMS_Y,DMS_Z,DMS_Seq,DMS_Secs,DMS_Nsecs
DMS_X.append(data.position[0])
DMS_Y.append(data.position[1])
DMS_Z.append(data.position[2])
DMS_Secs.append(data.header.stamp.secs)
DMS_Nsecs.append(data.header.stamp.nsecs)
DMS_Seq.append(data.header.seq)
OMEGA.append(OMEGA_inst)
# Funktion um aktueller Werte des Kaliobriertools zu speichern
# Wird fuer Makierung im 3D Plot verwendet
def getCurrentPoint():
return [DMS_X[-1],DMS_Y[-1],DMS_Z[-1]]
# Stellt Seitenlaengen des 3D Plot in Relation
def set_axes_equal(ax):
x_limits = ax.get_xlim3d()
y_limits = ax.get_ylim3d()
z_limits = ax.get_zlim3d()
x_range = abs(x_limits[1] - x_limits[0])
x_middle = np.mean(x_limits)
y_range = abs(y_limits[1] - y_limits[0])
y_middle = np.mean(y_limits)
z_range = abs(z_limits[1] - z_limits[0])
z_middle = np.mean(z_limits)
print (f"x_range: {x_range}")
print (f"y_range: {y_range}")
print (f"z_range: {z_range}")
print (f"x_middle: {x_middle}")
print (f"y_middle: {y_middle}")
print (f"z_middle: {z_middle}")
plot_radius = 0.5*max([x_range, y_range, z_range])
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
def calculate_correction(VECT):
current = VECT[0]
centre = (max(VECT) + min(VECT))/2.
correction = -(current-centre)
print (f"MAX= {max(VECT)}, MIN= {min(VECT)}")
print (f"current {current}")
print (f"centre {centre}")
print (f"CORRECTION: {correction}")
### START SCRIPT HERE #########################################################
#AEROTECH_EPICS_RECORD = "X06MX-ES-DF1"
AEROTECH_EPICS_RECORD = "X06SA-ES-DF1"
print ("This script moves Aerotech GMX GMY and GMZ by aprox. 2mm")
print ("and records the calibration tool position during this motion.")
print ("***** Calibration Tool is ready, in contact and feedback is active *******")
key=input ("OK to continue? (y/n) ")
if (key != "y"):
print ('Stopping script.')
exit(code=None)
# starten der Datenaufzeichnung
rospy.init_node('DMS_Recorder', anonymous=True)
subsOMEGA=rospy.Subscriber("/LJUE9_JointState", JointState, callback_LJUE9_JointState)
subsDMS =rospy.Subscriber("/readbackCAL", JointState, callback_readbackCAL_JointState)
print ("Starting data collection...")
# smargopolo_server = "http://smargopolo:3000"
# Setzt die Geschwidigkeit der Aerotech Achsen
epics.caput("X06MX-ES-DF1:GMX-SETV",2)
epics.caput("X06MX-ES-DF1:GMZ-SETV",2)
epics.caput("X06MX-ES-DF1:GMY-SETV",2)
# Macht X Iterationen eines Rechteckes mit jeweils einem Versatz
# Veranschaulicht den Winkelversatz zwischen Aerotech und Kalibriertool
for i in range(0,5,1):
print("Move GMZ to +2")
epics.caput("X06MX-ES-DF1:GMZ-INCP",2)
time.sleep(2)
Point1 = getCurrentPoint()
print("Move GMY to +2")
epics.caput("X06MX-ES-DF1:GMY-INCP",2)
time.sleep(2)
Point2 = getCurrentPoint()
print("Move GMZ to -2")
epics.caput("X06MX-ES-DF1:GMZ-INCP",-2)
time.sleep(2)
Point3 = getCurrentPoint()
print("Move GMY to -2")
epics.caput("X06MX-ES-DF1:GMY-INCP",-2)
time.sleep(2)
print("Move GMX to +1")
epics.caput("X06MX-ES-DF1:GMX-INCP",1)
time.sleep(2)
# beenden der Datenaufzeichnung
rospy.signal_shutdown('finished measuring')
################################################################################
# 3D Plot der Bewegung mit den Werten des Kalibirertools
# Start der Bewegung = x Punkt
fig = plt.figure()
ax=fig.add_subplot(111, projection='3d')
ax.plot(DMS_Z,DMS_X,DMS_Y)
ax.set_xlabel("DMS_Z [mm]")
ax.set_ylabel("DMS_X [mm]")
ax.set_zlabel("DMS_Y [mm]")
ax.set_title("3D Plot: Measure Linearity to DMS Tool",fontsize=14,fontweight="bold")
ax.plot(DMS_Z[0:1],DMS_X[0],DMS_Y[0],label='StartPoint',marker=(5,0))
ax.plot([Point1[2]],[Point1[0]],[Point1[1]],label='Point1',marker=(5,1))
ax.plot([Point2[2]], [Point2[0]], [Point2[1]],label='Point2', marker=(5,2))
ax.plot([Point3[2]], [Point3[0]], [Point3[1]],label='Point3', marker=(5,3))
ax.legend()
set_axes_equal(ax)
fig.show()
# 2D Plot der Bewegung mit den Werten des Kaibriertools
#fig2 = plt.figure()
#ax2=fig2.add_subplot(111)
#ax2.plot(OMEGA, DMS_X, label='DMS_X')
#ax2.plot(OMEGA, DMS_Y, label='DMS_Y')
#ax2.plot(OMEGA, DMS_Z, label='DMS_Z')
#ax2.set_xlabel("OMEGA")
#ax2.legend()
#fig2.show()
#Berrechnung des Versatzes zwischen Aerotech und Kalibirertool-> Rotation um GMX
YOffset= Point2[1]-Point1[1]
ZOffset= Point2[2]-Point1[2]
GMXOffset = (math.tan(ZOffset/YOffset))*(180/math.pi)
print (f"Winkelversatz um GMX: {GMXOffset}")
#Berrechnung des Versatzes zwischen Aerotech und Kalibirertool-> Rotation um GMZ
YOffset= Point2[1]-Point1[1]
XOffset= Point2[0]-Point1[0]
GMZOffset = (math.tan(XOffset/YOffset))*(180/math.pi)
print (f"Winkelversatz um GMZ: {GMZOffset}")
#Berrechnung des Versatzes zwischen Aerotech und Kalibirertool-> Rotation um GMY
ZOffset= Point2[2]-Point3[2]
XOffset= Point2[0]-Point3[0]
GMYOffset = (math.tan(XOffset/ZOffset))*(180/math.pi)
print (f"Winkelversatz um GMY: {GMYOffset}")
##########################################i######################################
# Speichern der Daten in ein CSV.
# Bennenung des Files mit Datum und Zeitstempel
rows = zip(OMEGA, DMS_X, DMS_Y, DMS_Z, DMS_Seq, DMS_Secs, DMS_Nsecs)
with open(current_day + current_time +'measure_DMS_Tool_linearity.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(["OMEGA", "DMS_X", "DMS_Y", "DMS_Z", "DMS_Seq", "DMS_Secs", "DMS_Nsecs"])
for row in rows:
writer.writerow(row)
# Bewegung der GMX Achse zurueck auf den Startwert
print("Move GMX back to Start Position")
epics.caput("X06MX-ES-DF1:GMX-INCP",-5)
time.sleep(2)
input("done.")

Binary file not shown.

