Files
Jungfraujoch/tests/DiffractionGeometryTest.cpp
Filip Leonarski 1ab257af6c
All checks were successful
Build Packages / build:rpm (ubuntu2404_nocuda) (push) Successful in 12m8s
Build Packages / build:rpm (rocky8_nocuda) (push) Successful in 12m57s
Build Packages / build:rpm (ubuntu2204_nocuda) (push) Successful in 12m55s
Build Packages / build:rpm (rocky8_sls9) (push) Successful in 12m0s
Build Packages / build:rpm (rocky9_nocuda) (push) Successful in 13m30s
Build Packages / Generate python client (push) Successful in 20s
Build Packages / Unit tests (push) Has been skipped
Build Packages / Create release (push) Has been skipped
Build Packages / Build documentation (push) Successful in 39s
Build Packages / build:rpm (rocky8) (push) Successful in 9m23s
Build Packages / build:rpm (rocky9_sls9) (push) Successful in 10m33s
Build Packages / build:rpm (ubuntu2404) (push) Successful in 8m2s
Build Packages / build:rpm (ubuntu2204) (push) Successful in 8m42s
Build Packages / build:rpm (rocky9) (push) Successful in 9m38s
v1.0.0-rc.125 (#32)
This is an UNSTABLE release. This version adds scalign and merging. These are experimental at the moment, and should not be used for production analysis.
If things go wrong with analysis, it is better to revert to 1.0.0-rc.124.

* jfjoch_broker: Improve logic on switching on/off spot finding
* jfjoch_broker: Increase maximum spot count for FFBIDX to 65536
* jfjoch_broker: Increase default maximum unit cell for FFT to 500 A (could have performance impact, TBD)
* jfjoch_process: Add scalign and merging functionality - program is experimental at the moment and should not be used for production analysis
* jfjoch_viewer: Display partiality and reciprocal Lorentz-polarization correction for each reflection
* jfjoch_writer: Save more information about each reflection

Reviewed-on: #32
Co-authored-by: Filip Leonarski <filip.leonarski@psi.ch>
Co-committed-by: Filip Leonarski <filip.leonarski@psi.ch>
2026-02-18 16:17:21 +01:00

526 lines
18 KiB
C++

// SPDX-FileCopyrightText: 2024 Filip Leonarski, Paul Scherrer Institute <filip.leonarski@psi.ch>
// SPDX-License-Identifier: GPL-3.0-only
#include <catch2/catch_all.hpp>
#include <iostream>
#include "../common/DiffractionGeometry.h"
#include "../common/DiffractionExperiment.h"
TEST_CASE("RecipToDetector_1", "[LinearAlgebra][Coord]") {
DiffractionExperiment x(DetJF(8, 2));
x.BeamX_pxl(1024).BeamY_pxl(1024).DetectorDistance_mm(120);
DiffractionGeometry geom = x.GetDiffractionGeometry();
float pos_x = 512, pos_y = 512;
auto recip = geom.DetectorToRecip(pos_x, pos_y);
auto [proj_x, proj_y] = geom.RecipToDector(recip);
REQUIRE(proj_x == Catch::Approx(pos_x));
REQUIRE(proj_y == Catch::Approx(pos_y));
