Some checks failed
Build Packages / build:rpm (ubuntu2404_nocuda) (push) Successful in 11m20s
Build Packages / build:rpm (rocky8_nocuda) (push) Successful in 13m5s
Build Packages / build:rpm (ubuntu2204_nocuda) (push) Successful in 13m52s
Build Packages / build:rpm (rocky8_sls9) (push) Successful in 14m0s
Build Packages / Generate python client (push) Successful in 13s
Build Packages / build:rpm (rocky8) (push) Successful in 14m19s
Build Packages / Create release (push) Has been skipped
Build Packages / build:rpm (rocky9_nocuda) (push) Successful in 14m45s
Build Packages / Build documentation (push) Successful in 41s
Build Packages / build:rpm (rocky9) (push) Successful in 14m42s
Build Packages / build:rpm (rocky9_sls9) (push) Successful in 15m4s
Build Packages / build:rpm (ubuntu2204) (push) Successful in 8m45s
Build Packages / build:rpm (ubuntu2404) (push) Successful in 7m41s
Build Packages / Unit tests (push) Failing after 41m8s
696 lines
25 KiB
C++
696 lines
25 KiB
C++
// SPDX-FileCopyrightText: 2025 Filip Leonarski, Paul Scherrer Institute <filip.leonarski@psi.ch>
|
|
// SPDX-License-Identifier: GPL-3.0-only
|
|
|
|
#include "ScaleAndMerge.h"
|
|
|
|
#include <ceres/ceres.h>
|
|
|
|
#include <thread>
|
|
#include <iostream>
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <limits>
|
|
#include <stdexcept>
|
|
#include <tuple>
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "../../common/ResolutionShells.h"
|
|
|
|
namespace {
|
|
struct HKLKey {
|
|
int64_t h = 0;
|
|
int64_t k = 0;
|
|
int64_t l = 0;
|
|
bool is_positive = true; // only relevant if opt.merge_friedel == false
|
|
|
|
bool operator==(const HKLKey &o) const noexcept {
|
|
return h == o.h && k == o.k && l == o.l && is_positive == o.is_positive;
|
|
}
|
|
};
|
|
|
|
struct HKLKeyHash {
|
|
size_t operator()(const HKLKey &key) const noexcept {
|
|
auto mix = [](uint64_t x) {
|
|
x ^= x >> 33;
|
|
x *= 0xff51afd7ed558ccdULL;
|
|
x ^= x >> 33;
|
|
x *= 0xc4ceb9fe1a85ec53ULL;
|
|
x ^= x >> 33;
|
|
return x;
|
|
};
|
|
const uint64_t a = static_cast<uint64_t>(key.h);
|
|
const uint64_t b = static_cast<uint64_t>(key.k);
|
|
const uint64_t c = static_cast<uint64_t>(key.l);
|
|
const uint64_t d = static_cast<uint64_t>(key.is_positive ? 1 : 0);
|
|
return static_cast<size_t>(mix(a) ^ (mix(b) << 1) ^ (mix(c) << 2) ^ (mix(d) << 3));
|
|
}
|
|
};
|
|
|
|
inline int RoundImageId(float image_number, double rounding_step) {
|
|
if (!(rounding_step > 0.0))
|
|
rounding_step = 1.0;
|
|
const double x = static_cast<double>(image_number) / rounding_step;
|
|
const double r = std::round(x) * rounding_step;
|
|
return static_cast<int>(std::llround(r / rounding_step));
|
|
}
|
|
|
|
inline double SafeSigma(double s, double min_sigma) {
|
|
if (!std::isfinite(s) || s <= 0.0)
|
|