After

Width:  |  Height:  |  Size: 163 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 177 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 131 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 96 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 117 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.4 KiB

View File

@@ -0,0 +1,57 @@
#!/usr/bin/env python
# Dieses Script verfaehrt den Aerotech translativ mit GMX,GMY und GMZ.
# Der Ausgangswert des Scripts beschreibt den Winkelversatz zwischen Aerotech und
# dem Kalibrier Tool.
# Dominik Buntschu, 2.8.2021
import epics
import time
# Setzt die Geschwidigkeit der Aerotech Achsen
epics.caput("X06MX-ES-DF1:GMX-SETV",2)
epics.caput("X06MX-ES-DF1:GMZ-SETV",2)
epics.caput("X06MX-ES-DF1:GMY-SETV",2)
# Faehrt Aerotech Achsen in Startpositionen
epics.caput("X06MX-ES-DF1:GMX-SETP",85)
epics.caput("X06MX-ES-DF1:GMY-SETP",4)
epics.caput("X06MX-ES-DF1:GMZ-SETP",23)
time.sleep(3)
# Macht X Iterationen eines Rechteckes mit jeweils einem Versatz
# Veranschaulicht den Winkelversatz zwischen Aerotech und Kalibriertool
Step1 = 5
Step3 = 3
for i in range(0,Step1,1):
print("Move GMY to +0.001")
epics.caput("X06MX-ES-DF1:GMY-INCP",0.001)
time.sleep(2.5)
for i in range(0,Step1*2,1):
print("Move GMY to -0.001")
epics.caput("X06MX-ES-DF1:GMY-INCP",-0.001)
time.sleep(2.5)
for i in range(0,Step1,1):
print("Move GMY to +0.001")
epics.caput("X06MX-ES-DF1:GMY-INCP",0.001)
time.sleep(2.5)
for i in range(0,Step3,1):
print("Move GMY to +0.003")
epics.caput("X06MX-ES-DF1:GMY-INCP",0.003)
time.sleep(2.5)
for i in range(0,Step3*2,1):
print("Move GMY to -0.003")
epics.caput("X06MX-ES-DF1:GMY-INCP",-0.003)
time.sleep(2.5)
for i in range(0,Step3,1):
print("Move GMY to +0.003")
epics.caput("X06MX-ES-DF1:GMY-INCP",0.003)
time.sleep(2.5)

View File

@@ -0,0 +1,56 @@
#!/usr/bin/env python
# Dieses Script verfaehrt den Aerotech translativ mit GMY.
# Anhand des Scripts wir die Genauigkeit der Sensoren ermittelt.
# Dominik Buntschu, 2.8.2021
import epics
import time
# Setzt die Geschwidigkeit der Aerotech Achsen
epics.caput("X06MX-ES-DF1:GMX-SETV",2)
epics.caput("X06MX-ES-DF1:GMZ-SETV",2)
epics.caput("X06MX-ES-DF1:GMY-SETV",2)
# Faehrt Aerotech Achsen in Startpositionen
epics.caput("X06MX-ES-DF1:GMX-SETP",85)
epics.caput("X06MX-ES-DF1:GMY-SETP",4)
epics.caput("X06MX-ES-DF1:GMZ-SETP",23)
time.sleep(3)
# Macht X Iterationen eines Rechteckes mit jeweils einem Versatz
# Veranschaulicht den Winkelversatz zwischen Aerotech und Kalibriertool
Step1 = 5
Step3 = 3
for i in range(0,Step1,1):
print("Move GMY to +0.001")
epics.caput("X06MX-ES-DF1:GMY-INCP",0.001)
time.sleep(2.5)
for i in range(0,Step1*2,1):
print("Move GMY to -0.001")
epics.caput("X06MX-ES-DF1:GMY-INCP",-0.001)
time.sleep(2.5)
for i in range(0,Step1,1):
print("Move GMY to +0.001")
epics.caput("X06MX-ES-DF1:GMY-INCP",0.001)
time.sleep(2.5)
for i in range(0,Step3,1):
print("Move GMY to +0.003")
epics.caput("X06MX-ES-DF1:GMY-INCP",0.003)
time.sleep(2.5)
for i in range(0,Step3*2,1):
print("Move GMY to -0.003")
epics.caput("X06MX-ES-DF1:GMY-INCP",-0.003)
time.sleep(2.5)
for i in range(0,Step3,1):
print("Move GMY to +0.003")
epics.caput("X06MX-ES-DF1:GMY-INCP",0.003)
time.sleep(2.5)

View File

@@ -0,0 +1,56 @@
#!/usr/bin/env python
# Dieses Script verfaehrt den Aerotech translativ mit GMY.
# Anhand des Scripts wir die Genauigkeit der Sensoren ermittelt.
# Dominik Buntschu, 2.8.2021
import epics
import time
# Setzt die Geschwidigkeit der Aerotech Achsen
epics.caput("X06MX-ES-DF1:GMX-SETV",2)
epics.caput("X06MX-ES-DF1:GMZ-SETV",2)
epics.caput("X06MX-ES-DF1:GMY-SETV",2)
# Faehrt Aerotech Achsen in Startpositionen
epics.caput("X06MX-ES-DF1:GMX-SETP",85)
epics.caput("X06MX-ES-DF1:GMY-SETP",4)
epics.caput("X06MX-ES-DF1:GMZ-SETP",23)
time.sleep(3)
# Macht X Iterationen eines Rechteckes mit jeweils einem Versatz
# Veranschaulicht den Winkelversatz zwischen Aerotech und Kalibriertool
Step1 = 5
Step3 = 3
for i in range(0,Step1,1):
print("Move GMY to +0.001")
epics.caput("X06MX-ES-DF1:GMY-INCP",0.001)
time.sleep(2.5)
for i in range(0,Step1*2,1):
print("Move GMY to -0.001")
epics.caput("X06MX-ES-DF1:GMY-INCP",-0.001)
time.sleep(2.5)
for i in range(0,Step1,1):
print("Move GMY to +0.001")
epics.caput("X06MX-ES-DF1:GMY-INCP",0.001)
time.sleep(2.5)
for i in range(0,Step3,1):
print("Move GMY to +0.002")
epics.caput("X06MX-ES-DF1:GMY-INCP",0.002)
time.sleep(2.5)
for i in range(0,Step3*2,1):
print("Move GMY to -0.002")
epics.caput("X06MX-ES-DF1:GMY-INCP",-0.002)
time.sleep(2.5)
for i in range(0,Step3,1):
print("Move GMY to +0.002")
epics.caput("X06MX-ES-DF1:GMY-INCP",0.002)
time.sleep(2.5)

View File

@@ -0,0 +1,56 @@
#!/usr/bin/env python
# Dieses Script verfaehrt den Aerotech translativ mit GMY.
# Anhand des Scripts wir die Genauigkeit der Sensoren ermittelt.
# Dominik Buntschu, 2.8.2021
import epics
import time
# Setzt die Geschwidigkeit der Aerotech Achsen
epics.caput("X06MX-ES-DF1:GMX-SETV",2)
epics.caput("X06MX-ES-DF1:GMZ-SETV",2)
epics.caput("X06MX-ES-DF1:GMY-SETV",2)
# Faehrt Aerotech Achsen in Startpositionen
epics.caput("X06MX-ES-DF1:GMX-SETP",85)
epics.caput("X06MX-ES-DF1:GMY-SETP",4)
epics.caput("X06MX-ES-DF1:GMZ-SETP",23)
time.sleep(3)
# Macht X Iterationen eines Rechteckes mit jeweils einem Versatz
# Veranschaulicht den Winkelversatz zwischen Aerotech und Kalibriertool
Step1 = 5
Step3 = 3
for i in range(0,Step1,1):
print("Move GMX to +0.001")
epics.caput("X06MX-ES-DF1:GMX-INCP",0.001)
time.sleep(2.5)
for i in range(0,Step1*2,1):
print("Move GMX to -0.001")
epics.caput("X06MX-ES-DF1:GMX-INCP",-0.001)
time.sleep(2.5)
for i in range(0,Step1,1):
print("Move GMX to +0.001")
epics.caput("X06MX-ES-DF1:GMX-INCP",0.001)
time.sleep(2.5)
for i in range(0,Step3,1):
print("Move GMX to +0.003")
epics.caput("X06MX-ES-DF1:GMX-INCP",0.003)
time.sleep(2.5)
for i in range(0,Step3*2,1):
print("Move GMX to -0.003")
epics.caput("X06MX-ES-DF1:GMX-INCP",-0.003)
time.sleep(2.5)
for i in range(0,Step3,1):
print("Move GMX to +0.003")
epics.caput("X06MX-ES-DF1:GMX-INCP",0.003)
time.sleep(2.5)

