All checks were successful
Build Packages / build:rpm (ubuntu2404_nocuda) (push) Successful in 12m8s
Build Packages / build:rpm (rocky8_nocuda) (push) Successful in 12m57s
Build Packages / build:rpm (ubuntu2204_nocuda) (push) Successful in 12m55s
Build Packages / build:rpm (rocky8_sls9) (push) Successful in 12m0s
Build Packages / build:rpm (rocky9_nocuda) (push) Successful in 13m30s
Build Packages / Generate python client (push) Successful in 20s
Build Packages / Unit tests (push) Has been skipped
Build Packages / Create release (push) Has been skipped
Build Packages / Build documentation (push) Successful in 39s
Build Packages / build:rpm (rocky8) (push) Successful in 9m23s
Build Packages / build:rpm (rocky9_sls9) (push) Successful in 10m33s
Build Packages / build:rpm (ubuntu2404) (push) Successful in 8m2s
Build Packages / build:rpm (ubuntu2204) (push) Successful in 8m42s
Build Packages / build:rpm (rocky9) (push) Successful in 9m38s
This is an UNSTABLE release. This version adds scalign and merging. These are experimental at the moment, and should not be used for production analysis. If things go wrong with analysis, it is better to revert to 1.0.0-rc.124. * jfjoch_broker: Improve logic on switching on/off spot finding * jfjoch_broker: Increase maximum spot count for FFBIDX to 65536 * jfjoch_broker: Increase default maximum unit cell for FFT to 500 A (could have performance impact, TBD) * jfjoch_process: Add scalign and merging functionality - program is experimental at the moment and should not be used for production analysis * jfjoch_viewer: Display partiality and reciprocal Lorentz-polarization correction for each reflection * jfjoch_writer: Save more information about each reflection Reviewed-on: #32 Co-authored-by: Filip Leonarski <filip.leonarski@psi.ch> Co-committed-by: Filip Leonarski <filip.leonarski@psi.ch>
271 lines
10 KiB
C++
271 lines
10 KiB
C++
// SPDX-FileCopyrightText: 2025 Filip Leonarski, Paul Scherrer Institute <filip.leonarski@psi.ch>
|
|
// SPDX-License-Identifier: GPL-3.0-only
|
|
|
|
#include "IndexAndRefine.h"
|
|
|
|
#include "bragg_integration/BraggIntegrate2D.h"
|
|
#include "bragg_integration/CalcISigma.h"
|
|
#include "geom_refinement/XtalOptimizer.h"
|
|
#include "indexing/AnalyzeIndexing.h"
|
|
#include "indexing/FFTIndexer.h"
|
|
#include "lattice_search/LatticeSearch.h"
|
|
|
|
IndexAndRefine::IndexAndRefine(const DiffractionExperiment &x, IndexerThreadPool *indexer)
|
|
: index_ice_rings(x.GetIndexingSettings().GetIndexIceRings()),
|
|
experiment(x),
|
|
geom_(x.GetDiffractionGeometry()),
|
|
indexer_(indexer) {
|
|
if (indexer && x.IsRotationIndexing())
|
|
rotation_indexer = std::make_unique<RotationIndexer>(x, *indexer);
|
|
}
|
|
|
|
IndexAndRefine::IndexingOutcome IndexAndRefine::DetermineLatticeAndSymmetry(DataMessage &msg) {
|
|
IndexingOutcome outcome(experiment);
|
|
|
|
if (rotation_indexer) {
|
|
auto result = rotation_indexer->ProcessImage(msg.number, msg.spots);
|
|
if (result) {
|
|
|
|
// get rotated lattice
|
|
auto gon = result->axis;
|
|
if (gon) {
|
|
const float angle_deg = gon->GetAngle_deg(msg.number) + gon->GetWedge_deg() / 2.0f;
|
|
outcome.lattice_candidate = result->lattice.Multiply(gon->GetTransformationAngle(-angle_deg));
|
|
}
|
|
|
|
outcome.experiment.BeamX_pxl(result->geom.GetBeamX_pxl())
|
|
.BeamY_pxl(result->geom.GetBeamY_pxl())
|
|
.DetectorDistance_mm(result->geom.GetDetectorDistance_mm())
|
|
.PoniRot1_rad(result->geom.GetPoniRot1_rad())
|
|
.PoniRot2_rad(result->geom.GetPoniRot2_rad())
|
|
.Goniometer(result->axis);
|
|
outcome.symmetry.centering = result->search_result.centering;
|
|
outcome.symmetry.niggli_class = result->search_result.niggli_class;
|
|
outcome.symmetry.crystal_system = result->search_result.system;
|
|
}
|
|
return outcome;
|
|
}
|
|
|
|
// Convert input spots to reciprocal space
|
|
std::vector<Coord> recip;
|
|
recip.reserve(msg.spots.size());
|
|
for (const auto &i: msg.spots) {
|
|
if (index_ice_rings || !i.ice_ring)
