204 lines
5.3 KiB
C++
204 lines
5.3 KiB
C++
/**
|
|
* Jungfraujoch
|
|
* API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates.
|
|
*
|
|
* The version of the OpenAPI document: 1.0.0-rc.58
|
|
* Contact: filip.leonarski@psi.ch
|
|
*
|
|
* NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech).
|
|
* https://openapi-generator.tech
|
|
* Do not edit the class manually.
|
|
*/
|
|
|
|
|
|
#include "Calibration_statistics_inner.h"
|
|
#include "Helpers.h"
|
|
|
|
#include <sstream>
|
|
|
|
namespace org::openapitools::server::model
|
|
{
|
|
|
|
Calibration_statistics_inner::Calibration_statistics_inner()
|
|
{
|
|
m_Module_number = 0L;
|
|
m_Storage_cell_number = 0L;
|
|
m_Pedestal_g0_mean = 0.0f;
|
|
m_Pedestal_g1_mean = 0.0f;
|
|
m_Pedestal_g2_mean = 0.0f;
|
|
m_Gain_g0_mean = 0.0f;
|
|
m_Gain_g1_mean = 0.0f;
|
|
m_Gain_g2_mean = 0.0f;
|
|
m_Masked_pixels = 0L;
|
|
|
|
}
|
|
|
|
void Calibration_statistics_inner::validate() const
|
|
{
|
|
std::stringstream msg;
|
|
if (!validate(msg))
|
|
{
|
|
throw org::openapitools::server::helpers::ValidationException(msg.str());
|
|
}
|
|
}
|
|
|
|
bool Calibration_statistics_inner::validate(std::stringstream& msg) const
|
|
{
|
|
return validate(msg, "");
|
|
}
|
|
|
|
bool Calibration_statistics_inner::validate(std::stringstream& msg, const std::string& pathPrefix) const
|
|
{
|
|
bool success = true;
|
|
const std::string _pathPrefix = pathPrefix.empty() ? "Calibration_statistics_inner" : pathPrefix;
|
|
|
|
|
|
return success;
|
|
}
|
|
|
|
bool Calibration_statistics_inner::operator==(const Calibration_statistics_inner& rhs) const
|
|
{
|
|
return
|
|
|
|
|
|
(getModuleNumber() == rhs.getModuleNumber())
|
|
&&
|
|
|
|
(getStorageCellNumber() == rhs.getStorageCellNumber())
|
|
&&
|
|
|
|
(getPedestalG0Mean() == rhs.getPedestalG0Mean())
|
|
&&
|
|
|
|
(getPedestalG1Mean() == rhs.getPedestalG1Mean())
|
|
&&
|
|
|
|
(getPedestalG2Mean() == rhs.getPedestalG2Mean())
|
|
&&
|
|
|
|
(getGainG0Mean() == rhs.getGainG0Mean())
|
|
&&
|
|
|
|
(getGainG1Mean() == rhs.getGainG1Mean())
|
|
&&
|
|
|
|
(getGainG2Mean() == rhs.getGainG2Mean())
|
|
&&
|
|
|
|
(getMaskedPixels() == rhs.getMaskedPixels())
|
|
|
|
|
|
;
|
|
}
|
|
|
|
bool Calibration_statistics_inner::operator!=(const Calibration_statistics_inner& rhs) const
|
|
{
|
|
return !(*this == rhs);
|
|
}
|
|
|
|
void to_json(nlohmann::json& j, const Calibration_statistics_inner& o)
|
|
{
|
|
j = nlohmann::json::object();
|
|
j["module_number"] = o.m_Module_number;
|
|
j["storage_cell_number"] = o.m_Storage_cell_number;
|
|
j["pedestal_g0_mean"] = o.m_Pedestal_g0_mean;
|
|
j["pedestal_g1_mean"] = o.m_Pedestal_g1_mean;
|
|
j["pedestal_g2_mean"] = o.m_Pedestal_g2_mean;
|
|
j["gain_g0_mean"] = o.m_Gain_g0_mean;
|
|
j["gain_g1_mean"] = o.m_Gain_g1_mean;