View File

@@ -0,0 +1,55 @@
#!/usr/bin/env python
# Dieses Script verfaehrt den Aerotech translativ mit GMY.
# Anhand des Scripts wir die Genauigkeit der Sensoren ermittelt.
# Dominik Buntschu, 2.8.2021
import epics
import time
# Setzt die Geschwidigkeit der Aerotech Achsen
epics.caput("X06MX-ES-DF1:GMX-SETV",2)
epics.caput("X06MX-ES-DF1:GMZ-SETV",2)
epics.caput("X06MX-ES-DF1:GMY-SETV",2)
# Faehrt Aerotech Achsen in Startpositionen
epics.caput("X06MX-ES-DF1:GMX-SETP",85)
epics.caput("X06MX-ES-DF1:GMY-SETP",4)
epics.caput("X06MX-ES-DF1:GMZ-SETP",23)
time.sleep(3)
# Macht X Iterationen eines Rechteckes mit jeweils einem Versatz
# Veranschaulicht den Winkelversatz zwischen Aerotech und Kalibriertool
Step1 = 4
Step2 = 3
for i in range(0,Step1,1):
print("Move GMX to +0.001")
epics.caput("X06MX-ES-DF1:GMX-INCP",0.0005)
time.sleep(2.5)
for i in range(0,Step1*2,1):
print("Move GMX to -0.001")
epics.caput("X06MX-ES-DF1:GMX-INCP",-0.0005)
time.sleep(2.5)
for i in range(0,Step1,1):
print("Move GMX to +0.001")
epics.caput("X06MX-ES-DF1:GMX-INCP",0.0005)
time.sleep(2.5)
for i in range(0,Step2,1):
print("Move GMX to +0.001")
epics.caput("X06MX-ES-DF1:GMX-INCP",0.0005)
time.sleep(2.5)
for i in range(0,Step2*2,1):
print("Move GMX to -0.001")
epics.caput("X06MX-ES-DF1:GMX-INCP",-0.0005)
time.sleep(2.5)
for i in range(0,Step2,1):
print("Move GMX to +0.001")
epics.caput("X06MX-ES-DF1:GMX-INCP",0.0005)
time.sleep(2.5)

View File

@@ -0,0 +1,56 @@
#!/usr/bin/env python
# Dieses Script verfaehrt den Aerotech translativ mit GMY.
# Anhand des Scripts wir die Genauigkeit der Sensoren ermittelt.
# Dominik Buntschu, 2.8.2021
import epics
import time
# Setzt die Geschwidigkeit der Aerotech Achsen
epics.caput("X06MX-ES-DF1:GMX-SETV",2)
epics.caput("X06MX-ES-DF1:GMZ-SETV",2)
epics.caput("X06MX-ES-DF1:GMY-SETV",2)
# Faehrt Aerotech Achsen in Startpositionen
epics.caput("X06MX-ES-DF1:GMX-SETP",85)
epics.caput("X06MX-ES-DF1:GMY-SETP",4)
epics.caput("X06MX-ES-DF1:GMZ-SETP",23)
time.sleep(3)
# Macht X Iterationen eines Rechteckes mit jeweils einem Versatz
# Veranschaulicht den Winkelversatz zwischen Aerotech und Kalibriertool
Step1 = 5
Step3 = 3
for i in range(0,Step1,1):
print("Move GMY to +0.001")
epics.caput("X06MX-ES-DF1:GMY-INCP",0.001)
time.sleep(2.5)
for i in range(0,Step1*2,1):
print("Move GMY to -0.001")
epics.caput("X06MX-ES-DF1:GMY-INCP",-0.001)
time.sleep(2.5)
for i in range(0,Step1,1):
print("Move GMY to +0.001")
epics.caput("X06MX-ES-DF1:GMY-INCP",0.001)
time.sleep(2.5)
for i in range(0,Step3,1):
print("Move GMY to +0.003")
epics.caput("X06MX-ES-DF1:GMY-INCP",0.003)
time.sleep(2.5)
for i in range(0,Step3*2,1):
print("Move GMY to -0.003")
epics.caput("X06MX-ES-DF1:GMY-INCP",-0.003)
time.sleep(2.5)
for i in range(0,Step3,1):
print("Move GMY to +0.003")
epics.caput("X06MX-ES-DF1:GMY-INCP",0.003)
time.sleep(2.5)

View File

@@ -0,0 +1,229 @@
#!/usr/bin/env python
# Dieses Script verfaehrt den Aerotech translativ mit GMX,GMY und GMZ.
# Der Ausgangswert des Scripts beschreibt den Winkelversatz zwischen Aerotech und
# dem Kalibrier Tool.
# Dominik Buntschu, 2.11.2021
import rospy
from sensor_msgs.msg import JointState
import requests
import time
from datetime import date
from datetime import datetime
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import epics
import csv
import math
DMS_X=[];
DMS_Y=[];
DMS_Z=[];
DMS_Seq=[];
DMS_Secs=[];
DMS_Nsecs=[];
OMEGA_inst=0
OMEGA_Seq=0;
OMEGA_Secs=0;
OMEGA_Nsecs=0;
OMEGA=[];
# Aktueller Tag
today = date.today()
current_day = today.strftime("%Y_%m_%d_")
#print(current_day)
# Aktuelle Zeit
now = datetime.now()
current_time = now.strftime("%H:%M:%S_")
#print(current_time)
#print(current_day+current_time)
# Auslesen der Omega Achse
def callback_LJUE9_JointState(data):
global OMEGA_inst,OMEGA_Seq,OMEGA_Secs,OMEGA_Nsecs
OMEGA_inst = data.position[0]
OMEGA_Seq = data.header.seq
OMEGA_Secs = data.header.stamp.secs
OMEGA_Nsecs = data.header.stamp.nsecs
# Auselsen des Kalibriertools
# Auslesen Hinzufuegen eines Zeitstempels
# Einbinden des Aerotech Omegawinkels (OMEGA_inst)
def callback_readbackCAL_JointState(data):
global OMEGA,DMS_X,DMS_Y,DMS_Z,DMS_Seq,DMS_Secs,DMS_Nsecs
DMS_X.append(data.position[0])
DMS_Y.append(data.position[1])
DMS_Z.append(data.position[2])
DMS_Secs.append(OMEGA_Secs)
DMS_Nsecs.append(OMEGA_Nsecs)
DMS_Seq.append(OMEGA_Seq)
OMEGA.append(OMEGA_inst)
# Funktion um aktueller Werte des Kalibriertools zu speichern
# Wird fuer Makierung im 3D Plot verwendet
def getCurrentPoint():
return [DMS_X[-1],DMS_Y[-1],DMS_Z[-1]]
# Stellt Seitenlaengen des 3D Plots in Relation
def set_axes_equal(ax):
x_limits = ax.get_xlim3d()
y_limits = ax.get_ylim3d()
z_limits = ax.get_zlim3d()
x_range = abs(x_limits[1] - x_limits[0])
x_middle = np.mean(x_limits)
y_range = abs(y_limits[1] - y_limits[0])
y_middle = np.mean(y_limits)
z_range = abs(z_limits[1] - z_limits[0])
z_middle = np.mean(z_limits)
print (f"x_range: {x_range}")
print (f"y_range: {y_range}")
print (f"z_range: {z_range}")
print (f"x_middle: {x_middle}")
print (f"y_middle: {y_middle}")
print (f"z_middle: {z_middle}")
plot_radius = 0.5*max([x_range, y_range, z_range])
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
def calculate_correction(VECT):
current = VECT[0]
centre = (max(VECT) + min(VECT))/2.
correction = -(current-centre)
print (f"MAX= {max(VECT)}, MIN= {min(VECT)}")
print (f"current {current}")
print (f"centre {centre}")
print (f"CORRECTION: {correction}")
### START SCRIPT HERE #########################################################
#AEROTECH_EPICS_RECORD = "X06MX-ES-DF1"
AEROTECH_EPICS_RECORD = "X06SA-ES-DF1"
print ("This script moves Aerotech GMX GMY and GMZ by aprox. 2mm")
print ("and records the calibration tool position during this motion.")
print ("***** Calibration Tool is ready, in contact and feedback is active *******")
key=input ("OK to continue? (y/n) ")
if (key != "y"):
print ('Stopping script.')
exit(code=None)
# starten der Datenaufzeichnung
rospy.init_node('DMS_Recorder', anonymous=True)
subsOMEGA=rospy.Subscriber("/LJUE9_JointState", JointState, callback_LJUE9_JointState)
subsDMS =rospy.Subscriber("/readbackCAL", JointState, callback_readbackCAL_JointState)
print ("Starting data collection...")
# smargopolo_server = "http://smargopolo:3000"
# Setzt die Geschwidigkeit der Aerotech Achsen
epics.caput("X06MX-ES-DF1:GMX-SETV",2)
epics.caput("X06MX-ES-DF1:GMZ-SETV",2)
epics.caput("X06MX-ES-DF1:GMY-SETV",2)
# Macht X Iterationen eines Rechteckes mit jeweils einem Versatz
# Veranschaulicht den Winkelversatz zwischen Aerotech und Kalibriertool
for i in range(0,5,1):
print("Move GMZ to +2")
epics.caput("X06MX-ES-DF1:GMZ-INCP",2)
time.sleep(2)
Point1 = getCurrentPoint()
print("Move GMY to +2")
epics.caput("X06MX-ES-DF1:GMY-INCP",2)
time.sleep(2)
Point2 = getCurrentPoint()
print("Move GMZ to -2")
epics.caput("X06MX-ES-DF1:GMZ-INCP",-2)
time.sleep(2)
Point3 = getCurrentPoint()
print("Move GMY to -2")
epics.caput("X06MX-ES-DF1:GMY-INCP",-2)
time.sleep(2)
print("Move GMX to +1")
epics.caput("X06MX-ES-DF1:GMX-INCP",1)
time.sleep(2)
# beenden der Datenaufzeichnung
rospy.signal_shutdown('finished measuring')
################################################################################
# 3D Plot der Bewegung mit den Werten des Kalibirertools
# Start der Bewegung = x Punkt
fig = plt.figure()
ax=fig.add_subplot(111, projection='3d')
ax.plot(DMS_Z,DMS_X,DMS_Y)
ax.set_xlabel("DMS_Z [mm]")
ax.set_ylabel("DMS_X [mm]")
ax.set_zlabel("DMS_Y [mm]")
ax.set_title("3D Plot: Measure Linearity to DMS Tool",fontsize=14,fontweight="bold")
ax.plot(DMS_Z[0:1],DMS_X[0],DMS_Y[0],label='StartPoint',marker=(5,0))
ax.plot([Point1[2]],[Point1[0]],[Point1[1]],label='Point1',marker=(5,1))
ax.plot([Point2[2]], [Point2[0]], [Point2[1]],label='Point2', marker=(5,2))
ax.plot([Point3[2]], [Point3[0]], [Point3[1]],label='Point3', marker=(5,3))
ax.legend()
set_axes_equal(ax)
fig.show()
# 2D Plot der Bewegung mit den Werten des Kaibriertools
#fig2 = plt.figure()
#ax2=fig2.add_subplot(111)
#ax2.plot(OMEGA, DMS_X, label='DMS_X')
#ax2.plot(OMEGA, DMS_Y, label='DMS_Y')
#ax2.plot(OMEGA, DMS_Z, label='DMS_Z')
#ax2.set_xlabel("OMEGA")
#ax2.legend()
#fig2.show()
#Berrechnung des Versatzes zwischen Aerotech und Kalibirertool-> Rotation um GMX
YOffset= Point2[1]-Point1[1]
ZOffset= Point2[2]-Point1[2]
GMXOffset = (math.tan(ZOffset/YOffset))*(180/math.pi)
print (f"Winkelversatz um GMX: {GMXOffset}")
#Berrechnung des Versatzes zwischen Aerotech und Kalibirertool-> Rotation um GMZ
YOffset= Point2[1]-Point1[1]
XOffset= Point2[0]-Point1[0]
GMZOffset = (math.tan(XOffset/YOffset))*(180/math.pi)
print (f"Winkelversatz um GMZ: {GMZOffset}")
#Berrechnung des Versatzes zwischen Aerotech und Kalibirertool-> Rotation um GMY
ZOffset= Point2[2]-Point3[2]
XOffset= Point2[0]-Point3[0]
GMYOffset = (math.tan(XOffset/ZOffset))*(180/math.pi)
print (f"Winkelversatz um GMY: {GMYOffset}")
##########################################i######################################
# Speichern der Daten in ein CSV.
# Bennenung des Files mit Datum und Zeitstempel
rows = zip(OMEGA, DMS_X, DMS_Y, DMS_Z, DMS_Seq, DMS_Secs, DMS_Nsecs)
with open(current_day + current_time +'measure_DMS_Tool_angle.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(["OMEGA", "DMS_X", "DMS_Y", "DMS_Z", "DMS_Seq", "DMS_Secs", "DMS_Nsecs"])
for row in rows:
writer.writerow(row)
# Bewegung der GMX Achse zurueck auf den Startwert
print("Move GMX back to Start Position")
epics.caput("X06MX-ES-DF1:GMX-INCP",-5)
time.sleep(2)
input("done.")

