Files
Jungfraujoch/tools/HDF5DatasetWriteTest.cpp

164 lines
5.7 KiB
C++

// Copyright (2019-2023) Paul Scherrer Institute
#include <cstdlib>
#include <iostream>
#include "../common/Logger.h"
#include "../writer/HDF5Writer.h"
#include "../receiver/FrameTransformation.h"
#include "../common/RawToConvertedGeometry.h"
#include "../jungfrau/JFCalibration.h"
#include "../writer/HDF5NXmx.h"
int main(int argc, char **argv) {
Logger logger("HDF5DatasetWriteTest");
RegisterHDF5Filter();
if ((argc < 2) || (argc > 4)) {
std::cout << "Usage: ./HDF5DatasetWriteTest <JF4M hdf5 file> {{<#images>} <rate in Hz>}" << std::endl;
std::cout << std::endl;
std::cout << "Env. variables:" << std::endl;
std::cout << "HDF5DATASET_WRITE_TEST_PREFIX" << std::endl;
exit(EXIT_FAILURE);
}
int64_t nimages_out = 100;
double rate = 2200;
if (argc >= 3)
nimages_out = atoi(argv[2]);
if (argc >= 4)
rate = atof(argv[3]);
std::chrono::microseconds period_us((rate == 0) ? 0 : (int64_t) (1.0e6 / rate));
HDF5File data(argv[1], false, false);
HDF5DataSet dataset(data, "/entry/data/data");
HDF5DataSpace file_space(dataset);
if (file_space.GetNumOfDimensions() != 3) {
std::cout << "/entry/data/data must be 3D" << std::endl;
exit(EXIT_FAILURE);
}
DiffractionExperiment x(DetectorGeometry(8, 2, 8, 36));
x.Summation(1);
// Set metadata for the compression_benchmark.h5 dataset
x.BeamX_pxl(1090).BeamY_pxl(1136).DetectorDistance_mm(75).PhotonEnergy_keV(WVL_1A_IN_KEV);
x.MaskModuleEdges(true);
x.MaskChipEdges(true);
x.DataFileCount(4);
if ((file_space.GetDimensions()[1] == 2164) && (file_space.GetDimensions()[2] == 2068)) {
std::cout << "JF4M with gaps detected (2068 x 2164)" << std::endl;
} else {
std::cout << "Unknown geometry - exiting" << std::endl;
exit(EXIT_FAILURE);
}
uint64_t nimages = file_space.GetDimensions()[0];
logger.Info("Number of images in the original dataset: " + std::to_string(nimages));
// Set file name
if (std::getenv("HDF5DATASET_WRITE_TEST_PREFIX") == nullptr)
x.FilePrefix("writing_test");
else
x.FilePrefix(std::getenv("HDF5DATASET_WRITE_TEST_PREFIX"));
x.Mode(DetectorMode::Conversion).ImagesPerTrigger(nimages);
std::vector<int16_t> image_conv ( nimages * file_space.GetDimensions()[1] * file_space.GetDimensions()[2]);
std::vector<hsize_t> start = {0,0,0};
dataset.ReadVector(image_conv, start, file_space.GetDimensions());
auto image = (int16_t *) malloc( nimages * x.GetModulesNum() * RAW_MODULE_SIZE * sizeof(int16_t));
for (int i = 0; i < nimages; i++) {
ConvertedToRawGeometry(x,
image + i * RAW_MODULE_SIZE * x.GetModulesNum(),
image_conv.data() + i * file_space.GetDimensions()[1] * file_space.GetDimensions()[2]);
}
FrameTransformation transformation(x);
std::vector<int64_t> output_size(nimages);
std::vector<std::vector<char> > output(nimages);
for (auto &i: output) i.resize(x.GetMaxCompressedSize());
for (int i = 0; i < nimages; i++) {
for (int j = 0; j < 8; j++)
transformation.ProcessModule(image + (i * x.GetModulesNum() + j) * RAW_MODULE_SIZE, j, 0);
auto image = transformation.GetCompressedImage();
output_size[i] = image.size;
output[i].resize(image.size);
memcpy(output[i].data(), image.data, image.size);
}
x.ImagesPerTrigger(nimages_out);
logger.Info("Number of images to write: " + std::to_string(nimages_out));
StartMessage start_message;
x.FillMessage(start_message);
JFCalibration calib(x);
auto pixel_mask = calib.CalculateNexusMask(x, 0);
{
size_t xpixel = x.GetXPixelsNum();
size_t ypixel = x.GetYPixelsNum();
start_message.AddPixelMask(CompressedImage{
.data = reinterpret_cast<uint8_t *>(pixel_mask.data()),
.size = pixel_mask.size() * sizeof(uint32_t),
.xpixel = xpixel,
.ypixel = ypixel,
.pixel_depth_bytes = 4,
.pixel_is_signed = false,
.pixel_is_float = false,
.algorithm = CompressionAlgorithm::NO_COMPRESSION,
.channel = "default"
});
}
// Master & calibration files are written outside of timing routine
auto fileset = std::make_unique<HDF5Writer>(start_message);
auto start_time = std::chrono::system_clock::now();
logger.Info("Writing " + std::to_string(nimages_out) + " images");
std::vector<SpotToSave> spots;
int64_t total_image_size = 0;
for (int i = 0; i < nimages_out; i++) {
std::this_thread::sleep_until(start_time + i * period_us);
DataMessage message{};
message.image.data = (uint8_t *) output[i % nimages].data();
message.image.size = output_size[i % nimages];
message.spots = spots;
message.number = i;
fileset->Write(message);
total_image_size += output_size[i % nimages];
}
fileset.reset(); // Ensure data file is closed here
auto end_time = std::chrono::system_clock::now();
auto elapsed = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time);
int64_t bandwidth_MBs = (double) total_image_size / (double)elapsed.count();
int64_t frequency_Hz = (nimages_out * 1e6) / (double) (elapsed.count());
logger.Info("Write HDF5 master file");
EndMessage end_message;
end_message.max_image_number = x.GetImageNum();
HDF5Metadata::NXmx(start_message, end_message);
logger.Info("Writing done");
logger.Info("Write speed " + std::to_string(bandwidth_MBs) + " MB/s");
logger.Info("Frequency " + std::to_string(frequency_Hz) + " Hz");
}