return min_sigma;
|
|
return std::max(s, min_sigma);
|
|
}
|
|
|
|
inline double SafeD(double d) {
|
|
if (!std::isfinite(d) || d <= 0.0)
|
|
return std::numeric_limits<double>::quiet_NaN();
|
|
return d;
|
|
}
|
|
|
|
inline int SafeToInt(int64_t x) {
|
|
if (x < std::numeric_limits<int>::min() || x > std::numeric_limits<int>::max())
|
|
throw std::out_of_range("HKL index out of int range for Gemmi");
|
|
return static_cast<int>(x);
|
|
}
|
|
|
|
inline double SafeInv(double x, double fallback) {
|
|
if (!std::isfinite(x) || x == 0.0)
|
|
return fallback;
|
|
return 1.0 / x;
|
|
}
|
|
|
|
inline HKLKey CanonicalizeHKLKey(const Reflection &r, const ScaleMergeOptions &opt) {
|
|
HKLKey key{};
|
|
key.h = r.h;
|
|
key.k = r.k;
|
|
key.l = r.l;
|
|
key.is_positive = true;
|
|
|
|
if (!opt.space_group.has_value()) {
|
|
if (!opt.merge_friedel) {
|
|
const HKLKey neg{-r.h, -r.k, -r.l, true};
|
|
const bool pos = std::tie(key.h, key.k, key.l) >= std::tie(neg.h, neg.k, neg.l);
|
|
if (!pos) {
|
|
key.h = -key.h;
|
|
key.k = -key.k;
|
|
key.l = -key.l;
|
|
key.is_positive = false;
|
|
}
|
|
}
|
|
return key;
|
|
}
|
|
|
|
const gemmi::SpaceGroup &sg = *opt.space_group;
|
|
const gemmi::GroupOps gops = sg.operations();
|
|
const gemmi::ReciprocalAsu rasu(&sg);
|
|
|
|
const gemmi::Op::Miller in{{SafeToInt(r.h), SafeToInt(r.k), SafeToInt(r.l)}};
|
|
const auto [asu_hkl, sign_plus] = rasu.to_asu_sign(in, gops);
|
|
|
|
key.h = asu_hkl[0];
|
|
key.k = asu_hkl[1];
|
|
key.l = asu_hkl[2];
|
|
key.is_positive = opt.merge_friedel ? true : sign_plus;
|
|
return key;
|
|
}
|
|
|
|
struct IntensityResidual {
|
|
IntensityResidual(const Reflection &r, double sigma_obs, double wedge_deg, bool refine_partiality)
|
|
: Iobs_(static_cast<double>(r.I)),
|
|
weight_(SafeInv(sigma_obs, 1.0)),
|
|
delta_phi_(r.delta_phi_deg),
|
|
lp_(SafeInv(static_cast<double>(r.rlp), 1.0)),
|
|
half_wedge_(wedge_deg / 2.0),
|
|
c1_(r.zeta / std::sqrt(2.0)),
|
|
partiality_(r.partiality),
|
|
refine_partiality_(refine_partiality) {
|
|
}
|
|
|
|
template<typename T>
|
|
bool operator()(const T *const G,
|
|
const T *const mosaicity,
|
|
const T *const Itrue,
|
|
T *residual) const {
|
|
T partiality;
|
|
if (refine_partiality_ && mosaicity[0] != 0.0) {
|
|
const T arg_plus = T(delta_phi_ + half_wedge_) * T(c1_) / mosaicity[0];
|
|
const T arg_minus = T(delta_phi_ - half_wedge_) * T(c1_) / mosaicity[0];
|
|
partiality = (ceres::erf(arg_plus) - ceres::erf(arg_minus)) / T(2.0);
|
|
} else
|
|
partiality = T(partiality_);
|
|
|
|
const T Ipred = G[0] * partiality * T(lp_) * Itrue[0];
|
|
residual[0] = (Ipred - T(Iobs_)) * T(weight_);
|
|
return true;
|
|
}
|
|
|
|
double Iobs_;
|
|
double weight_;
|
|
double delta_phi_;
|
|
double lp_;
|
|
double half_wedge_;
|
|
double c1_;
|
|
double partiality_;
