Files
Jungfraujoch/receiver/JFJochReceiver.cpp

671 lines
27 KiB
C++

// Copyright (2019-2024) Paul Scherrer Institute
#include "JFJochReceiver.h"
#include <thread>
#include "../jungfrau/JFPedestalCalc.h"
#include "../image_analysis/MXAnalyzer.h"
#include "../common/DiffractionGeometry.h"
#include "ImageMetadata.h"
#include "../common/time_utc.h"
#include "../common/PixelMask.h"
#include "../common/CUDAWrapper.h"
JFJochReceiver::JFJochReceiver(const DiffractionExperiment& in_experiment,
const PixelMask &pixel_mask,
const JFCalibration *in_calibration,
AcquisitionDeviceGroup &in_aq_device,
ImagePusher &in_image_sender,
Logger &in_logger, int64_t in_forward_and_sum_nthreads,
const NUMAHWPolicy &in_numa_policy,
const SpotFindingSettings &in_spot_finding_settings,
PreviewImage &in_preview_image,
PreviewImage &in_preview_image_indexed,
JFJochReceiverCurrentStatus &in_current_status,
JFJochReceiverPlots &in_plots,
SendBuffer &buf,
ZMQPreviewSocket *in_zmq_preview_socket) :
experiment(in_experiment),
calibration(nullptr),
send_buf_ctrl(experiment, buf),
acquisition_device(in_aq_device),
logger(in_logger),
image_pusher(in_image_sender),
pedestal_nthreads((experiment.GetStorageCellNumber() > 2) ? 1 : 4),
frame_transformation_nthreads(in_forward_and_sum_nthreads),
ndatastreams(experiment.GetDataStreamsNum()),
data_acquisition_ready(ndatastreams),
frame_transformation_ready((experiment.GetImageNum() > 0) ? frame_transformation_nthreads : 0),
numa_policy(in_numa_policy),
adu_histogram_module(experiment.GetModulesNum()),
az_int_mapping(experiment),
spot_finding_settings(in_spot_finding_settings),
preview_image(in_preview_image),
preview_image_indexed(in_preview_image_indexed),
current_status(in_current_status),
plots(in_plots),
serialmx_filter(experiment),
user_mask_raw_coord(pixel_mask.GetUserMask(experiment, false)),
zmq_preview_socket(in_zmq_preview_socket)
{
current_status.SetProgress(0);
current_status.SetStatus(GetStatus());
current_status.SetEfficiency({});
plots.Setup(experiment, az_int_mapping);
if (experiment.GetDetectorSetup().GetDetectorType() == DetectorType::JUNGFRAU)
calibration = in_calibration;
push_images_to_writer = (experiment.GetImageNum() > 0) && (!experiment.GetFilePrefix().empty());
if (acquisition_device.size() < ndatastreams)
throw JFJochException(JFJochExceptionCategory::InputParameterInvalid,
"Number of acquisition devices has to match data streams");
if (frame_transformation_nthreads <= 0)
throw JFJochException(JFJochExceptionCategory::InputParameterInvalid,
"Number of threads must be more than zero");
logger.Info("NUMA policy: {}", numa_policy.GetName());
#ifdef JFJOCH_USE_CUDA
if (get_gpu_count() == 0)
logger.Warning("GPU absent, indexing is not possible");
#endif
for (int d = 0; d < ndatastreams; d++) {
acquisition_device[d].PrepareAction(experiment);
acquisition_device[d].SetSpotFinderParameters(spot_finding_settings);
logger.Debug("Acquisition device {} prepared", d);
}
logger.Info("Data acquisition devices ready");
if ((experiment.GetDetectorMode() == DetectorMode::PedestalG0)
|| (experiment.GetDetectorMode() == DetectorMode::PedestalG1)
|| (experiment.GetDetectorMode() == DetectorMode::PedestalG2)) {
if (experiment.GetImageNum() > 0) {
throw JFJochException(JFJochExceptionCategory::InputParameterInvalid,
"Saving and calculating pedestal is not supported for the time being");
}
switch (experiment.GetDetectorMode()) {
case DetectorMode::PedestalG1:
only_2nd_sc_pedestal = !experiment.IsFixedGainG1() && (experiment.GetStorageCellNumber() == 2);
break;
case DetectorMode::PedestalG2:
only_2nd_sc_pedestal = (experiment.GetStorageCellNumber() == 2);
break;
default:
only_2nd_sc_pedestal = false;
break;
}
int64_t pedestal_count = (only_2nd_sc_pedestal) ? experiment.GetModulesNum()