View File

@@ -0,0 +1,200 @@
#!/usr/bin/env python
# This Script creates a lookup table from the measured error CSV
# Dominik Buntschu, 2.8.2021
import rospy
from sensor_msgs.msg import JointState
import requests
import time
from datetime import date
from datetime import datetime
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import epics
import csv
import math
DMS_X=[];
DMS_Y=[];
DMS_Z=[];
DMS_Seq=[];
DMS_Secs=[];
DMS_Nsecs=[];
OMEGA_inst=0
OMEGA=[];
today = date.today()
current_day = today.strftime("%Y_%m_%d_")
#print(current_day)
now = datetime.now()
current_time = now.strftime("%H:%M:%S_")
#print(current_time)
#print(current_day+current_time)
def callback_LJUE9_JointState(data):
global OMEGA_inst
OMEGA_inst = data.position[0]
def callback_readbackCAL_JointState(data):
global OMEGA,DMS_X,DMS_Y,DMS_Z,DMS_Seq,DMS_Secs,DMS_Nsecs
DMS_X.append(data.position[0])
DMS_Y.append(data.position[1])
DMS_Z.append(data.position[2])
DMS_Secs.append(data.header.stamp.secs)
DMS_Nsecs.append(data.header.stamp.nsecs)
DMS_Seq.append(data.header.seq)
OMEGA.append(OMEGA_inst)
def getCurrentPoint():
return [DMS_X[-1],DMS_Y[-1],DMS_Z[-1]]
def set_axes_equal(ax):
'''Make axes of 3D plot have equal scale so that spheres appear as spheres,
cubes as cubes, etc.. This is one possible solution to Matplotlib's
ax.set_aspect('equal') and ax.axis('equal') not working for 3D.
Input
ax: a matplotlib axis, e.g., as output from plt.gca().
'''
x_limits = ax.get_xlim3d()
y_limits = ax.get_ylim3d()
z_limits = ax.get_zlim3d()
x_range = abs(x_limits[1] - x_limits[0])
x_middle = np.mean(x_limits)
y_range = abs(y_limits[1] - y_limits[0])
y_middle = np.mean(y_limits)
z_range = abs(z_limits[1] - z_limits[0])
z_middle = np.mean(z_limits)
print (f"x_range: {x_range}")
print (f"y_range: {y_range}")
print (f"z_range: {z_range}")
print (f"x_middle: {x_middle}")
print (f"y_middle: {y_middle}")
print (f"z_middle: {z_middle}")
# The plot bounding box is a sphere in the sense of the infinity
# norm, hence I call half the max range the plot radius.
plot_radius = 0.5*max([x_range, y_range, z_range])
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
def calculate_correction(VECT):
current = VECT[0]
centre = (max(VECT) + min(VECT))/2.
correction = -(current-centre)
print (f"MAX= {max(VECT)}, MIN= {min(VECT)}")
print (f"current {current}")
print (f"centre {centre}")
print (f"CORRECTION: {correction}")
#if __name__ == '__main__':
### START SCRIPT HERE #########################################################
#AEROTECH_EPICS_RECORD = "X06MX-ES-DF1"
AEROTECH_EPICS_RECORD = "X06SA-ES-DF1"
print ("This script rotates the Aerotech OMEGA axis from 0-360deg,")
print ("and records the calibration tool position during this motion.")
print ("Make sure:")
print ("* OMEGA is ready to turn freely.")
print ("* Calibration Tool is ready, in contact and feedback is active.")
key=input ("OK to continue? (y/n) ")
if (key != "y"):
print ('Stopping script.')
exit(code=None)
print ("Setting up ROS")
#connect to ROS topics for OMEGA and DMS values:
rospy.init_node('DMS_Recorder', anonymous=True)
subsOMEGA=rospy.Subscriber("/LJUE9_JointState", JointState, callback_LJUE9_JointState)
subsDMS =rospy.Subscriber("/readbackCAL", JointState, callback_readbackCAL_JointState)
print ("Starting data collection...")
smargopolo_server = "http://smargopolo:3000"
epics.caput("X06MX-ES-DF1:GMX-SETV",2)
epics.caput("X06MX-ES-DF1:GMZ-SETV",2)
epics.caput("X06MX-ES-DF1:GMY-SETV",2)
for i in range(0,5,1):
print("Move GMZ to +2")
epics.caput("X06MX-ES-DF1:GMZ-INCP",2)
time.sleep(2)
startPoint = getCurrentPoint()
print("Move GMY to +2")
epics.caput("X06MX-ES-DF1:GMY-INCP",2)
time.sleep(2)
secondPoint = getCurrentPoint()
print("Move GMZ to -2")
epics.caput("X06MX-ES-DF1:GMZ-INCP",-2)
time.sleep(2)
print("Move GMY to -2")
epics.caput("X06MX-ES-DF1:GMY-INCP",-2)
time.sleep(2)
print("Move GMX to +1")
epics.caput("X06MX-ES-DF1:GMX-INCP",1)
time.sleep(2)
#stop ROS to stop measuring.
rospy.signal_shutdown('finished measuring')
################################################################################
fig = plt.figure()
ax=fig.add_subplot(111, projection='3d')
ax.plot(DMS_Z,DMS_X,DMS_Y)
ax.set_xlabel("DMS_Z")
ax.set_ylabel("DMS_X")
ax.set_zlabel("DMS_Y")
ax.plot(DMS_Z[0:1],DMS_X[0],DMS_Y[0], 'rx')
ax.plot([startPoint[2]],[startPoint[0]],[startPoint[1]],'rx')
ax.plot([secondPoint[2]], [secondPoint[0]], [secondPoint[1]], 'ro')
set_axes_equal(ax)
fig.show()
fig2 = plt.figure()
ax2=fig2.add_subplot(111)
ax2.plot(OMEGA, DMS_X, label='DMS_X')
ax2.plot(OMEGA, DMS_Y, label='DMS_Y')
ax2.plot(OMEGA, DMS_Z, label='DMS_Z')
ax2.set_xlabel("OMEGA")
ax2.legend()
fig2.show()
#Omega Offset in degree
print ('Omega Offset in degree')
YOffset= secondPoint[1]-startPoint[1]
ZOffset= secondPoint[2]-startPoint[2]
OmegaOffset = (math.tan(ZOffset/YOffset))*(180/math.pi)
print (f"Omega Offset: {OmegaOffset}")
##########################################i######################################
# Save Data to CSV
rows = zip(OMEGA, DMS_X, DMS_Y, DMS_Z, DMS_Seq, DMS_Secs, DMS_Nsecs)
with open(current_day + current_time +'measure_repeatability_aerotech_2.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(["OMEGA", "DMS_X", "DMS_Y", "DMS_Z", "DMS_Seq", "DMS_Secs", "DMS_Nsecs"])
for row in rows:
writer.writerow(row)
print("Move GMX to +1")
epics.caput("X06MX-ES-DF1:GMX-INCP",-5)
time.sleep(2)
input("done.")