|
|
bool refine_partiality_;
|
|
};
|
|
|
|
struct ScaleRegularizationResidual {
|
|
explicit ScaleRegularizationResidual(double sigma_k)
|
|
: inv_sigma_(SafeInv(sigma_k, 1.0)) {
|
|
}
|
|
|
|
template<typename T>
|
|
bool operator()(const T *const k, T *residual) const {
|
|
residual[0] = (k[0] - T(1.0)) * T(inv_sigma_);
|
|
return true;
|
|
}
|
|
|
|
double inv_sigma_;
|
|
};
|
|
|
|
struct SmoothnessRegularizationResidual {
|
|
explicit SmoothnessRegularizationResidual(double sigma)
|
|
: inv_sigma_(SafeInv(sigma, 1.0)) {
|
|
}
|
|
|
|
template<typename T>
|
|
bool operator()(const T *const k0,
|
|
const T *const k1,
|
|
const T *const k2,
|
|
T *residual) const {
|
|
residual[0] = (ceres::log(k0[0]) + ceres::log(k2[0]) - T(2.0) * ceres::log(k1[0])) * T(inv_sigma_);
|
|
return true;
|
|
}
|
|
|
|
double inv_sigma_;
|
|
};
|
|
|
|
struct ObsRef {
|
|
const Reflection *r = nullptr;
|
|
int img_id = 0;
|
|
int hkl_slot = -1;
|
|
double sigma = 0.0;
|
|
};
|
|
|
|
struct CorrectedObs {
|
|
int hkl_slot;
|
|
double I_corr;
|
|
double sigma_corr;
|
|
};
|
|
|
|
void scale(const ScaleMergeOptions &opt,
|
|
std::vector<double> &g,
|
|
std::vector<double> &mosaicity,
|
|
const std::vector<uint8_t> &image_slot_used,
|
|
bool rotation_crystallography,
|
|
size_t nhkl,
|
|
const std::vector<ObsRef> &obs) {
|
|
ceres::Problem problem;
|
|
|
|
std::vector<double> Itrue(nhkl, 0.0);
|
|
|
|
// Initialize Itrue from per-HKL median of observed intensities
|
|
{
|
|
std::vector<std::vector<double> > per_hkl_I(nhkl);
|
|
for (const auto &o: obs) {
|
|
per_hkl_I[o.hkl_slot].push_back(static_cast<double>(o.r->I));
|
|
}
|
|
for (int h = 0; h < nhkl; ++h) {
|
|
auto &v = per_hkl_I[h];
|
|
if (v.empty()) {
|
|
Itrue[h] = std::max(opt.min_sigma, 1e-6);
|
|
continue;
|
|
}
|
|
std::nth_element(v.begin(), v.begin() + static_cast<long>(v.size() / 2), v.end());
|
|
double med = v[v.size() / 2];
|
|
if (!std::isfinite(med) || med <= opt.min_sigma)
|
|
med = opt.min_sigma;
|
|
Itrue[h] = med;
|
|
}
|
|
}
|
|
|
|
std::vector<bool> is_valid_hkl_slot(nhkl, false);
|
|
|
|
for (const auto &o: obs) {
|
|
auto *cost = new ceres::AutoDiffCostFunction<IntensityResidual, 1, 1, 1, 1>(
|
|
new IntensityResidual(*o.r, o.sigma, opt.wedge_deg.value_or(0.0), rotation_crystallography));
|
|
problem.AddResidualBlock(cost,
|
|
nullptr,
|
|
&g[o.img_id],
|
|
&mosaicity[o.img_id],
|
|
&Itrue[o.hkl_slot]);
|
|
is_valid_hkl_slot[o.hkl_slot] = true;
|
|
}
|
|
|
|
for (int i = 0; i < g.size(); ++i) {
|
|
if (image_slot_used[i]) {
|
|
auto *cost = new ceres::AutoDiffCostFunction<ScaleRegularizationResidual, 1, 1>(
|
|
new ScaleRegularizationResidual(0.05));
|
|
problem.AddResidualBlock(cost, nullptr, &g[i]);
|
|
}
|
|
}
|
|
|
|
if (rotation_crystallography) {
|
|
if (opt.smoothen_g) {