: experiment.GetModulesNum() * experiment.GetStorageCellNumber();
for (int i = 0; i < pedestal_count; i++)
pedestal.emplace_back(std::make_unique<JFPedestalCalc>(experiment));
for (int s = 0; s < experiment.GetStorageCellNumber(); s++) {
bool ignore = only_2nd_sc_pedestal && (s == 0);
for (int d = 0; d < ndatastreams; d++)
for (int m = 0; m < experiment.GetModulesNum(d); m++)
for (int n = 0; n < pedestal_nthreads; n++)
frame_transformation_futures.emplace_back(std::async(std::launch::async,
&JFJochReceiver::MeasurePedestalThread,
this, d, m, s, n, ignore));
}
logger.Info("Pedestal threads ready ({} threads/module*SC)", pedestal_nthreads);
} else if (experiment.GetImageNum() > 0) {
SendStartMessage(pixel_mask);
SendCalibration();
for (int i = 0; i < experiment.GetImageNum(); i++)
images_to_go.Put(i);
// Setup frames summation and forwarding
for (uint32_t i = 0; i < frame_transformation_nthreads; i++) {
auto handle = std::async(std::launch::async, &JFJochReceiver::FrameTransformationThread,
this, i);
frame_transformation_futures.emplace_back(std::move(handle));
}
logger.Info("Image compression/forwarding threads started");
frame_transformation_ready.wait();
logger.Info("Image compression/forwarding threads ready");
}
for (int d = 0; d < ndatastreams; d++)
data_acquisition_futures.emplace_back(std::async(std::launch::async, &JFJochReceiver::AcquireThread,
this, d));
data_acquisition_ready.wait();
start_time = std::chrono::system_clock::now();
measurement = std::async(std::launch::async, &JFJochReceiver::FinalizeMeasurement, this);
logger.Info("Receiving data started");
}
void JFJochReceiver::SendStartMessage(const PixelMask &pixel_mask) {
if (!push_images_to_writer)
return;
StartMessage message{};
experiment.FillMessage(message);
message.arm_date = time_UTC(std::chrono::system_clock::now());
message.az_int_bin_number = az_int_mapping.GetBinNumber();
message.az_int_bin_to_q = az_int_mapping.GetBinToQ();
message.writer_notification_zmq_addr = image_pusher.GetWriterNotificationSocketAddress();
std::vector<uint32_t> nexus_mask;
nexus_mask = pixel_mask.GetMask(experiment);
size_t xpixel = experiment.GetXPixelsNum();
size_t ypixel = experiment.GetYPixelsNum();
CompressedImage image{
.data = (uint8_t *) nexus_mask.data(),
.size = nexus_mask.size() * sizeof(nexus_mask[0]),
.xpixel = xpixel,
.ypixel = ypixel,
.pixel_depth_bytes = sizeof(nexus_mask[0]),
.pixel_is_signed = false,
.pixel_is_float = false,
.algorithm = CompressionAlgorithm::NO_COMPRESSION,
.channel = "default"
};
message.AddPixelMask(image);
image_pusher.StartDataCollection(message);
}
void JFJochReceiver::SendPedestal(const std::string &prefix, const std::vector<uint8_t> &v, int gain, int sc) {
size_t xpixel = RAW_MODULE_COLS;
size_t ypixel = experiment.GetModulesNum() * RAW_MODULE_LINES;
std::string channel;
if (experiment.GetStorageCellNumber() > 1)
channel = fmt::format("{:s}_g{:d}_sc{:d}", prefix, gain, sc);
else
channel = fmt::format("{:s}_g{:d}", prefix, gain);
CompressedImage image{
.data = v.data(),
.size = v.size(),
.xpixel = (size_t) xpixel,
.ypixel = (size_t) ypixel,
.pixel_depth_bytes = 2,
.pixel_is_signed = false,
.pixel_is_float = false,
.algorithm = CompressionAlgorithm::BSHUF_LZ4,
.channel = channel
};
image_pusher.SendCalibration(image);
}
void JFJochReceiver::SendCalibration() {
if ((calibration == nullptr) || !experiment.GetSaveCalibration() || !push_images_to_writer)
return;
JFJochBitShuffleCompressor compressor(CompressionAlgorithm::BSHUF_LZ4);
for (int sc = 0; sc < experiment.GetStorageCellNumber(); sc++) {
for (int gain = 0; gain < 3; gain++) {
if (experiment.IsFixedGainG1() && (gain != 1))
continue;
SendPedestal("pedestal", compressor.Compress(calibration->GetPedestal(gain, sc)), gain, sc);
SendPedestal("pedestal_rms", compressor.Compress(calibration->GetPedestalRMS(gain, sc)), gain, sc);