REQUIRE((recip - geom.DetectorToRecip(proj_x, proj_y)).Length() < 0.00000001f);
REQUIRE(std::fabs(geom.DistFromEwaldSphere(recip)) < 4e-4);
}
TEST_CASE("RecipToDetector_2", "[LinearAlgebra][Coord]") {
DiffractionExperiment x(DetJF(8, 2));
x.BeamX_pxl(1024).BeamY_pxl(1024).DetectorDistance_mm(120);
float pos_x = 1023, pos_y = 1023;
DiffractionGeometry geom = x.GetDiffractionGeometry();
auto recip = geom.DetectorToRecip(pos_x, pos_y);
auto [proj_x, proj_y] = geom.RecipToDector(recip);
REQUIRE(proj_x == Catch::Approx(pos_x));
REQUIRE(proj_y == Catch::Approx(pos_y));
REQUIRE((recip - geom.DetectorToRecip(proj_x, proj_y)).Length() < 0.00000001f);
REQUIRE(std::fabs(geom.DistFromEwaldSphere(recip)) < 4e-4);
}
TEST_CASE("RecipToDetector_3", "[LinearAlgebra][Coord]") {
DiffractionExperiment x(DetJF(8, 2));
x.BeamX_pxl(1024).BeamY_pxl(1024).DetectorDistance_mm(120);
float pos_x = 30, pos_y = 30;
DiffractionGeometry geom = x.GetDiffractionGeometry();
auto recip = geom.DetectorToRecip(pos_x, pos_y);
auto [proj_x, proj_y] = geom.RecipToDector(recip);
REQUIRE(proj_x == Catch::Approx(pos_x));
REQUIRE(proj_y == Catch::Approx(pos_y));
REQUIRE((recip - geom.DetectorToRecip(proj_x, proj_y)).Length() < 0.00000001f);
REQUIRE(std::fabs(geom.DistFromEwaldSphere(recip)) < 4e-4);
}
TEST_CASE("DiffractionGeometry_Phi","") {
DiffractionExperiment x(DetJF4M());
x.DetectorDistance_mm(75).IncidentEnergy_keV(WVL_1A_IN_KEV);
x.BeamX_pxl(1000).BeamY_pxl(1000);
DiffractionGeometry geom = x.GetDiffractionGeometry();
CHECK(geom.Phi_rad(2000, 1000) * (180.0 / M_PI) == Catch::Approx(0.0));
CHECK(geom.Phi_rad(2000, 0) * (180.0 / M_PI) == Catch::Approx(315.0f));
CHECK(geom.Phi_rad(1000, 0) * (180.0 / M_PI) == Catch::Approx(270.0f));
CHECK(geom.Phi_rad(0, 0) * (180.0 / M_PI) == Catch::Approx(225.0f));
CHECK(geom.Phi_rad(0, 1000) * (180.0 / M_PI) == Catch::Approx(180.0f));
CHECK(geom.Phi_rad(1000, 2000) * (180.0 / M_PI) == Catch::Approx(90.f));
CHECK(geom.Phi_rad(2000, 2000) * (180.0 / M_PI) == Catch::Approx(45.0f));
}
TEST_CASE("DiffractionGeometry_Cos2Theta","") {
DiffractionExperiment x(DetJF4M());
x.DetectorDistance_mm(75).IncidentEnergy_keV(WVL_1A_IN_KEV);
x.BeamX_pxl(1000).BeamY_pxl(1000);
DiffractionGeometry geom = x.GetDiffractionGeometry();
// det distance == 1000 pixel
// theta = 30 deg
// tan(2 * theta) = sqrt(3)
REQUIRE(cosf(geom.TwoTheta_rad(1000, 1000 * (1.0 + sqrt(3)))) == Catch::Approx(0.5f));
}
TEST_CASE("DiffractionGeometry_PxlToRes","") {
DiffractionExperiment x(DetJF4M());
x.DetectorDistance_mm(75).IncidentEnergy_keV(WVL_1A_IN_KEV);
DiffractionGeometry geom = x.GetDiffractionGeometry();
// sin(theta) = 1/2
// theta = 30 deg
// tan(2 * theta) = sqrt(3)