|
|
for (int i = 0; i < g.size() - 2; ++i) {
|
|
if (image_slot_used[i] && image_slot_used[i + 1] && image_slot_used[i + 2]) {
|
|
auto *cost = new ceres::AutoDiffCostFunction<SmoothnessRegularizationResidual, 1, 1, 1, 1>(
|
|
new SmoothnessRegularizationResidual(0.05));
|
|
|
|
problem.AddResidualBlock(cost, nullptr, &g[i], &g[i + 1], &g[i + 2]);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (opt.smoothen_mos && opt.refine_mosaicity) {
|
|
for (int i = 0; i < mosaicity.size() - 2; ++i) {
|
|
if (image_slot_used[i] && image_slot_used[i + 1] && image_slot_used[i + 2]) {
|
|
auto *cost = new ceres::AutoDiffCostFunction<SmoothnessRegularizationResidual, 1, 1, 1, 1>(
|
|
new SmoothnessRegularizationResidual(0.05));
|
|
|
|
problem.AddResidualBlock(cost, nullptr, &mosaicity[i], &mosaicity[i + 1], &mosaicity[i + 2]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Scaling factors must be always positive
|
|
for (int i = 0; i < g.size(); i++) {
|
|
if (image_slot_used[i])
|
|
problem.SetParameterLowerBound(&g[i], 0, 1e-12);
|
|
}
|
|
|
|
// Mosaicity refinement + bounds
|
|
if (!opt.refine_mosaicity) {
|
|
for (int i = 0; i < mosaicity.size(); ++i) {
|
|
if (image_slot_used[i])
|
|
problem.SetParameterBlockConstant(&mosaicity[i]);
|
|
}
|
|
} else {
|
|
for (int i = 0; i < mosaicity.size(); ++i) {
|
|
if (image_slot_used[i]) {
|
|
problem.SetParameterLowerBound(&mosaicity[i], 0, opt.mosaicity_min_deg);
|
|
problem.SetParameterUpperBound(&mosaicity[i], 0, opt.mosaicity_max_deg);
|
|
}
|
|
}
|
|
}
|
|
|
|
// use all available threads
|
|
unsigned int hw = std::thread::hardware_concurrency();
|
|
if (hw == 0)
|
|
hw = 1; // fallback
|
|
|
|
ceres::Solver::Options options;
|
|
|
|
options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY;
|
|
options.minimizer_progress_to_stdout = true;
|
|
options.max_num_iterations = opt.max_num_iterations;
|
|
options.max_solver_time_in_seconds = opt.max_solver_time_s;
|
|
options.num_threads = static_cast<int>(hw);
|
|
|
|
ceres::Solver::Summary summary;
|
|
ceres::Solve(options, &problem, &summary);
|
|
std::cout << summary.FullReport() << std::endl;
|
|
}
|
|
|
|
void merge(size_t nhkl, ScaleMergeResult &out, const std::vector<CorrectedObs> &corr_obs) {
|
|
// ---- Merge (XDS/XSCALE style: inverse-variance weighted mean) ----
|
|
|
|
struct HKLAccum {
|
|
double sum_wI = 0.0;
|
|
double sum_w = 0.0;
|
|
double sum_wI2 = 0.0;
|
|
int count = 0;
|
|
};
|
|
std::vector<HKLAccum> accum(nhkl);
|
|
|
|
for (const auto &co: corr_obs) {
|
|
const double w = 1.0 / (co.sigma_corr * co.sigma_corr);
|
|
auto &a = accum[co.hkl_slot];
|
|
a.sum_wI += w * co.I_corr;
|
|
a.sum_w += w;
|
|
a.sum_wI2 += w * co.I_corr * co.I_corr;
|
|
a.count++;
|
|
}
|
|
|
|
for (int h = 0; h < nhkl; ++h) {
|
|
const auto &a = accum[h];