}
}
}
void JFJochReceiver::AcquireThread(uint16_t data_stream) {
try {
NUMAHWPolicy::RunOnNode(acquisition_device[data_stream].GetNUMANode());
} catch (const JFJochException &e) {
logger.Warning("NUMA bind error {} for device thread {} - continuing without binding", e.what(), data_stream);
}
try {
LoadCalibrationToFPGA(data_stream);
frame_transformation_ready.wait();
logger.Debug("Device thread {} start FPGA action", data_stream);
acquisition_device[data_stream].StartAction(experiment);
} catch (const JFJochException &e) {
Cancel(e);
data_acquisition_ready.count_down();
logger.ErrorException(e);
logger.Warning("Device thread {} done due to an error", data_stream);
return;
}
data_acquisition_ready.count_down();
try {
logger.Debug("Device thread {} wait for FPGA action complete", data_stream);
acquisition_device[data_stream].WaitForActionComplete();
} catch (const JFJochException &e) {
logger.ErrorException(e);
Cancel(e);
logger.ErrorException(e);
logger.Warning("Device thread {} done due to an error", data_stream);
return;
}
logger.Info("Device thread {} done", data_stream);
}
void JFJochReceiver::MeasurePedestalThread(uint16_t data_stream, uint16_t module_number, uint16_t storage_cell,
uint32_t threadid, bool ignore) {
try {
NUMAHWPolicy::RunOnNode(acquisition_device[data_stream].GetNUMANode());
} catch (const JFJochException &e) {
logger.Error("HW bind error {}", e.what());
}
JFPedestalCalc pedestal_calc(experiment);
uint64_t starting_frame = storage_cell + threadid * experiment.GetStorageCellNumber();
uint64_t frame_stride = experiment.GetStorageCellNumber() * pedestal_nthreads;
uint32_t storage_cell_header = UINT32_MAX;
try {
for (size_t frame = starting_frame; frame < experiment.GetFrameNum(); frame += frame_stride) {
// Frame will be processed only if one already collects frame+2
acquisition_device[data_stream].Counters().WaitForFrame(frame + 2, module_number);
if (acquisition_device[data_stream].Counters().IsFullModuleCollected(frame, module_number) && !ignore) {
auto output = acquisition_device[data_stream].GetDeviceOutput(frame, module_number);
// Partial packets will bring more problems, than benefit
pedestal_calc.AnalyzeImage((uint16_t *) output->pixels);
storage_cell_header = (output->module_statistics.debug >> 8) & 0xF;
}
acquisition_device[data_stream].FrameBufferRelease(frame, module_number);
UpdateMaxDelay(acquisition_device[data_stream].Counters().CalculateDelay(frame, module_number));
}
uint64_t offset = experiment.GetFirstModuleOfDataStream(data_stream) + module_number;
if (!only_2nd_sc_pedestal)
offset += experiment.GetModulesNum() * storage_cell;
if (!ignore)
*pedestal[offset] += pedestal_calc;
current_status.SetProgress(GetProgress());
current_status.SetStatus(GetStatus());
} catch (const JFJochException &e) {
Cancel(e);
}
logger.Debug("Pedestal calculation thread for data stream {} module {} storage cell {} -> header {} done",
data_stream, module_number, storage_cell, storage_cell_header);
}
void JFJochReceiver::FrameTransformationThread(uint32_t threadid) {
std::unique_ptr<MXAnalyzer> analyzer;
try {
numa_policy.Bind(threadid);
analyzer = std::make_unique<MXAnalyzer>(experiment);
} catch (const JFJochException &e) {
frame_transformation_ready.count_down();
logger.Error("Thread setup error {}", e.what());
Cancel(e);
return;
}
FrameTransformation transformation(experiment);
frame_transformation_ready.count_down();
uint16_t az_int_min_bin = std::floor(az_int_mapping.QToBin(experiment.GetLowQForBkgEstimate_recipA()));
uint16_t az_int_max_bin = std::ceil(az_int_mapping.QToBin(experiment.GetHighQForBkgEstimate_recipA()));
uint64_t image_number;
while (images_to_go.Get(image_number) != 0) {
try {
logger.Debug("Frame transformation thread - trying to get image {}", image_number);