REQUIRE(geom.PxlToRes( 0, 1000 * sqrt(3)) == Catch::Approx(1.0));
// sin(theta) = 1/4
// theta = 14.47 deg
// tan(2 * theta) = 0.55328333517
REQUIRE(geom.PxlToRes(1000 * 0.55328333517 * cosf(1), 1000 * 0.55328333517 * sinf(1)) == Catch::Approx(2.0));
}
TEST_CASE("DiffractionGeometry_ResToPxl","") {
DiffractionExperiment x(DetJF4M());
x.DetectorDistance_mm(75).IncidentEnergy_keV(WVL_1A_IN_KEV);
DiffractionGeometry geom = x.GetDiffractionGeometry();
// sin(theta) = 1/2
// theta = 30 deg
// tan(2 * theta) = sqrt(3)
REQUIRE(geom.ResToPxl(1.0) == Catch::Approx(1000 * sqrt(3)));
// sin(theta) = 1/4
// theta = 14.47 deg
// tan(2 * theta) = 0.55328333517
REQUIRE(geom.ResToPxl(2.0) == Catch::Approx(1000 * 0.55328333517));
}
TEST_CASE("DiffractionGeometry_SolidAngleCorrection","") {
DiffractionExperiment x;
x.IncidentEnergy_keV(WVL_1A_IN_KEV);
x.BeamX_pxl(1000).BeamY_pxl(1000).DetectorDistance_mm(75);
DiffractionGeometry geom = x.GetDiffractionGeometry();
REQUIRE(geom.CalcAzIntSolidAngleCorr(0.0) == 1.0f);
REQUIRE(geom.CalcAzIntSolidAngleCorr(2 * M_PI) == Catch::Approx(0.5f * 0.5f * 0.5f));
// theta = 30 deg
// cos (2 * theta) = 1/2
REQUIRE(geom.CalcAzIntSolidAngleCorr(1000, 1000) == 1.0f);
REQUIRE(geom.CalcAzIntSolidAngleCorr(1000 * (1.0 + sqrt(3)), 1000) == Catch::Approx(0.5f * 0.5f * 0.5f));
}
TEST_CASE("DiffractionGeometry_PolarizationCorrection","") {
DiffractionExperiment x;
x.IncidentEnergy_keV(WVL_1A_IN_KEV);
x.BeamX_pxl(1000).BeamY_pxl(1000).DetectorDistance_mm(75);
DiffractionGeometry geom = x.GetDiffractionGeometry();
// Circular polarization 0.5*(1+cos(2theta)^2)
x.PolarizationFactor(0);
REQUIRE(geom.CalcAzIntPolarizationCorr(1000 * (1.0 + sqrt(3)), 1000, 0) == Catch::Approx(0.5f * (1 + 0.5f * 0.5f)));
REQUIRE(geom.CalcAzIntPolarizationCorr(1000, 1000 * (1.0 + sqrt(3)), 0) == Catch::Approx(0.5f * (1 + 0.5f * 0.5f)));
// Horizontal polarization
x.PolarizationFactor(1);
// No correction in vertical direction
REQUIRE(geom.CalcAzIntPolarizationCorr(1000, 1000 * (1.0 + sqrt(3)), 1) == Catch::Approx(1.0f));
REQUIRE(geom.CalcAzIntPolarizationCorr(1000, 1000 * (1.0 - sqrt(3)), 1) == Catch::Approx(1.0f));
// cos(2*theta)^2 in horizontal direction
REQUIRE(geom.CalcAzIntPolarizationCorr(1000 * (1.0 + sqrt(3)), 1000, 1) == Catch::Approx(0.5f * 0.5f));
REQUIRE(geom.CalcAzIntPolarizationCorr(1000 * (1.0 - sqrt(3)), 1000, 1) == Catch::Approx(0.5f * 0.5f));
}
TEST_CASE("DiffractionGeometry_AngleFromEwaldSphere") {
DiffractionGeometry geom;
geom.Wavelength_A(1.0);
// Center of Ewald sphere == (0,0,-1)
// Points on Ewald sphere
REQUIRE(geom.AngleFromEwaldSphere_deg(Coord(1, 0, -1)) == 0.0f);
REQUIRE(geom.AngleFromEwaldSphere_deg(Coord(1.0f / sqrtf(2.0f), 1.0f / sqrtf(2.0f), -1)) == 0.0f);