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

View File

@@ -0,0 +1,223 @@
#!/usr/bin/env python
# Dieses Script verfaehrt den Aerotech translativ mit GMX,GMY und GMZ.
# Der Ausgangswert des Scripts beschreibt den Winkelversatz zwischen Aerotech und
# dem Kalibrier Tool.
# Dominik Buntschu, 2.8.2021
import rospy
from sensor_msgs.msg import JointState
import requests
import time
from datetime import date
from datetime import datetime
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import epics
import csv
import math
DMS_X=[];
DMS_Y=[];
DMS_Z=[];
DMS_Seq=[];
DMS_Secs=[];
DMS_Nsecs=[];
OMEGA_inst=0
OMEGA=[];
# Aktueller Tag
today = date.today()
current_day = today.strftime("%Y_%m_%d_")
#print(current_day)
# Aktuelle Zeit
now = datetime.now()
current_time = now.strftime("%H:%M:%S_")
#print(current_time)
#print(current_day+current_time)
# Auslesen der Omega Achse
def callback_LJUE9_JointState(data):
global OMEGA_inst
OMEGA_inst = data.position[0]
# Auselsen des Kalibriertools
# Auslesen Hinzufuegen eines Zeitstempels
# Einbinden des Aerotech Omegawinkels (OMEGA_inst)
def callback_readbackCAL_JointState(data):
global OMEGA,DMS_X,DMS_Y,DMS_Z,DMS_Seq,DMS_Secs,DMS_Nsecs
DMS_X.append(data.position[0])
DMS_Y.append(data.position[1])
DMS_Z.append(data.position[2])
DMS_Secs.append(data.header.stamp.secs)
DMS_Nsecs.append(data.header.stamp.nsecs)
DMS_Seq.append(data.header.seq)
OMEGA.append(OMEGA_inst)
# Funktion um aktueller Werte des Kaliobriertools zu speichern
# Wird fuer Makierung im 3D Plot verwendet
def getCurrentPoint():
return [DMS_X[-1],DMS_Y[-1],DMS_Z[-1]]
# Stellt Seitenlaengen des 3D Plot in Relation
def set_axes_equal(ax):
x_limits = ax.get_xlim3d()
y_limits = ax.get_ylim3d()
z_limits = ax.get_zlim3d()
x_range = abs(x_limits[1] - x_limits[0])
x_middle = np.mean(x_limits)
y_range = abs(y_limits[1] - y_limits[0])
y_middle = np.mean(y_limits)
z_range = abs(z_limits[1] - z_limits[0])
z_middle = np.mean(z_limits)
print (f"x_range: {x_range}")
print (f"y_range: {y_range}")
print (f"z_range: {z_range}")
print (f"x_middle: {x_middle}")
print (f"y_middle: {y_middle}")
print (f"z_middle: {z_middle}")
plot_radius = 0.5*max([x_range, y_range, z_range])
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
def calculate_correction(VECT):
current = VECT[0]
centre = (max(VECT) + min(VECT))/2.
correction = -(current-centre)
print (f"MAX= {max(VECT)}, MIN= {min(VECT)}")
print (f"current {current}")
print (f"centre {centre}")
print (f"CORRECTION: {correction}")
### START SCRIPT HERE #########################################################
#AEROTECH_EPICS_RECORD = "X06MX-ES-DF1"
AEROTECH_EPICS_RECORD = "X06SA-ES-DF1"
print ("This script moves Aerotech GMX GMY and GMZ by aprox. 2mm")
print ("and records the calibration tool position during this motion.")
print ("***** Calibration Tool is ready, in contact and feedback is active *******")
key=input ("OK to continue? (y/n) ")
if (key != "y"):
print ('Stopping script.')
exit(code=None)
# starten der Datenaufzeichnung
rospy.init_node('DMS_Recorder', anonymous=True)
subsOMEGA=rospy.Subscriber("/LJUE9_JointState", JointState, callback_LJUE9_JointState)
subsDMS =rospy.Subscriber("/readbackCAL", JointState, callback_readbackCAL_JointState)
print ("Starting data collection...")
# smargopolo_server = "http://smargopolo:3000"
# Setzt die Geschwidigkeit der Aerotech Achsen
epics.caput("X06MX-ES-DF1:GMX-SETV",2)
epics.caput("X06MX-ES-DF1:GMZ-SETV",2)
epics.caput("X06MX-ES-DF1:GMY-SETV",2)
# Macht X Iterationen eines Rechteckes mit jeweils einem Versatz
# Veranschaulicht den Winkelversatz zwischen Aerotech und Kalibriertool
for i in range(0,5,1):
print("Move GMZ to +2")
epics.caput("X06MX-ES-DF1:GMZ-INCP",2)
time.sleep(2)
Point1 = getCurrentPoint()
print("Move GMY to +2")
epics.caput("X06MX-ES-DF1:GMY-INCP",2)
time.sleep(2)
Point2 = getCurrentPoint()
print("Move GMZ to -2")
epics.caput("X06MX-ES-DF1:GMZ-INCP",-2)
time.sleep(2)
Point3 = getCurrentPoint()
print("Move GMY to -2")
epics.caput("X06MX-ES-DF1:GMY-INCP",-2)
time.sleep(2)
print("Move GMX to +1")
epics.caput("X06MX-ES-DF1:GMX-INCP",1)
time.sleep(2)
# beenden der Datenaufzeichnung
rospy.signal_shutdown('finished measuring')
################################################################################
# 3D Plot der Bewegung mit den Werten des Kalibirertools
# Start der Bewegung = x Punkt
fig = plt.figure()
ax=fig.add_subplot(111, projection='3d')
ax.plot(DMS_Z,DMS_X,DMS_Y)
ax.set_xlabel("DMS_Z")
ax.set_ylabel("DMS_X")
ax.set_zlabel("DMS_Y")
ax.set_title("3D Plot: Measure Linearity to DMS Tool",fontsize=14,fontweight="bold")
ax.plot(DMS_Z[0:1],DMS_X[0],DMS_Y[0],label='StartPoint',marker=(5,0))
ax.plot([Point1[2]],[Point1[0]],[Point1[1]],label='Point1',marker=(5,1))
ax.plot([Point2[2]], [Point2[0]], [Point2[1]],label='Point2', marker=(5,2))
ax.plot([Point3[2]], [Point3[0]], [Point3[1]],label='Point3', marker=(5,3))
ax.legend()
set_axes_equal(ax)
fig.show()
# 2D Plot der Bewegung mit den Werten des Kaibriertools
#fig2 = plt.figure()
#ax2=fig2.add_subplot(111)
#ax2.plot(OMEGA, DMS_X, label='DMS_X')
#ax2.plot(OMEGA, DMS_Y, label='DMS_Y')
#ax2.plot(OMEGA, DMS_Z, label='DMS_Z')
#ax2.set_xlabel("OMEGA")
#ax2.legend()
#fig2.show()
#Berrechnung des Versatzes zwischen Aerotech und Kalibirertool-> Rotation um GMX
YOffset= Point2[1]-Point1[1]
ZOffset= Point2[2]-Point1[2]
GMXOffset = (math.tan(ZOffset/YOffset))*(180/math.pi)
print (f"Winkelversatz um GMX: {GMXOffset}")
#Berrechnung des Versatzes zwischen Aerotech und Kalibirertool-> Rotation um GMZ
YOffset= Point2[1]-Point1[1]
XOffset= Point2[0]-Point1[0]
GMZOffset = (math.tan(XOffset/YOffset))*(180/math.pi)
print (f"Winkelversatz um GMZ: {GMZOffset}")
#Berrechnung des Versatzes zwischen Aerotech und Kalibirertool-> Rotation um GMY
ZOffset= Point2[2]-Point3[2]
XOffset= Point2[0]-Point3[0]
GMYOffset = (math.tan(XOffset/ZOffset))*(180/math.pi)
print (f"Winkelversatz um GMY: {GMYOffset}")
##########################################i######################################
# Speichern der Daten in ein CSV.
# Bennenung des Files mit Datum und Zeitstempel
rows = zip(OMEGA, DMS_X, DMS_Y, DMS_Z, DMS_Seq, DMS_Secs, DMS_Nsecs)
with open(current_day + current_time +'measure_DMS_Tool_linearity.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(["OMEGA", "DMS_X", "DMS_Y", "DMS_Z", "DMS_Seq", "DMS_Secs", "DMS_Nsecs"])
for row in rows:
writer.writerow(row)
# Bewegung der GMX Achse zurueck auf den Startwert
print("Move GMX back to Start Position")
epics.caput("X06MX-ES-DF1:GMX-INCP",-5)
time.sleep(2)
input("done.")