// If data acquisition is finished and fastest frame for the first device is behind
acquisition_device[0].Counters().WaitForFrame(image_number + 1);
logger.Debug("Frame transformation thread - frame arrived {}", image_number + 1);
if (acquisition_device[0].Counters().IsAcquisitionFinished() &&
(acquisition_device[0].Counters().GetFastestFrameNumber() < image_number)) {
logger.Debug("Frame transformation thread - skipping image {}", image_number);
continue;
}
DataMessage message{};
message.number = image_number;
message.original_number = image_number;
message.user_data = experiment.GetImageAppendix();
message.run_number = experiment.GetRunNumber();
message.run_name = experiment.GetRunName();
ImageMetadata metadata(experiment);
AzimuthalIntegrationProfile az_int_profile_image(az_int_mapping);
auto local_spot_finding_settings = GetSpotFindingSettings();
logger.Debug("Frame transformation thread - processing image from FPGA {}", image_number);
for (int d = 0; d < ndatastreams; d++) {
for (int m = 0; m < experiment.GetModulesNum(d); m++) {
acquisition_device[d].Counters().WaitForFrame(image_number + 1, m);
if (acquisition_device[d].Counters().IsAnyPacketCollected(image_number, m)) {
const DeviceOutput* output = acquisition_device[d].GetDeviceOutput(image_number, m);
metadata.Process(output);
size_t module_abs_number = experiment.GetFirstModuleOfDataStream(d) + m;
adu_histogram_module[module_abs_number].Add(*output);
az_int_profile_image.Add(*output);
analyzer->ReadFromFPGA(output, local_spot_finding_settings, module_abs_number);
transformation.ProcessModule(output, d);
} else
transformation.FillNotCollectedModule(m, d);
acquisition_device[d].FrameBufferRelease(image_number, m);
}
auto delay = acquisition_device[d].Counters().CalculateDelay(image_number);
UpdateMaxDelay(delay);
if (delay > message.receiver_aq_dev_delay)
message.receiver_aq_dev_delay = delay;
}
metadata.Export(message, 256 * experiment.GetModulesNum() * experiment.GetSummation());
if (message.image_collection_efficiency == 0.0f) {
plots.AddEmptyImage(message);
continue;
}
analyzer->Process(message, local_spot_finding_settings);
message.receiver_free_send_buf = send_buf_ctrl.GetAvailBufLocations();
message.az_int_profile = az_int_profile_image.GetResult();
message.bkg_estimate = az_int_profile_image.GetMeanValueOfBins(az_int_min_bin, az_int_max_bin);
plots.Add(message, az_int_profile_image);
preview_image.UpdateImage(transformation.GetImage(), message.spots);
if (message.indexing_result)
preview_image_indexed.UpdateImage(transformation.GetImage(), message.spots);
images_collected++;
if (!serialmx_filter.ApplyFilter(message))
images_skipped++;
else {
auto loc = send_buf_ctrl.GetBufLocation();
if (loc == nullptr) // No free buffer locations - continue
continue;
auto writer_buffer = (uint8_t *) loc->get_ptr();
CBORStream2Serializer serializer(writer_buffer, experiment.GetSendBufferLocationSize());
PrepareCBORImage(message, experiment, nullptr, 0);
serializer.SerializeImage(message);
if (experiment.GetSendBufferLocationSize() - serializer.GetImageAppendOffset()
< experiment.GetMaxCompressedSize())
throw JFJochException(JFJochExceptionCategory::ArrayOutOfBounds,
"Not enough memory to save image");
size_t image_size = transformation.CompressImage(writer_buffer + serializer.GetImageAppendOffset());
serializer.AppendImage(image_size);
compressed_size += image_size;
if (zmq_preview_socket != nullptr)
zmq_preview_socket->SendImage(writer_buffer, serializer.GetBufferSize());
if (push_images_to_writer) {
image_pusher.SendImage(writer_buffer, serializer.GetBufferSize(), message.number, loc);
images_sent++; // Handle case when image not sent properly
} else
loc->release();
UpdateMaxImage(message.number);
}