REQUIRE(geom.AngleFromEwaldSphere_deg(Coord(1, 0, 1)) == Catch::Approx(90.0f));
REQUIRE(geom.AngleFromEwaldSphere_deg(Coord(-sqrtf(2.0f), 0, 0)) == Catch::Approx(45.0f));
REQUIRE(geom.AngleFromEwaldSphere_deg(Coord(-sqrtf(3.0f), 0, 0)) == Catch::Approx(60.0f));
float cos_1deg = cosf(1.0f * M_PI / 180.0f);
float sin_1deg = sinf(1.0f * M_PI / 180.0f);
REQUIRE(fabsf(geom.AngleFromEwaldSphere_deg((Coord(cos_1deg - sin_1deg, 0, -(cos_1deg + sin_1deg)))) - 1.0f) < 0.0005);
// Cannot be rotated to fit into the Ewald sphere
REQUIRE(isnanf(geom.AngleFromEwaldSphere_deg(Coord(0, 0, 1))));
}
TEST_CASE("DiffractionGeometry_AngleFromEwaldSphere_Wvl2A") {
DiffractionGeometry geom;
geom.BeamX_pxl(1000).BeamY_pxl(1000).DetectorDistance_mm(100).Wavelength_A(2.0);
CHECK(geom.AngleFromEwaldSphere_deg(geom.DetectorToRecip(300,300)) < 0.05f);
CHECK(geom.AngleFromEwaldSphere_deg(geom.DetectorToRecip(200,1700)) < 0.05f);
CHECK(geom.AngleFromEwaldSphere_deg(geom.DetectorToRecip(1200,1800)) < 0.05f);
CHECK(geom.AngleFromEwaldSphere_deg(geom.DetectorToRecip(1500,100)) < 0.05f);
}
TEST_CASE("DiffractionGeometry_ProjectToEwaldSphere") {
DiffractionGeometry geom;
geom.BeamX_pxl(1000).BeamY_pxl(437).DetectorDistance_mm(100).Wavelength_A(2.0);
Coord p0 = geom.DetectorToRecip(300,300);
Coord p1 = geom.ProjectToEwaldSphere(p0);
REQUIRE(p0.x == Catch::Approx(p1.x));
REQUIRE(p0.y == Catch::Approx(p1.y));
REQUIRE(p0.z == Catch::Approx(p1.z));
Coord p2 = Coord(1,0,0);
REQUIRE(std::fabs(geom.DistFromEwaldSphere(p2) > 0.01));
REQUIRE(std::fabs(geom.DistFromEwaldSphere(geom.ProjectToEwaldSphere(p2))) < 0.0001);
}
TEST_CASE("DiffractionGeometry_DirectBeam") {
DiffractionGeometry geom;
geom.Wavelength_A(1.0);
geom.BeamX_pxl(1230).BeamY_pxl(1450);
auto [x, y] = geom.GetDirectBeam_pxl();
REQUIRE(x == Catch::Approx(1230.0f));
REQUIRE(y == Catch::Approx(1450.0f));
}
TEST_CASE("DiffractionGeometry_DirectBeam_RotZ") {
DiffractionGeometry geom;
geom.Wavelength_A(1.0);
geom.BeamX_pxl(1230).BeamY_pxl(1450);
geom.PoniRot3_rad(-M_PI_2);
auto [x, y] = geom.GetDirectBeam_pxl();
REQUIRE(x == Catch::Approx(1230.0f));
REQUIRE(y == Catch::Approx(1450.0f));
}
TEST_CASE("DiffractionGeometry_DirectBeam_RotY") {
DiffractionGeometry geom;
geom.Wavelength_A(1.0);
geom.DetectorDistance_mm(100);
geom.PixelSize_mm(1.0);
geom.BeamX_pxl(1230).BeamY_pxl(1450);
geom.PoniRot2_rad(-M_PI_4); // 45 deg rotation
auto [x, y] = geom.GetDirectBeam_pxl();
CHECK(x == Catch::Approx(1230.0f)); // no Change for X
CHECK(y >1450.0f);
}
TEST_CASE("DiffractionGeometry_PONI","") {
/*
poni_version: 2
Detector: Eiger4M
Detector_config: {}
Distance: 1.0
Poni1: 0.075
Poni2: 0.150
Rot1: 0.0
Rot2: 0.0
Rot3: 0.0
Wavelength: 1e-10
*/
// PyFAI uses nm^-1 for Q?