|
|
if (a.sum_w <= 0.0)
|
|
continue;
|
|
|
|
out.merged[h].I = a.sum_wI / a.sum_w;
|
|
const double sigma_stat = std::sqrt(1.0 / a.sum_w);
|
|
|
|
if (a.count >= 2) {
|
|
const double var_internal = a.sum_wI2 - (a.sum_wI * a.sum_wI) / a.sum_w;
|
|
const double sigma_int = std::sqrt(var_internal / (a.sum_w * (a.count - 1)));
|
|
out.merged[h].sigma = std::max(sigma_stat, sigma_int);
|
|
} else {
|
|
out.merged[h].sigma = sigma_stat;
|
|
}
|
|
}
|
|
}
|
|
|
|
void stats(const ScaleMergeOptions &opt, size_t nhkl, ScaleMergeResult &out, const std::vector<CorrectedObs> &corr_obs)
|
|
// ---- Compute per-shell merging statistics ----
|
|
{
|
|
constexpr int kStatShells = 10;
|
|
|
|
float stat_d_min = std::numeric_limits<float>::max();
|
|
float stat_d_max = 0.0f;
|
|
for (int h = 0; h < nhkl; ++h) {
|
|
const auto d = static_cast<float>(out.merged[h].d);
|
|
if (std::isfinite(d) && d > 0.0f) {
|
|
if (opt.d_min_limit_A > 0.0 && d < static_cast<float>(opt.d_min_limit_A))
|
|
continue;
|
|
stat_d_min = std::min(stat_d_min, d);
|
|
stat_d_max = std::max(stat_d_max, d);
|
|
}
|
|
}
|
|
|
|
if (stat_d_min < stat_d_max && stat_d_min > 0.0f) {
|
|
const float d_min_pad = stat_d_min * 0.999f;
|
|
const float d_max_pad = stat_d_max * 1.001f;
|
|
ResolutionShells stat_shells(d_min_pad, d_max_pad, kStatShells);
|
|
|
|
const auto shell_mean_1_d2 = stat_shells.GetShellMeanOneOverResSq();
|
|
const auto shell_min_res = stat_shells.GetShellMinRes();
|
|
|
|
// Assign each unique reflection to a shell
|
|
std::vector<int32_t> hkl_shell(nhkl, -1);
|
|
for (int h = 0; h < nhkl; ++h) {
|
|
const auto d = static_cast<float>(out.merged[h].d);
|
|
if (std::isfinite(d) && d > 0.0f) {
|
|
if (opt.d_min_limit_A > 0.0 && d < static_cast<float>(opt.d_min_limit_A))
|
|
continue;
|
|
auto s = stat_shells.GetShell(d);
|
|
if (s.has_value())
|
|
hkl_shell[h] = s.value();
|
|
}
|
|
}
|
|
|
|
// Per-HKL: collect corrected intensities for Rmeas
|
|
struct HKLStats {
|
|
double sum_I = 0.0;
|
|
int n = 0;
|
|
std::vector<double> I_list;
|
|
};
|
|
std::vector<HKLStats> per_hkl(nhkl);
|
|
|
|
for (const auto &co: corr_obs) {
|
|
if (hkl_shell[co.hkl_slot] < 0)
|
|
continue;
|
|
auto &hs = per_hkl[co.hkl_slot];
|
|
hs.sum_I += co.I_corr;
|
|
hs.n += 1;
|
|
hs.I_list.push_back(co.I_corr);
|
|
}
|
|
|
|
// Accumulators per shell
|
|
struct ShellAccum {
|
|
int total_obs = 0;
|
|
std::unordered_set<int> unique_hkls;
|
|
double rmeas_num = 0.0;
|
|
double rmeas_den = 0.0;
|
|
double sum_i_over_sig = 0.0;
|
|
int n_merged_with_sigma = 0;
|
|
};
|
|
std::vector<ShellAccum> shell_acc(kStatShells);
|
|
|
|
for (int h = 0; h < nhkl; ++h) {
|
|
if (hkl_shell[h] < 0)
|
|
continue;
|
|
const int s = hkl_shell[h];
|
|
auto &sa = shell_acc[s];
|
|
const auto &hs = per_hkl[h];
|
|
if (hs.n == 0)
