Files
Jungfraujoch/tools/jfjoch_hdf5_test.cpp
Filip Leonarski 4dbbf0e365
Some checks failed
Build Packages / build:rpm (ubuntu2404_nocuda) (push) Successful in 8m11s
Build Packages / build:rpm (ubuntu2204_nocuda) (push) Successful in 9m9s
Build Packages / build:rpm (rocky8_nocuda) (push) Successful in 9m18s
Build Packages / build:rpm (rocky9_nocuda) (push) Successful in 10m14s
Build Packages / build:rpm (rocky8_sls9) (push) Successful in 10m3s
Build Packages / Generate python client (push) Successful in 15s
Build Packages / Build documentation (push) Successful in 50s
Build Packages / Create release (push) Has been skipped
Build Packages / build:rpm (rocky8) (push) Successful in 8m31s
Build Packages / build:rpm (ubuntu2204) (push) Successful in 8m21s
Build Packages / build:rpm (ubuntu2404) (push) Successful in 7m42s
Build Packages / build:rpm (rocky9) (push) Successful in 9m11s
Build Packages / Unit tests (push) Failing after 1h13m19s
v1.0.0-rc.97
This is an UNSTABLE release and not recommended for production use (please use rc.96 instead).

* jfjoch_broker: For DECTRIS detectors add dark data collection during initialization for bad pixel mask
* jfjoch_broker: Refactor of calibration logic for more clear code (likely to introduce problems)
* jfjoch_viewer: Add option to handle user pixel mask (experimental)
* jfjoch_viewer: More options for ROI
* jfjoch_viewer: Add window to display calibration

Reviewed-on: #2
Co-authored-by: Filip Leonarski <filip.leonarski@psi.ch>
Co-committed-by: Filip Leonarski <filip.leonarski@psi.ch>
2025-11-09 12:42:27 +01:00