DiffractionExperiment x(DetJF4M());
x.DetectorDistance_mm(1000).BeamX_pxl(2000).BeamY_pxl(1000).IncidentEnergy_keV(WVL_1A_IN_KEV);
DiffractionGeometry geom = x.GetDiffractionGeometry();
float diff_800_400 = fabs(geom.PxlToQ( 800,400)*10.0 - 6.295358803860941);
float diff_400_800 = fabs(geom.PxlToQ( 400,800)*10.0 - 7.554628215027982);
float diff_1300_2000 = fabs(geom.PxlToQ( 1300,2000)*10.0 - 5.73479724964891);
REQUIRE(diff_800_400 < 0.01);
REQUIRE(diff_400_800 < 0.01);
REQUIRE(diff_1300_2000 < 0.01);
}
TEST_CASE("DiffractionGeometry_PONI_phi","") {
/*
poni_version: 2
Detector: Eiger4M
Detector_config: {}
Distance: 1.0
Poni1: 0.075
Poni2: 0.150
Rot1: 0.0
Rot2: 0.0
Rot3: 0.0
Wavelength: 1e-10
*/
// PyFAI uses nm^-1 for Q?
DiffractionExperiment x(DetJF4M());
x.DetectorDistance_mm(1000).BeamX_pxl(2000).BeamY_pxl(1000).IncidentEnergy_keV(WVL_1A_IN_KEV);
DiffractionGeometry geom = x.GetDiffractionGeometry();
float phi_2000_0 = fabs(geom.Phi_rad(2000,0) - 2 * M_PI + 1.5702959937284997);
float phi_2000_2000 = fabs(geom.Phi_rad(2000,2000) - 1.5702964938446844);
float phi_0_1000 = fabs(geom.Phi_rad(0,1000) - 3.1413425992666903);
float phi_2000_1300 = fabs(geom.Phi_rad(1300,2000) - 2.1809518509415025);
CHECK(phi_2000_0 < 0.001);
CHECK(phi_2000_2000 < 0.001);
CHECK(phi_0_1000 < 0.001);
CHECK(phi_2000_1300 < 0.001);
}
TEST_CASE("DiffractionGeometry_PONI_phi_rot3","") {
/*
poni_version: 2
Detector: Eiger4M
Detector_config: {}
Distance: 1.0
Poni1: 0.075
Poni2: 0.150
Rot1: 0.0
Rot2: 0.0
Rot3: 0.5
Wavelength: 1e-10
*/
// PyFAI uses nm^-1 for Q?
DiffractionExperiment x(DetJF4M());
x.DetectorDistance_mm(1000).BeamX_pxl(2000).BeamY_pxl(1000).IncidentEnergy_keV(WVL_1A_IN_KEV)
.PoniRot3_rad(0.5);
DiffractionGeometry geom = x.GetDiffractionGeometry();
REQUIRE(geom.GetPoniRot3_rad() == Catch::Approx(0.5f));
float phi_800_400 = fabs(geom.Phi_rad(800,400) - 3.105073518019684);
float phi_2000_1300 = fabs(geom.Phi_rad(1300,2000) - 1.6809518509415027);
CHECK(phi_800_400 < 0.001);
CHECK(phi_2000_1300 < 0.001);
}
TEST_CASE("DiffractionGeometry_PONI_phi_rot1_rot2_rot3","") {
/*
poni_version: 2
Detector: Eiger4M
Detector_config: {}
Distance: 1.0
Poni1: 0.075
Poni2: 0.150
Rot1: 0.2
Rot2: 0.1
Rot3: 0.5
Wavelength: 1e-10
*/
// PyFAI uses nm^-1 for Q?
DiffractionExperiment x(DetJF4M());
x.DetectorDistance_mm(1000).BeamX_pxl(2000).BeamY_pxl(1000).IncidentEnergy_keV(WVL_1A_IN_KEV)
.PoniRot1_rad(0.2).PoniRot2_rad(-0.1).PoniRot3_rad(0.5);
DiffractionGeometry geom = x.GetDiffractionGeometry();
REQUIRE(geom.GetPoniRot1_rad() == Catch::Approx(0.2f));
REQUIRE(geom.GetPoniRot2_rad() == Catch::Approx(-0.1f));
REQUIRE(geom.GetPoniRot3_rad() == Catch::Approx(0.5f));
float phi_800_400 = fabs(geom.Phi_rad(800,400) - 2 * M_PI + 1.4175001633470816);
float phi_2000_1300 = fabs(geom.Phi_rad(1300,2000) - 2 * M_PI + 0.6630282166663707);
CHECK(phi_800_400 < 0.001);
CHECK(phi_2000_1300 < 0.001);
}
TEST_CASE("DiffractionGeometry_PONI_rot1","") {
/*
poni_version: 2
Detector: Eiger4M
Detector_config: {}
Distance: 1.0
Poni1: 0.075
Poni2: 0.150
Rot1: 0.2
Rot2: 0.0
Rot3: 0.0
Wavelength: 1e-10
*/
// PyFAI uses nm^-1 for Q?