|
|
continue;
|
|
|
|
sa.unique_hkls.insert(h);
|
|
sa.total_obs += hs.n;
|
|
|
|
const double mean_I = hs.sum_I / static_cast<double>(hs.n);
|
|
|
|
if (hs.n >= 2) {
|
|
double sum_abs_dev = 0.0;
|
|
for (double Ii: hs.I_list)
|
|
sum_abs_dev += std::abs(Ii - mean_I);
|
|
sa.rmeas_num += std::sqrt(static_cast<double>(hs.n) / (hs.n - 1.0)) * sum_abs_dev;
|
|
}
|
|
|
|
for (double Ii: hs.I_list)
|
|
sa.rmeas_den += std::abs(Ii);
|
|
|
|
if (out.merged[h].sigma > 0.0) {
|
|
sa.sum_i_over_sig += out.merged[h].I / out.merged[h].sigma;
|
|
sa.n_merged_with_sigma += 1;
|
|
}
|
|
}
|
|
|
|
// Completeness (not yet available without unit cell)
|
|
std::vector<int> possible_per_shell(kStatShells, 0);
|
|
int total_possible = 0;
|
|
bool have_completeness = false;
|
|
|
|
// Fill output statistics
|
|
out.statistics.shells.resize(kStatShells);
|
|
for (int s = 0; s < kStatShells; ++s) {
|
|
auto &ss = out.statistics.shells[s];
|
|
const auto &sa = shell_acc[s];
|
|
|
|
ss.mean_one_over_d2 = shell_mean_1_d2[s];
|
|
ss.d_min = shell_min_res[s];
|
|
ss.d_max = (s == 0) ? d_max_pad : shell_min_res[s - 1];
|
|
|
|
ss.total_observations = sa.total_obs;
|
|
ss.unique_reflections = static_cast<int>(sa.unique_hkls.size());
|
|
ss.rmeas = (sa.rmeas_den > 0.0) ? (sa.rmeas_num / sa.rmeas_den) : 0.0;
|
|
ss.mean_i_over_sigma = (sa.n_merged_with_sigma > 0)
|
|
? (sa.sum_i_over_sig / sa.n_merged_with_sigma)
|
|
: 0.0;
|
|
ss.possible_reflections = possible_per_shell[s];
|
|
ss.completeness = (have_completeness && possible_per_shell[s] > 0)
|
|
? static_cast<double>(sa.unique_hkls.size()) / possible_per_shell[s]
|
|
: 0.0;
|
|
}
|
|
|
|
// Overall statistics
|
|
{
|
|
auto &ov = out.statistics.overall;
|
|
ov.d_min = stat_d_min;
|
|
ov.d_max = stat_d_max;
|
|
ov.mean_one_over_d2 = 0.0f;
|
|
|
|
int total_obs_all = 0;
|
|
std::unordered_set<int> all_unique;
|
|
double rmeas_num_all = 0.0, rmeas_den_all = 0.0;
|
|
double sum_isig_all = 0.0;
|
|
int n_isig_all = 0;
|
|
|
|
for (int s = 0; s < kStatShells; ++s) {
|
|
const auto &sa = shell_acc[s];
|
|
total_obs_all += sa.total_obs;
|
|
all_unique.insert(sa.unique_hkls.begin(), sa.unique_hkls.end());
|
|
rmeas_num_all += sa.rmeas_num;
|
|
rmeas_den_all += sa.rmeas_den;
|
|
sum_isig_all += sa.sum_i_over_sig;
|
|
n_isig_all += sa.n_merged_with_sigma;
|
|
}
|
|
|
|
ov.total_observations = total_obs_all;
|
|
ov.unique_reflections = static_cast<int>(all_unique.size());
|
|
ov.rmeas = (rmeas_den_all > 0.0) ? (rmeas_num_all / rmeas_den_all) : 0.0;
|
|
ov.mean_i_over_sigma = (n_isig_all > 0) ? (sum_isig_all / n_isig_all) : 0.0;
|
|
ov.possible_reflections = total_possible;
|
|
ov.completeness = (have_completeness && total_possible > 0)
|
|
? static_cast<double>(all_unique.size()) / total_possible
|
|
: 0.0;
|
|
}
|
|
}
|