|
|
j["gain_g2_mean"] = o.m_Gain_g2_mean;
|
|
j["masked_pixels"] = o.m_Masked_pixels;
|
|
|
|
}
|
|
|
|
void from_json(const nlohmann::json& j, Calibration_statistics_inner& o)
|
|
{
|
|
j.at("module_number").get_to(o.m_Module_number);
|
|
j.at("storage_cell_number").get_to(o.m_Storage_cell_number);
|
|
j.at("pedestal_g0_mean").get_to(o.m_Pedestal_g0_mean);
|
|
j.at("pedestal_g1_mean").get_to(o.m_Pedestal_g1_mean);
|
|
j.at("pedestal_g2_mean").get_to(o.m_Pedestal_g2_mean);
|
|
j.at("gain_g0_mean").get_to(o.m_Gain_g0_mean);
|
|
j.at("gain_g1_mean").get_to(o.m_Gain_g1_mean);
|
|
j.at("gain_g2_mean").get_to(o.m_Gain_g2_mean);
|
|
j.at("masked_pixels").get_to(o.m_Masked_pixels);
|
|
|
|
}
|
|
|
|
int64_t Calibration_statistics_inner::getModuleNumber() const
|
|
{
|
|
return m_Module_number;
|
|
}
|
|
void Calibration_statistics_inner::setModuleNumber(int64_t const value)
|
|
{
|
|
m_Module_number = value;
|
|
}
|
|
int64_t Calibration_statistics_inner::getStorageCellNumber() const
|
|
{
|
|
return m_Storage_cell_number;
|
|
}
|
|
void Calibration_statistics_inner::setStorageCellNumber(int64_t const value)
|
|
{
|
|
m_Storage_cell_number = value;
|
|
}
|
|
float Calibration_statistics_inner::getPedestalG0Mean() const
|
|
{
|
|
return m_Pedestal_g0_mean;
|
|
}
|
|
void Calibration_statistics_inner::setPedestalG0Mean(float const value)
|
|
{
|
|
m_Pedestal_g0_mean = value;
|
|
}
|
|
float Calibration_statistics_inner::getPedestalG1Mean() const
|
|
{
|
|
return m_Pedestal_g1_mean;
|
|
}
|
|
void Calibration_statistics_inner::setPedestalG1Mean(float const value)
|
|
{
|
|
m_Pedestal_g1_mean = value;
|
|
}
|
|
float Calibration_statistics_inner::getPedestalG2Mean() const
|
|
{
|
|
return m_Pedestal_g2_mean;
|
|
}
|
|
void Calibration_statistics_inner::setPedestalG2Mean(float const value)
|
|
{
|
|
m_Pedestal_g2_mean = value;
|
|
}
|
|
float Calibration_statistics_inner::getGainG0Mean() const
|
|
{
|
|
return m_Gain_g0_mean;
|
|
}
|
|
void Calibration_statistics_inner::setGainG0Mean(float const value)
|
|
{
|
|
m_Gain_g0_mean = value;
|
|
}
|
|
float Calibration_statistics_inner::getGainG1Mean() const
|
|
{
|
|
return m_Gain_g1_mean;
|
|
}
|
|
void Calibration_statistics_inner::setGainG1Mean(float const value)
|
|
{
|
|
m_Gain_g1_mean = value;
|
|
}
|
|
float Calibration_statistics_inner::getGainG2Mean() const
|
|
{
|
|
return m_Gain_g2_mean;
|
|
}
|
|
void Calibration_statistics_inner::setGainG2Mean(float const value)
|
|
{
|
|
m_Gain_g2_mean = value;
|
|
}
|
|
int64_t Calibration_statistics_inner::getMaskedPixels() const
|
|
{
|
|
return m_Masked_pixels;
|
|
}
|
|
void Calibration_statistics_inner::setMaskedPixels(int64_t const value)
|
|
{
|
|
m_Masked_pixels = value;
|
|
}
|
|
|
|
|
|
} // namespace org::openapitools::server::model
|
|
|