logger.Debug("Frame transformation thread - done sending image {} / {}", image_number, message.number);
current_status.SetProgress(GetProgress());
current_status.SetStatus(GetStatus());
} catch (const JFJochException &e) {
logger.ErrorException(e);
Cancel(e);
}
}
logger.Debug("Sum&compression thread done");
}
float JFJochReceiver::GetEfficiency() const {
uint64_t expected_packets = 0;
uint64_t received_packets = 0;
for (int d = 0; d < ndatastreams; d++) {
expected_packets += acquisition_device[d].Counters().GetExpectedPackets();
received_packets += acquisition_device[d].Counters().GetTotalPackets();
}
if ((expected_packets == received_packets) || (expected_packets == 0))
return 1.0;
else
return received_packets / static_cast<double>(expected_packets);
}
void JFJochReceiver::Cancel(bool silent) {
if (!silent) {
// Remote abort: This tells FPGAs to stop, but doesn't do anything to CPU code
logger.Warning("Cancelling on request");
cancelled = true;
}
for (int d = 0; d < ndatastreams; d++)
acquisition_device[d].Cancel();
}
void JFJochReceiver::Cancel(const JFJochException &e) {
logger.Error("Cancelling data collection due to exception");
logger.ErrorException(e);
// Error abort: This tells FPGAs to stop and also prevents deadlock in CPU code, by setting abort to 1
cancelled = true;
for (int d = 0; d < ndatastreams; d++)
acquisition_device[d].Cancel();
}
float JFJochReceiver::GetProgress() const {
int64_t frames = experiment.GetImageNum();
if (frames == 0)
frames = experiment.GetFrameNum();
if ((frames == 0) || (acquisition_device[0].Counters().IsAcquisitionFinished()))
return 1.0;
else
return static_cast<float>(acquisition_device[0].Counters().GetSlowestFrameNumber()) / static_cast<float>(frames);
}
void JFJochReceiver::FinalizeMeasurement() {
if (!frame_transformation_futures.empty()) {
for (auto &future: frame_transformation_futures)
future.get();
logger.Info("All processing threads done");
}
current_status.SetProgress(100.0);
current_status.SetStatus(GetStatus());
if (push_images_to_writer) {
EndMessage message{};
message.max_image_number = max_image_number_sent;
message.images_collected_count = images_collected;
message.images_sent_to_write_count = images_sent;
message.max_receiver_delay = max_delay;
message.efficiency = GetEfficiency();
message.end_date = time_UTC(std::chrono::system_clock::now());
message.run_number = experiment.GetRunNumber();
message.run_name = experiment.GetRunName();
message.az_int_result["dataset"] = plots.GetAzIntProfile();
for (int i = 0; i < adu_histogram_module.size(); i++)
message.adu_histogram["module" + std::to_string(i)] = adu_histogram_module[i].GetHistogram();
if (!image_pusher.EndDataCollection(message))
logger.Error("End message not sent via ZeroMQ (time-out)");
logger.Info("Disconnected from writers");
}
if (experiment.GetImageNum() > 0) {
for (int d = 0; d < ndatastreams; d++)
acquisition_device[d].Cancel();
}
end_time = std::chrono::system_clock::now();
for (auto &future : data_acquisition_futures)
future.get();
logger.Info("Devices stopped");
if (!send_buf_ctrl.CheckIfBufferReturned(std::chrono::seconds(10))) {
logger.Error("Send commands not finalized in 10 seconds");
throw JFJochException(JFJochExceptionCategory::ZeroMQ, "Send commands not finalized in 10 seconds");
}
logger.Info("Receiving data done");
if (push_images_to_writer)
image_pusher.Finalize();
current_status.SetProgress({});
current_status.SetStatus(GetStatus());
logger.Info("Writing process finalized");
}
void JFJochReceiver::SetSpotFindingSettings(const SpotFindingSettings &in_spot_finding_settings) {
std::unique_lock<std::mutex> ul(spot_finding_settings_mutex);
DiffractionExperiment::CheckDataProcessingSettings(in_spot_finding_settings);
spot_finding_settings = in_spot_finding_settings;
for (int i = 0; i < ndatastreams; i++)