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 103 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 98 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 145 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 140 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 120 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 106 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 91 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.9 KiB

View File

@@ -0,0 +1,213 @@
#!/usr/bin/env pythoni
# Dieses Script verfaehrt den Smargon translativ im Smargon Koordintane System OX,OY,OZ.
# Der Ausgangswert des Scripts beschreibt den Winkelversatz zwischen der Aerotech Omega Achse und
# dem Smargon.
# Ziel ist es einen moeglichst kleinen Winkelfehler zu haben. Smargon muss sich rechtwinklig zum Aeroetch
# bewegen
# Dominik Buntschu, 2.8.2021
import rospy
from sensor_msgs.msg import JointState
import matplotlib.pyplot as plt
import requests
import time
from datetime import date
from datetime import datetime
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import epics
import csv
import math
DMS_X=[];
DMS_Y=[];
DMS_Z=[];
DMS_Seq=[];
DMS_Secs=[];
DMS_Nsecs=[];
OMEGA_inst=0;
OMEGA_Seq=0;
OMEGA_Secs=0;
OMEGA_Nsecs=0;
OMEGA=[];
# Aktueller Tag
today = date.today()
current_day = today.strftime("%Y_%m_%d_")
#print(current_day)
# Aktuelle Zeit
now = datetime.now()
current_time = now.strftime("%H:%M:%S_")
#print(current_time)
#print(current_day+current_time)
# Auslesen der Omega Achse
def callback_LJUE9_JointState(data):
global OMEGA_inst,OMEGA_Seq,OMEGA_Secs,OMEGA_Nsecs
OMEGA_inst = data.position[0]
OMEGA_Seq = data.header.seq
OMEGA_Secs = data.header.stamp.secs
OMEGA_Nsecs = data.header.stamp.nsecs
# Auselsen des Kalibriertools
# Auslesen Hinzufuegen eines Zeitstempels
# Einbinden des Aerotech Omegawinkels (OMEGA_inst)
def callback_readbackCAL_JointState(data):
global OMEGA,DMS_X,DMS_Y,DMS_Z,DMS_Seq,DMS_Secs,DMS_Nsecs
DMS_X.append(data.position[0])
DMS_Y.append(data.position[1])
DMS_Z.append(data.position[2])
DMS_Secs.append(OMEGA_Secs)
DMS_Nsecs.append(OMEGA_Nsecs)
DMS_Seq.append(OMEGA_Seq)
OMEGA.append(OMEGA_inst)
# Funktion um aktueller Werte des Kaliobriertools zu speichern
# Wird fuer Makierung im 3D Plot verwendet
def getCurrentPoint():
return [DMS_X[-1],DMS_Y[-1],DMS_Z[-1]]
# Stellt Seitenlaengen des 3D Plot in Relation
def set_axes_equal(ax):
x_limits = ax.get_xlim3d()
y_limits = ax.get_ylim3d()
z_limits = ax.get_zlim3d()
x_range = abs(x_limits[1] - x_limits[0])
x_middle = np.mean(x_limits)
y_range = abs(y_limits[1] - y_limits[0])
y_middle = np.mean(y_limits)
z_range = abs(z_limits[1] - z_limits[0])
z_middle = np.mean(z_limits)
print (f"x_range: {x_range}")
print (f"y_range: {y_range}")
print (f"z_range: {z_range}")
print (f"x_middle: {x_middle}")
print (f"y_middle: {y_middle}")
print (f"z_middle: {z_middle}")
plot_radius = 0.5*max([x_range, y_range, z_range])
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
def calculate_correction(VECT):
current = VECT[0]
centre = (max(VECT) + min(VECT))/2.
correction = -(current-centre)
print (f"MAX= {max(VECT)}, MIN= {min(VECT)}")
print (f"current {current}")
print (f"centre {centre}")
print (f"CORRECTION: {correction}")
### START SCRIPT HERE #########################################################
#AEROTECH_EPICS_RECORD = "X06MX-ES-DF1"
AEROTECH_EPICS_RECORD = "X06SA-ES-DF1"
print ("This script moves Smargon in Beamline Coordinates OX OY and OZ by approx. 2mm,")
print ("and records the calibration tool position during this motion.")
print ("***** Calibration Tool is ready, in contact and feedback is active *******")
key=input ("OK to continue? (y/n) ")
if (key != "y"):
print ('Stopping script.')
exit(code=None)
# starten der Datenaufzeichnung
rospy.init_node('DMS_Recorder', anonymous=True)
subsOMEGA=rospy.Subscriber("/LJUE9_JointState", JointState, callback_LJUE9_JointState)
subsDMS =rospy.Subscriber("/readbackCAL", JointState, callback_readbackCAL_JointState)
print ("Starting data collection...")
#Definiert Variabel fuer den Smargon Server
smargopolo_server = "http://smargopolo:3000"
# Macht X Iterationen eines Rechteckes mit jeweils einem Versatz
# Veranschaulicht den Winkelversatz zwischen Aerotech und Smargon
for i in range(0,3,1):
print("Move OY to +2")
response = requests.put(smargopolo_server+'/targetSCS_rel?OY=2')
time.sleep(2)
Point1 = getCurrentPoint()
print("Move OX to +2")
response = requests.put(smargopolo_server+'/targetSCS_rel?OX=2')
time.sleep(2)
Point2 = getCurrentPoint()
print("Move OY to -2")
response = requests.put(smargopolo_server+'/targetSCS_rel?OY=-2')
time.sleep(2)
print("Move OX to -2")
response = requests.put(smargopolo_server+'/targetSCS_rel?OX=-2')
time.sleep(2)
print("Move OZ to +1")
response = requests.put(smargopolo_server+'/targetSCS_rel?OZ=1')
time.sleep(2)
# beenden der Datenaufzeichnung
rospy.signal_shutdown('finished measuring')
################################################################################
# 3D Plot der Bewegung mit den Werten des Kalibirertools
# Start der Bewegung = x Punkt
# 3D Plot der Bewegung mit den Werten des Kalibirertools
# Start der Bewegung = x Punkt
fig = plt.figure()
ax=fig.add_subplot(111, projection='3d')
ax.plot(DMS_Z,DMS_X,DMS_Y)
ax.set_xlabel("DMS_Z [mm]")
ax.set_ylabel("DMS_X [mm]")
ax.set_zlabel("DMS_Y [mm]")
ax.set_title("3D Plot: Measure Omega Offset to Smargon",fontsize=14,fontweight="bold")
ax.plot(DMS_Z[0:1],DMS_X[0],DMS_Y[0],label='StartPoint',marker=(5,0))
ax.plot([Point1[2]],[Point1[0]],[Point1[1]],label='Point1',marker=(5,1))
ax.plot([Point2[2]], [Point2[0]], [Point2[1]],label='Point2', marker=(5,2))
ax.legend()
set_axes_equal(ax)
fig.show()
# 2D Plot der Bewegung mit den Werten des Kaibriertools
#fig2 = plt.figure()
#ax2=fig2.add_subplot(111)
#ax2.plot(OMEGA, DMS_X, label='DMS_X')
#ax2.plot(OMEGA, DMS_Y, label='DMS_Y')
#ax2.plot(OMEGA, DMS_Z, label='DMS_Z')
#ax2.set_xlabel("OMEGA")
#ax2.legend()
#fig2.show()
#Berrechnung des Winkelversatzes zwischen Aerotech und Smargon
YOffset= Point2[1]-Point1[1]
ZOffset= Point2[2]-Point1[2]
OmegaOffset = (math.tan(ZOffset/YOffset))*(180/math.pi)
print (f"Omega muss um folgenden Winkelfehler korrigiert werden: {OmegaOffset}")
##########################################i######################################
# Speichern der Daten in ein CSV.
# Bennenung des Files mit Datum und Zeitstempel
rows = zip(OMEGA, DMS_X, DMS_Y, DMS_Z, DMS_Seq, DMS_Secs, DMS_Nsecs)
with open(current_day + current_time +'measure_Omega_Offset_to_Smargon.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(["OMEGA", "DMS_X", "DMS_Y", "DMS_Z", "DMS_Seq", "DMS_Secs", "DMS_Nsecs"])
for row in rows:
writer.writerow(row)
print("Move OZ back to Start Position")
response = requests.put(smargopolo_server+'/targetSCS_rel?OZ=-3')
time.sleep(2)
input("done.")