DiffractionExperiment x(DetJF4M());
x.DetectorDistance_mm(1000).BeamX_pxl(2000).BeamY_pxl(1000).IncidentEnergy_keV(WVL_1A_IN_KEV);
DiffractionGeometry geom = x.GetDiffractionGeometry();
geom.PoniRot1_rad(0.2);
float diff_800_400 = fabs(geom.PxlToQ( 800,400)*10.0 - 7.471276390173706);
float diff_400_800 = fabs(geom.PxlToQ( 400,800)*10.0 - 5.148411999405654);
float diff_1300_2000 = fabs(geom.PxlToQ( 1300,2000)*10.0 - 10.37635963741911);
CHECK(diff_800_400 < 0.01);
CHECK(diff_400_800 < 0.01);
CHECK(diff_1300_2000 < 0.01);
}
TEST_CASE("DiffractionGeometry_PONI_rot1_rot2","") {
/*
poni_version: 2
Detector: Eiger4M
Detector_config: {}
Distance: 1.0
Poni1: 0.075
Poni2: 0.150
Rot1: 0.2
Rot2: 0.1
Rot3: 0.0
Wavelength: 1e-10
*/
// PyFAI uses nm^-1 for Q?
DiffractionExperiment x(DetJF4M());
x.DetectorDistance_mm(1000).BeamX_pxl(2000).BeamY_pxl(1000).IncidentEnergy_keV(WVL_1A_IN_KEV);
DiffractionGeometry geom = x.GetDiffractionGeometry();
geom.PoniRot1_rad(0.2).PoniRot2_rad(-0.1);
float diff_800_400 = fabs(geom.PxlToQ( 800,400)*10.0 - 11.412737079654118);
float diff_400_800 = fabs(geom.PxlToQ( 400,800)*10.0 - 8.805012278158177);
float diff_1300_2000 = fabs(geom.PxlToQ( 1300,2000)*10.0 - 9.363455481328781);
CHECK(diff_800_400 < 0.01);
CHECK(diff_400_800 < 0.01);
CHECK(diff_1300_2000 < 0.01);
}
TEST_CASE("DiffractionGeometry_PyFAI_Solid_angle","") {
/*
poni_version: 2
Detector: Eiger4M
Detector_config: {}
Distance: 0.2
Poni1: 0.075
Poni2: 0.150
Rot1: 0.0
Rot2: 0.0
Rot3: 0.0
Wavelength: 1e-10
*/
// Not sure why, but PyFAI solidAngleArray doesn't take into account poni rotation (???)