acquisition_device[i].SetSpotFinderParameters(spot_finding_settings);
}
void JFJochReceiver::StopReceiver() {
if (measurement.valid()) {
measurement.get();
logger.Info("Receiver stopped");
}
}
JFJochReceiver::~JFJochReceiver() {
if (measurement.valid())
measurement.get();
}
SpotFindingSettings JFJochReceiver::GetSpotFindingSettings() {
std::unique_lock<std::mutex> ul(spot_finding_settings_mutex);
return spot_finding_settings;
}
void JFJochReceiver::UpdateMaxImage(uint64_t image_number) {
std::unique_lock<std::mutex> ul(max_image_number_sent_mutex);
if (image_number + 1 > max_image_number_sent)
max_image_number_sent = image_number + 1;
}
void JFJochReceiver::UpdateMaxDelay(uint64_t delay) {
std::unique_lock<std::mutex> ul(max_delay_mutex);
if (delay > max_delay)
max_delay = delay;
}
JFJochReceiverOutput JFJochReceiver::GetFinalStatistics() const {
JFJochReceiverOutput ret;
for (int d = 0; d < ndatastreams; d++) {
for (int m = 0; m < acquisition_device[d].Counters().GetModuleNumber(); m++) {
ret.expected_packets.push_back(acquisition_device[d].Counters().GetExpectedPacketsPerModule());
ret.received_packets.push_back(acquisition_device[d].Counters().GetTotalPackets(m));
}
}
ret.efficiency = GetEfficiency();
ret.start_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(start_time.time_since_epoch()).count();
ret.end_time_ms = std::chrono::duration_cast<std::chrono::milliseconds>(end_time.time_since_epoch()).count();
RetrievePedestal(ret.pedestal_result);
ret.status = GetStatus();
return ret;
}
JFJochReceiverStatus JFJochReceiver::GetStatus() const {
JFJochReceiverStatus ret;
ret.indexing_rate = plots.GetIndexingRate();
ret.bkg_estimate = plots.GetBkgEstimate();
if ((experiment.GetImageNum() > 0) && (compressed_size > 0)) {
ret.compressed_ratio = static_cast<double> ((images_sent + images_skipped)
* experiment.GetByteDepthImage()
* experiment.GetModulesNum()
* RAW_MODULE_SIZE)
/ static_cast<double> (compressed_size);
}
ret.compressed_size = compressed_size;
ret.max_receive_delay = max_delay;
ret.max_image_number_sent = max_image_number_sent;
ret.images_collected = images_collected;
ret.images_sent = images_sent;
ret.images_skipped = images_skipped;
ret.cancelled = cancelled;
ret.efficiency = GetEfficiency();
return ret;
}
void JFJochReceiver::RetrievePedestal(std::vector<JFModulePedestal> &output) const {
time_t curr_time = std::chrono::system_clock::to_time_t(start_time);
for (const auto &pc: pedestal) {
JFModulePedestal mp;
if (experiment.GetDetectorMode() == DetectorMode::PedestalG0)
pc->Export(mp, PEDESTAL_G0_WRONG_GAIN_ALLOWED_COUNT, experiment.GetPedestalG0RMSLimit());
else
pc->Export(mp);
mp.SetCollectionTime(curr_time);
output.emplace_back(std::move(mp));
}
}
void JFJochReceiver::LoadCalibrationToFPGA(uint16_t data_stream) {
if (experiment.IsPedestalRun())
return; // No calibration loaded for pedestal
if (calibration != nullptr)
acquisition_device[data_stream].InitializeCalibration(experiment, *calibration);
// Initialize roi_map
acquisition_device[data_stream].InitializeROIMap(experiment);
size_t m0 = experiment.GetFirstModuleOfDataStream(data_stream);
std::vector<float> tmp(RAW_MODULE_SIZE);
for (int m = 0; m < experiment.GetModulesNum(data_stream); m++) {
// Mask pixels for spot finding based on resolution and user mask
CalcSpotFinderResolutionMap(tmp.data(), experiment, m0 + m);
for (int i = 0; i < RAW_MODULE_SIZE; i++) {
if (user_mask_raw_coord[(m0 + m) * RAW_MODULE_SIZE + i] != 0)
tmp[i] = 0.0f;
}
acquisition_device[data_stream].InitializeSpotFinderResolutionMap(tmp.data(), m);
CalcAzIntCorrRawCoord(tmp.data(), experiment, m0 + m);
acquisition_device[data_stream].InitializeIntegrationMap(az_int_mapping.GetPixelToBinMappingRaw().data()
+ (m0 + m) * RAW_MODULE_SIZE, tmp.data(), m);
}
}