|
}
|
|
void calc_obs(const ScaleMergeOptions &opt,
|
|
std::vector<double> &g,
|
|
std::vector<double> &mosaicity,
|
|
bool rotation_crystallography,
|
|
const std::vector<ObsRef> &obs,
|
|
std::vector<CorrectedObs> &corr_obs) {
|
|
|
|
// ---- Compute corrected observations once (used for both merging and statistics) ----
|
|
const double half_wedge = opt.wedge_deg.value_or(0.0) / 2.0;
|
|
|
|
for (const auto &o: obs) {
|
|
const Reflection &r = *o.r;
|
|
const double lp = SafeInv(static_cast<double>(r.rlp), 1.0);
|
|
const double G_i = g[o.img_id];
|
|
|
|
// Compute partiality with refined mosaicity
|
|
double partiality;
|
|
if (rotation_crystallography && mosaicity[o.img_id] > 0.0) {
|
|
const double c1 = r.zeta / std::sqrt(2.0);
|
|
const double arg_plus = (r.delta_phi_deg + half_wedge) * c1 / mosaicity[o.img_id];
|
|
const double arg_minus = (r.delta_phi_deg - half_wedge) * c1 / mosaicity[o.img_id];
|
|
partiality = (std::erf(arg_plus) - std::erf(arg_minus)) / 2.0;
|
|
} else {
|
|
partiality = r.partiality;
|
|
}
|
|
|
|
if (partiality <= opt.min_partiality_for_merge)
|
|
continue;
|
|
const double correction = G_i * partiality * lp;
|
|
if (correction <= 0.0)
|
|
continue;
|
|
|
|
corr_obs.push_back({
|
|
o.hkl_slot,
|
|
static_cast<double>(r.I) / correction,
|
|
o.sigma / correction
|
|
});
|
|
}
|
|
}
|
|
|
|
void proc_obs(const std::vector<std::vector<Reflection> > &observations,
|
|
const ScaleMergeOptions &opt,
|
|
std::vector<uint8_t> &image_slot_used,
|
|
std::vector<ObsRef> &obs,
|
|
std::unordered_map<HKLKey, int, HKLKeyHash> &hklToSlot
|
|
) {
|
|
for (int i = 0; i < observations.size(); i++) {
|
|
for (const auto &r: observations[i]) {
|
|
const double d = SafeD(r.d);
|
|
if (!std::isfinite(d))
|
|
continue;
|
|
if (!std::isfinite(r.I))
|
|
continue;
|
|
|
|
if (opt.d_min_limit_A > 0.0 && d < opt.d_min_limit_A)
|
|
continue;
|
|
|
|
if (!std::isfinite(r.zeta) || r.zeta <= 0.0f)
|
|
continue;
|
|
if (!std::isfinite(r.rlp) || r.rlp == 0.0f)
|
|
continue;
|
|
|
|
const double sigma = SafeSigma(r.sigma, opt.min_sigma);
|
|
|
|
const int img_id = i / opt.image_cluster;
|
|
image_slot_used[img_id] = 1;
|
|
|
|
int hkl_slot;
|
|
try {
|
|
const HKLKey key = CanonicalizeHKLKey(r, opt);
|
|
auto it = hklToSlot.find(key);
|
|
if (it == hklToSlot.end()) {
|
|
hkl_slot = static_cast<int>(hklToSlot.size());
|
|
hklToSlot.emplace(key, hkl_slot);
|
|
} else {
|
|
hkl_slot = it->second;
|
|
}
|
|
} catch (...) {
|
|
continue;
|
|
}
|
|
|
|
ObsRef o;
|
|
o.r = &r;
|
|
o.img_id = img_id;
|
|
o.hkl_slot = hkl_slot;
|
|
o.sigma = sigma;
|
|
obs.push_back(o);
|
|
}
|
|
}
|
|
|
|
}
|
|
} // namespace
|
|
|
|
ScaleMergeResult ScaleAndMergeReflectionsCeres(const std::vector<std::vector<Reflection> > &observations,
|
|
const ScaleMergeOptions &opt) {