View File

@@ -0,0 +1,198 @@
#!/usr/bin/env pythoni
# This Script creates a lookup table from the measured error CSV
# Dominik Buntschu, 2.8.2021
import rospy
from sensor_msgs.msg import JointState
import matplotlib.pyplot as plt
import requests
import time
from datetime import date
from datetime import datetime
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import epics
import csv
import math
DMS_X=[];
DMS_Y=[];
DMS_Z=[];
DMS_Seq=[];
DMS_Secs=[];
DMS_Nsecs=[];
OMEGA_inst=0
OMEGA=[];
today = date.today()
current_day = today.strftime("%Y_%m_%d_")
#print(current_day)
now = datetime.now()
current_time = now.strftime("%H:%M:%S_")
#print(current_time)
#print(current_day+current_time)
def callback_LJUE9_JointState(data):
global OMEGA_inst
OMEGA_inst = data.position[0]
def callback_readbackCAL_JointState(data):
global OMEGA,DMS_X,DMS_Y,DMS_Z,DMS_Seq,DMS_Secs,DMS_Nsecs
DMS_X.append(data.position[0])
DMS_Y.append(data.position[1])
DMS_Z.append(data.position[2])
DMS_Secs.append(data.header.stamp.secs)
DMS_Nsecs.append(data.header.stamp.nsecs)
DMS_Seq.append(data.header.seq)
OMEGA.append(OMEGA_inst)
def getCurrentPoint():
return [DMS_X[-1],DMS_Y[-1],DMS_Z[-1]]
def set_axes_equal(ax):
'''Make axes of 3D plot have equal scale so that spheres appear as spheres,
cubes as cubes, etc.. This is one possible solution to Matplotlib's
ax.set_aspect('equal') and ax.axis('equal') not working for 3D.
Input
ax: a matplotlib axis, e.g., as output from plt.gca().
'''
x_limits = ax.get_xlim3d()
y_limits = ax.get_ylim3d()
z_limits = ax.get_zlim3d()
x_range = abs(x_limits[1] - x_limits[0])
x_middle = np.mean(x_limits)
y_range = abs(y_limits[1] - y_limits[0])
y_middle = np.mean(y_limits)
z_range = abs(z_limits[1] - z_limits[0])
z_middle = np.mean(z_limits)
print (f"x_range: {x_range}")
print (f"y_range: {y_range}")
print (f"z_range: {z_range}")
print (f"x_middle: {x_middle}")
print (f"y_middle: {y_middle}")
print (f"z_middle: {z_middle}")
# The plot bounding box is a sphere in the sense of the infinity
# norm, hence I call half the max range the plot radius.
plot_radius = 0.5*max([x_range, y_range, z_range])
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
def calculate_correction(VECT):
current = VECT[0]
centre = (max(VECT) + min(VECT))/2.
correction = -(current-centre)
print (f"MAX= {max(VECT)}, MIN= {min(VECT)}")
print (f"current {current}")
print (f"centre {centre}")
print (f"CORRECTION: {correction}")
#if __name__ == '__main__':
### START SCRIPT HERE #########################################################
#AEROTECH_EPICS_RECORD = "X06MX-ES-DF1"
AEROTECH_EPICS_RECORD = "X06SA-ES-DF1"
print ("This script rotates the Aerotech OMEGA axis from 0-360deg,")
print ("and records the calibration tool position during this motion.")
print ("Make sure:")
print ("* OMEGA is ready to turn freely.")
print ("* Calibration Tool is ready, in contact and feedback is active.")
key=input ("OK to continue? (y/n) ")
if (key != "y"):
print ('Stopping script.')
exit(code=None)
print ("Setting up ROS")
#connect to ROS topics for OMEGA and DMS values:
rospy.init_node('DMS_Recorder', anonymous=True)
subsOMEGA=rospy.Subscriber("/LJUE9_JointState", JointState, callback_LJUE9_JointState)
subsDMS =rospy.Subscriber("/readbackCAL", JointState, callback_readbackCAL_JointState)
print ("Starting data collection...")
smargopolo_server = "http://smargopolo:3000"
for i in range(0,5,1):
print("Move BZ to +2")
response = requests.put(smargopolo_server+'/nudgeBCS?BZ=2')
time.sleep(2)
startPoint = getCurrentPoint()
print("Move BY to +1")
response = requests.put(smargopolo_server+'/nudgeBCS?BY=2')
time.sleep(2)
secondPoint = getCurrentPoint()
print("Move BZ to +1")
response = requests.put(smargopolo_server+'/nudgeBCS?BZ=-2')
time.sleep(2)
print("Move BY to +1")
response = requests.put(smargopolo_server+'/nudgeBCS?BY=-2')
time.sleep(2)
print("Move BX to +1")
response = requests.put(smargopolo_server+'/nudgeBCS?BX=1')
time.sleep(2)
#stop ROS to stop measuring.
rospy.signal_shutdown('finished measuring')
################################################################################
fig = plt.figure()
ax=fig.add_subplot(111, projection='3d')
ax.plot(DMS_Z,DMS_X,DMS_Y)
ax.set_xlabel("DMS_Z")
ax.set_ylabel("DMS_X")
ax.set_zlabel("DMS_Y")
ax.plot(DMS_Z[0:1],DMS_X[0],DMS_Y[0], 'rx')
ax.plot([startPoint[2]],[startPoint[0]],[startPoint[1]],'rx')
ax.plot([secondPoint[2]], [secondPoint[0]], [secondPoint[1]], 'ro')
set_axes_equal(ax)
fig.show()
fig2 = plt.figure()
ax2=fig2.add_subplot(111)
ax2.plot(OMEGA, DMS_X, label='DMS_X')
ax2.plot(OMEGA, DMS_Y, label='DMS_Y')
ax2.plot(OMEGA, DMS_Z, label='DMS_Z')
ax2.set_xlabel("OMEGA")
ax2.legend()
fig2.show()
#Omega Offset in degree
print ('Omega Offset in degree')
YOffset= secondPoint[1]-startPoint[1]
ZOffset= secondPoint[2]-startPoint[2]
OmegaOffset = (math.tan(ZOffset/YOffset))*(180/math.pi)
print (f"Omega Offset: {OmegaOffset}")
##########################################i######################################
# Save Data to CSV
rows = zip(OMEGA, DMS_X, DMS_Y, DMS_Z, DMS_Seq, DMS_Secs, DMS_Nsecs)
with open(current_day + current_time +'measure_repeatability_smargon_2.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(["OMEGA", "DMS_X", "DMS_Y", "DMS_Z", "DMS_Seq", "DMS_Secs", "DMS_Nsecs"])
for row in rows:
writer.writerow(row)
print("Move BX to +1")
response = requests.put(smargopolo_server+'/nudgeBCS?BX=-5')
time.sleep(2)
input("done.")