158 lines
5.6 KiB
C++

// SPDX-FileCopyrightText: 2024 Filip Leonarski, Paul Scherrer Institute <filip.leonarski@psi.ch>
// SPDX-License-Identifier: GPL-3.0-only
#include <cstdlib>
#include <iostream>
#include "../common/Logger.h"
#include "../writer/FileWriter.h"
#include "../receiver/FrameTransformation.h"
#include "../common/RawToConvertedGeometry.h"
#include "../common/PixelMask.h"
#include "../writer/HDF5NXmx.h"
#include "../common/print_license.h"
int main(int argc, char **argv) {
print_license("jfjoch_hdf5_test");
Logger logger("jfjoch_hdf5_test");
RegisterHDF5Filter();
if ((argc < 2) || (argc > 4)) {
std::cout << "Usage: ./jfjoch_hdf5_test <JF4M hdf5 file> {{<#images>} <rate in Hz>}" << std::endl;
std::cout << std::endl;
std::cout << "Env. variables:" << std::endl;
std::cout << "HDF5DATASET_WRITE_TEST_PREFIX" << std::endl;
std::cout << "HDF5MASTER_NEW_FORMAT" << std::endl;
exit(EXIT_FAILURE);
}
int64_t nimages_out = 100;
double rate = 2200;
if (argc >= 3)
nimages_out = atoi(argv[2]);
if (argc >= 4)
rate = atof(argv[3]);
std::chrono::microseconds period_us((rate == 0) ? 0 : (int64_t) (1.0e6 / rate));
HDF5ReadOnlyFile data(argv[1]);
HDF5DataSet dataset(data, "/entry/data/data");
HDF5DataSpace file_space(dataset);
if (file_space.GetNumOfDimensions() != 3) {
std::cout << "/entry/data/data must be 3D" << std::endl;
exit(EXIT_FAILURE);
}
DiffractionExperiment x(DetJF4M());
x.Summation(1);
// Set metadata for the compression_benchmark.h5 dataset
x.BeamX_pxl(1090).BeamY_pxl(1136).DetectorDistance_mm(75).IncidentEnergy_keV(WVL_1A_IN_KEV);
x.MaskModuleEdges(true);
x.MaskChipEdges(true);
if ((file_space.GetDimensions()[1] == 2164) && (file_space.GetDimensions()[2] == 2068)) {
std::cout << "JF4M with gaps detected (2068 x 2164)" << std::endl;
} else {
std::cout << "Unknown geometry - exiting" << std::endl;
exit(EXIT_FAILURE);
}
uint64_t nimages = file_space.GetDimensions()[0];
logger.Info("Number of images in the original dataset: " + std::to_string(nimages));
// Set file name
if (std::getenv("HDF5DATASET_WRITE_TEST_PREFIX") == nullptr)
x.FilePrefix("writing_test");
else
x.FilePrefix(std::getenv("HDF5DATASET_WRITE_TEST_PREFIX"));
if (std::getenv("HDF5MASTER_NEW_FORMAT") != nullptr) {
std::cout << "Using new format for HDF5 master file" << std::endl;
x.SetFileWriterFormat(FileWriterFormat::NXmxVDS);
} else
x.SetFileWriterFormat(FileWriterFormat::NXmxLegacy);
x.ImagesPerTrigger(nimages);
std::vector<int16_t> image_conv ( nimages * file_space.GetDimensions()[1] * file_space.GetDimensions()[2]);
std::vector<hsize_t> start = {0,0,0};
dataset.ReadVector(image_conv, start, file_space.GetDimensions());
std::vector<int16_t> image( nimages * x.GetModulesNum() * RAW_MODULE_SIZE);
for (int i = 0; i < nimages; i++) {
ConvertedToRawGeometry(x,
image.data() + i * RAW_MODULE_SIZE * x.GetModulesNum(),
image_conv.data() + i * file_space.GetDimensions()[1] * file_space.GetDimensions()[2]);
}
FrameTransformation transformation(x);
std::vector<size_t> output_size(nimages);
std::vector<std::vector<uint8_t> > output(nimages);
for (auto &i: output) i.resize(x.GetMaxCompressedSize());
for (int i = 0; i < nimages; i++) {
for (int j = 0; j < 8; j++)
transformation.ProcessModule(image.data() + (i * x.GetModulesNum() + j) * RAW_MODULE_SIZE, j, 0);
auto compressed_image = transformation.GetCompressedImage();
output_size[i] = compressed_image.GetCompressedSize();
output[i].resize(compressed_image.GetCompressedSize());
memcpy(output[i].data(), compressed_image.GetCompressed(), compressed_image.GetCompressedSize());
}
x.ImagesPerTrigger(nimages_out);
logger.Info("Number of images to write: " + std::to_string(nimages_out));
StartMessage start_message;
x.FillMessage(start_message);
PixelMask calib(x);
start_message.pixel_mask["default"] = calib.GetMask(x);
// Master & calibration files are written outside of timing routine
auto fileset = std::make_unique<FileWriter>(start_message);
auto start_time = std::chrono::system_clock::now();
logger.Info("Writing " + std::to_string(nimages_out) + " images");
std::vector<SpotToSave> spots;
size_t total_image_size = 0;
for (int i = 0; i < nimages_out; i++) {
std::this_thread::sleep_until(start_time + i * period_us);
DataMessage message{};
message.image = CompressedImage(output[i % nimages], x.GetXPixelsNum(), x.GetYPixelsNum(),
x.GetImageMode(), x.GetCompressionAlgorithm());
message.spots = spots;
message.number = i;
fileset->WriteHDF5(message);
total_image_size += output_size[i % nimages];
}
EndMessage end_message;
end_message.max_image_number = x.GetImageNum();
fileset->WriteHDF5(end_message);
fileset.reset(); // Ensure data file is closed here
auto end_time = std::chrono::system_clock::now();
auto elapsed = std::chrono::duration_cast<std::chrono::microseconds>(end_time - start_time);
int64_t bandwidth_MBs = (double) total_image_size / (double)elapsed.count();
int64_t frequency_Hz = (nimages_out * 1e6) / (double) (elapsed.count());
logger.Info("Writing done");
logger.Info("Write speed " + std::to_string(bandwidth_MBs) + " MB/s");
logger.Info("Frequency " + std::to_string(frequency_Hz) + " Hz");
}