|
|
if (opt.image_cluster <= 0)
|
|
throw std::invalid_argument("image_cluster must be positive");
|
|
|
|
const bool rotation_crystallography = opt.wedge_deg.has_value();
|
|
|
|
size_t nrefl = 0;
|
|
for (const auto &i: observations)
|
|
nrefl += i.size();
|
|
|
|
std::vector<ObsRef> obs;
|
|
std::vector<CorrectedObs> corr_obs;
|
|
|
|
obs.reserve(nrefl);
|
|
corr_obs.reserve(nrefl);
|
|
|
|
std::unordered_map<HKLKey, int, HKLKeyHash> hklToSlot;
|
|
hklToSlot.reserve(nrefl);
|
|
|
|
size_t n_image_slots = observations.size() / opt.image_cluster +
|
|
(observations.size() % opt.image_cluster > 0 ? 1 : 0);
|
|
|
|
std::vector<uint8_t> image_slot_used(n_image_slots, 0);
|
|
|
|
proc_obs(observations, opt, image_slot_used, obs, hklToSlot);
|
|
|
|
const int nhkl = static_cast<int>(hklToSlot.size());
|
|
|
|
std::vector<double> g(n_image_slots, 1.0);
|
|
std::vector<double> mosaicity(n_image_slots, opt.mosaicity_init_deg);
|
|
for (int i = 0; i < n_image_slots; i++) {
|
|
if (!image_slot_used[i]) {
|
|
mosaicity[i] = NAN;
|
|
g[i] = NAN;
|
|
} else if (opt.mosaicity_init_deg_vec.size() > i && std::isfinite(opt.mosaicity_init_deg_vec[i])) {
|
|
mosaicity[i] = opt.mosaicity_init_deg_vec[i];
|
|
}
|
|
}
|
|
|
|
scale(opt, g, mosaicity, image_slot_used, rotation_crystallography, nhkl, obs);
|
|
|
|
ScaleMergeResult out;
|
|
|
|
out.image_scale_g.resize(observations.size(), NAN);
|
|
out.mosaicity_deg.resize(observations.size(), NAN);
|
|
for (int i = 0; i < observations.size(); i++) {
|
|
size_t img_slot = i / opt.image_cluster;
|
|
if (image_slot_used[img_slot]) {
|
|
out.image_scale_g[i] = g[img_slot];
|
|
out.mosaicity_deg[i] = mosaicity[img_slot];
|
|
}
|
|
}
|
|
|
|
std::vector<HKLKey> slotToHKL(nhkl);
|
|
for (const auto &kv: hklToSlot)
|
|
slotToHKL[kv.second] = kv.first;
|
|
|
|
out.merged.resize(nhkl);
|
|
for (int h = 0; h < nhkl; ++h) {
|
|
out.merged[h].h = slotToHKL[h].h;
|
|
out.merged[h].k = slotToHKL[h].k;
|
|
out.merged[h].l = slotToHKL[h].l;
|
|
out.merged[h].I = 0.0;
|
|
out.merged[h].sigma = 0.0;
|
|
out.merged[h].d = 0.0;
|
|
}
|
|
|
|
// Populate d from median of observations per HKL
|
|
{
|
|
std::vector<std::vector<double> > per_hkl_d(nhkl);
|
|
for (const auto &o: obs) {
|
|
const double d_val = static_cast<double>(o.r->d);
|
|
if (std::isfinite(d_val) && d_val > 0.0)
|
|
per_hkl_d[o.hkl_slot].push_back(d_val);
|
|
}
|
|
for (int h = 0; h < nhkl; ++h) {
|
|
auto &v = per_hkl_d[h];
|
|
if (!v.empty()) {
|
|
std::nth_element(v.begin(), v.begin() + static_cast<long>(v.size() / 2), v.end());
|
|
out.merged[h].d = v[v.size() / 2];
|
|
}
|
|
}
|
|
}
|
|
|
|
calc_obs(opt, g, mosaicity, rotation_crystallography, obs, corr_obs);
|
|
merge(nhkl, out, corr_obs);
|
|
stats(opt, nhkl, out, corr_obs);
|
|
|
|
return out;
|
|
}
|