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

View File

@@ -0,0 +1,203 @@
#!/usr/bin/env pythoni
# Dieses Script verfaehrt den Smargon translativ im Smargon Koordintane System OX,OY,OZ.
# Der Ausgangswert des Scripts beschreibt den Winkelversatz zwischen der Aerotech Omega Achse und
# dem Smargon.
# Ziel ist es einen moeglichst kleinen Winkelfehler zu haben. Smargon muss sich rechtwinklig zum Aeroetch
# bewegen
# Dominik Buntschu, 2.8.2021
import rospy
from sensor_msgs.msg import JointState
import matplotlib.pyplot as plt
import requests
import time
from datetime import date
from datetime import datetime
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
import epics
import csv
import math
DMS_X=[];
DMS_Y=[];
DMS_Z=[];
DMS_Seq=[];
DMS_Secs=[];
DMS_Nsecs=[];
OMEGA_inst=0
OMEGA=[];
# Aktueller Tag
today = date.today()
current_day = today.strftime("%Y_%m_%d_")
#print(current_day)
# Aktuelle Zeit
now = datetime.now()
current_time = now.strftime("%H:%M:%S_")
#print(current_time)
#print(current_day+current_time)
# Auslesen der Omega Achse
def callback_LJUE9_JointState(data):
global OMEGA_inst
OMEGA_inst = data.position[0]
# Auselsen des Kalibriertools
# Auslesen Hinzufuegen eines Zeitstempels
# Einbinden des Aerotech Omegawinkels (OMEGA_inst)
def callback_readbackCAL_JointState(data):
global OMEGA,DMS_X,DMS_Y,DMS_Z,DMS_Seq,DMS_Secs,DMS_Nsecs
DMS_X.append(data.position[0])
DMS_Y.append(data.position[1])
DMS_Z.append(data.position[2])
DMS_Secs.append(data.header.stamp.secs)
DMS_Nsecs.append(data.header.stamp.nsecs)
DMS_Seq.append(data.header.seq)
OMEGA.append(OMEGA_inst)
# Funktion um aktueller Werte des Kaliobriertools zu speichern
# Wird fuer Makierung im 3D Plot verwendet
def getCurrentPoint():
return [DMS_X[-1],DMS_Y[-1],DMS_Z[-1]]
# Stellt Seitenlaengen des 3D Plot in Relation
def set_axes_equal(ax):
x_limits = ax.get_xlim3d()
y_limits = ax.get_ylim3d()
z_limits = ax.get_zlim3d()
x_range = abs(x_limits[1] - x_limits[0])
x_middle = np.mean(x_limits)
y_range = abs(y_limits[1] - y_limits[0])
y_middle = np.mean(y_limits)
z_range = abs(z_limits[1] - z_limits[0])
z_middle = np.mean(z_limits)
print (f"x_range: {x_range}")
print (f"y_range: {y_range}")
print (f"z_range: {z_range}")
print (f"x_middle: {x_middle}")
print (f"y_middle: {y_middle}")
print (f"z_middle: {z_middle}")
plot_radius = 0.5*max([x_range, y_range, z_range])
ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius])
ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius])
ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])
def calculate_correction(VECT):
current = VECT[0]
centre = (max(VECT) + min(VECT))/2.
correction = -(current-centre)
print (f"MAX= {max(VECT)}, MIN= {min(VECT)}")
print (f"current {current}")
print (f"centre {centre}")
print (f"CORRECTION: {correction}")
### START SCRIPT HERE #########################################################
#AEROTECH_EPICS_RECORD = "X06MX-ES-DF1"
AEROTECH_EPICS_RECORD = "X06SA-ES-DF1"
print ("This script moves Smargon in Beamline Coordinates BX BY and BZ by approx. 2mm,")
print ("and records the calibration tool position during this motion.")
print ("***** Calibration Tool is ready, in contact and feedback is active *******")
key=input ("OK to continue? (y/n) ")
if (key != "y"):
print ('Stopping script.')
exit(code=None)
# starten der Datenaufzeichnung
rospy.init_node('DMS_Recorder', anonymous=True)
subsOMEGA=rospy.Subscriber("/LJUE9_JointState", JointState, callback_LJUE9_JointState)
subsDMS =rospy.Subscriber("/readbackCAL", JointState, callback_readbackCAL_JointState)
print ("Starting data collection...")
#Definiert Variabel fuer den Smargon Server
smargopolo_server = "http://smargopolo:3000"
# Macht X Iterationen eines Rechteckes mit jeweils einem Versatz
# Veranschaulicht den Winkelversatz zwischen Aerotech und Smargon
for i in range(0,5,1):
print("Move OY to +2")
response = requests.put(smargopolo_server+'/targetSCS_rel?OY=2')
time.sleep(2)
startPoint = getCurrentPoint()
print("Move OX to +2")
response = requests.put(smargopolo_server+'/targetSCS_rel?OX=2')
time.sleep(2)
secondPoint = getCurrentPoint()
print("Move OY to -2")
response = requests.put(smargopolo_server+'/targetSCS_rel?OY=-2')
time.sleep(2)
print("Move OX to -2")
response = requests.put(smargopolo_server+'/targetSCS_rel?OX=-2')
time.sleep(2)
print("Move OZ to +1")
response = requests.put(smargopolo_server+'/targetSCS_rel?OZ=1')
time.sleep(2)
# beenden der Datenaufzeichnung
rospy.signal_shutdown('finished measuring')
################################################################################
# 3D Plot der Bewegung mit den Werten des Kalibirertools
# Start der Bewegung = x Punkt
fig = plt.figure()
ax=fig.add_subplot(111, projection='3d')
ax.plot(DMS_Z,DMS_X,DMS_Y)
ax.set_xlabel("DMS_Z")
ax.set_ylabel("DMS_X")
ax.set_zlabel("DMS_Y")
ax.plot(DMS_Z[0:1],DMS_X[0],DMS_Y[0], 'bx')
ax.plot([startPoint[2]],[startPoint[0]],[startPoint[1]],'rx')
ax.plot([secondPoint[2]], [secondPoint[0]], [secondPoint[1]], 'ro')
set_axes_equal(ax)
fig.show()
# 2D Plot der Bewegung mit den Werten des Kaibriertools
#fig2 = plt.figure()
#ax2=fig2.add_subplot(111)
#ax2.plot(OMEGA, DMS_X, label='DMS_X')
#ax2.plot(OMEGA, DMS_Y, label='DMS_Y')
#ax2.plot(OMEGA, DMS_Z, label='DMS_Z')
#ax2.set_xlabel("OMEGA")
#ax2.legend()
#fig2.show()
#Berrechnung des Winkelversatzes zwischen Aerotech und Smargon
YOffset= secondPoint[1]-startPoint[1]
ZOffset= secondPoint[2]-startPoint[2]
OmegaOffset = (math.tan(ZOffset/YOffset))*(180/math.pi)
print (f"Omega Offset needs to be corrected by: {OmegaOffset}")
##########################################i######################################
# Speichern der Daten in ein CSV.
# Bennenung des Files mit Datum und Zeitstempel
rows = zip(OMEGA, DMS_X, DMS_Y, DMS_Z, DMS_Seq, DMS_Secs, DMS_Nsecs)
with open(current_day + current_time +'measure_Omega_Offset_to_Smargon.csv', 'w', newline='') as file:
writer = csv.writer(file)
writer.writerow(["OMEGA", "DMS_X", "DMS_Y", "DMS_Z", "DMS_Seq", "DMS_Secs", "DMS_Nsecs"])
for row in rows:
writer.writerow(row)
print("Move OZ back to Start Position")
response = requests.put(smargopolo_server+'/targetSCS_rel?OZ=-5')
time.sleep(2)
input("done.")

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 89 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 151 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 174 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.8 KiB

Some files were not shown because too many files have changed in this diff Show More