DiffractionExperiment x(DetJF4M());
x.DetectorDistance_mm(200).BeamX_pxl(2000).BeamY_pxl(1000).IncidentEnergy_keV(WVL_1A_IN_KEV);
DiffractionGeometry geom = x.GetDiffractionGeometry();
float diff_100_100 = fabs(geom.CalcAzIntSolidAngleCorr( 100,100) - 0.4844596502755233);
CHECK(diff_100_100 < 0.0002);
float diff_400_800 = fabs(geom.CalcAzIntSolidAngleCorr( 400,800)- 0.6267921080721112);
CHECK(diff_400_800 < 0.0002);
}
TEST_CASE("ResPhiToPxl") {
DiffractionExperiment x(DetJF4M());
x.DetectorDistance_mm(75).IncidentEnergy_keV(WVL_1A_IN_KEV);
DiffractionGeometry geom = x.GetDiffractionGeometry();
auto out = geom.ResPhiToPxl(1.0, 0);
CHECK(geom.PxlToRes(out.first, out.second) == Catch::Approx(1.0));
CHECK(fabs(geom.Phi_rad(out.first, out.second)) < 0.001 );
out = geom.ResPhiToPxl(1.0, M_PI);
CHECK(geom.PxlToRes(out.first, out.second) == Catch::Approx(1.0));
CHECK(fabs(geom.Phi_rad(out.first, out.second) - M_PI) < 0.001 );
out = geom.ResPhiToPxl(2.0, 0.7567);
CHECK(geom.PxlToRes(out.first, out.second) == Catch::Approx(2.0));
CHECK(fabs(geom.Phi_rad(out.first, out.second) - 0.7567) < 0.001 );
}
TEST_CASE("ResPhiToPxl_poni_rot") {
DiffractionExperiment x(DetJF4M());
x.DetectorDistance_mm(75).IncidentEnergy_keV(WVL_1A_IN_KEV);
DiffractionGeometry geom = x.GetDiffractionGeometry();
geom.PoniRot3_rad(0.5).PoniRot2_rad(-0.1).PoniRot2_rad(0.3);
auto out = geom.ResPhiToPxl(1.0, 0);
CHECK(geom.PxlToRes(out.first, out.second) == Catch::Approx(1.0));
CHECK(fabs(geom.Phi_rad(out.first, out.second)) < 0.001 );
out = geom.ResPhiToPxl(1.0, M_PI);
CHECK(geom.PxlToRes(out.first, out.second) == Catch::Approx(1.0));
CHECK(fabs(geom.Phi_rad(out.first, out.second) - M_PI) < 0.001 );
out = geom.ResPhiToPxl(2.0, 0.7567);
CHECK(geom.PxlToRes(out.first, out.second) == Catch::Approx(2.0));
CHECK(fabs(geom.Phi_rad(out.first, out.second) - 0.7567) < 0.001 );
}
TEST_CASE("DiffractionGeometry_DetectorToRecip_RecipToDetector_tilted") {
// Verify roundtrip consistency with non-zero rot1/rot2
DiffractionGeometry geom;
geom.BeamX_pxl(1000).BeamY_pxl(1000).DetectorDistance_mm(150)
.PixelSize_mm(0.075).Wavelength_A(1.0)
.PoniRot1_rad(0.05).PoniRot2_rad(-0.03);
// Test multiple points across the detector
std::vector<std::pair<float, float>> test_points = {
{500, 500}, {1500, 500}, {500, 1500}, {1500, 1500},
{800, 1200}, {1200, 800}, {300, 1700}, {1700, 300}
};
for (const auto& [x, y] : test_points) {
Coord recip = geom.DetectorToRecip(x, y);
auto [proj_x, proj_y] = geom.RecipToDector(recip);
CHECK(proj_x == Catch::Approx(x).margin(0.001));
CHECK(proj_y == Catch::Approx(y).margin(0.001));
}
}
TEST_CASE("DiffractionGeometry_PONI_matrix_consistency") {
// Verify that the PONI rotation matrix gives consistent results
// when used for both forward and inverse transformations
DiffractionGeometry geom;
geom.BeamX_pxl(1000).BeamY_pxl(1000).DetectorDistance_mm(100)
.PixelSize_mm(0.075).Wavelength_A(1.0)
.PoniRot1_rad(0.04).PoniRot2_rad(-0.025);
const auto& poni_rot = geom.GetPoniRotMatrix();
const auto poni_rot_T = poni_rot.transpose();
// Test: poni_rot * poni_rot^T should be identity (orthogonal matrix)
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
Coord ei, ej;
ei[i] = 1.0f;
ej[j] = 1.0f;
float expected = (i == j) ? 1.0f : 0.0f;
CHECK((poni_rot * (poni_rot_T * ej))[i] == Catch::Approx(expected).margin(1e-6));
}
}
// Test: S0 vector transformation
Coord S0 = geom.GetScatteringVector();
// For beam along z, S0 = (0, 0, 1/λ)
CHECK(S0.x == Catch::Approx(0.0f));
CHECK(S0.y == Catch::Approx(0.0f));
CHECK(S0.z == Catch::Approx(1.0f));
}