|
|
recip.push_back(i.ReciprocalCoord(geom_));
|
|
}
|
|
|
|
auto indexer_result = indexer_->Run(experiment, recip).get();
|
|
msg.indexing_time_s = indexer_result.indexing_time_s;
|
|
|
|
if (indexer_result.lattice.empty())
|
|
return outcome;
|
|
|
|
auto latt = indexer_result.lattice[0];
|
|
auto sg = experiment.GetGemmiSpaceGroup();
|
|
|
|
// If space group provided => always enforce symmetry in refinement
|
|
// If space group not provided => guess symmetry
|
|
if (sg) {
|
|
// If space group provided but no unit cell fixed, it is better to keep triclinic for now
|
|
if (experiment.GetUnitCell()) {
|
|
outcome.symmetry = LatticeMessage{
|
|
.centering = sg->centring_type(),
|
|
.niggli_class = 0,
|
|
.crystal_system = sg->crystal_system()
|
|
};
|
|
}
|
|
outcome.lattice_candidate = latt;
|
|
} else {
|
|
auto sym_result = LatticeSearch(latt);
|
|
outcome.symmetry = LatticeMessage{
|
|
.centering = sym_result.centering,
|
|
.niggli_class = sym_result.niggli_class,
|
|
.crystal_system = sym_result.system
|
|
};
|
|
outcome.lattice_candidate = sym_result.conventional;
|
|
}
|
|
|
|
return outcome;
|
|
}
|
|
|
|
void IndexAndRefine::RefineGeometryIfNeeded(DataMessage &msg, IndexAndRefine::IndexingOutcome &outcome) {
|
|
if (!outcome.lattice_candidate)
|
|
return;
|
|
|
|
XtalOptimizerData data{
|
|
.geom = outcome.experiment.GetDiffractionGeometry(),
|
|
.latt = *outcome.lattice_candidate,
|
|
.crystal_system = outcome.symmetry.crystal_system,
|
|
.min_spots = experiment.GetIndexingSettings().GetViableCellMinSpots(),
|
|
.refine_beam_center = true,
|
|
.refine_distance_mm = false,
|
|
.refine_detector_angles = false,
|
|
.max_time = 0.04 // 40 ms is max allowed time for the operation
|
|
};
|
|
|
|
if (experiment.IsRotationIndexing()) {
|
|
data.refine_beam_center = false;
|
|
data.refine_rotation_axis = false;
|
|
data.refine_unit_cell = false;
|
|
}
|
|
|
|
if (outcome.symmetry.crystal_system == gemmi::CrystalSystem::Trigonal)
|
|
data.crystal_system = gemmi::CrystalSystem::Hexagonal;
|
|
|
|
switch (experiment.GetIndexingSettings().GetGeomRefinementAlgorithm()) {
|
|
case GeomRefinementAlgorithmEnum::None:
|
|
break;
|
|
case GeomRefinementAlgorithmEnum::BeamCenter:
|
|
if (XtalOptimizer(data, msg.spots)) {
|
|
outcome.experiment.BeamX_pxl(data.geom.GetBeamX_pxl())
|
|
.BeamY_pxl(data.geom.GetBeamY_pxl());
|
|
outcome.beam_center_updated = true;
|
|
}
|
|
break;
|
|
}
|
|
|
|
outcome.lattice_candidate = data.latt;
|
|
|
|
if (outcome.beam_center_updated) {
|
|
msg.beam_corr_x = data.beam_corr_x;
|
|
msg.beam_corr_y = data.beam_corr_y;
|
|
}
|
|
}
|
|
|
|
void IndexAndRefine::QuickPredictAndIntegrate(DataMessage &msg,
|
|
const SpotFindingSettings &spot_finding_settings,
|
|
const CompressedImage &image,
|
|
BraggPrediction &prediction,
|
|
const IndexAndRefine::IndexingOutcome &outcome) {
|
|
if (!spot_finding_settings.quick_integration)
|
|
return;
|
|
if (!outcome.lattice_candidate)
|
|
return;
|
|
|
|
CrystalLattice latt = outcome.lattice_candidate.value();
|
|
|
|
if (rotation_indexer) {
|
|
// Use moving average for mosaicity and profile_radius (also add beam center later)
|
|
if (msg.mosaicity_deg)
|
|
msg.mosaicity_deg = rotation_parameters.Mosaicity(msg.mosaicity_deg.value());
|
|
if (msg.profile_radius) {
|
|
msg.profile_radius = rotation_parameters.ProfileRadius(msg.profile_radius.value());
|
|
}
|
|
}
|
|
|
|
float ewald_dist_cutoff = 0.001f;
|
|
if (msg.profile_radius)
|
|
ewald_dist_cutoff = msg.profile_radius.value() * 2.0f;
|
|
|
|
if (experiment.GetBraggIntegrationSettings().GetFixedProfileRadius_recipA())
|
|
ewald_dist_cutoff = experiment.GetBraggIntegrationSettings().GetFixedProfileRadius_recipA().value() * 3.0f;
|
|
|
|
float wedge_deg = 0.0f;
|
|
float mos_deg = 0.1f;
|
|
|
|
if (experiment.GetGoniometer().has_value()) {
|
|
wedge_deg = experiment.GetGoniometer()->GetWedge_deg() / 2.0;
|
|
|
|
if (msg.mosaicity_deg)
|
|
mos_deg = msg.mosaicity_deg.value();
|
|
}
|
|
|
|
const BraggPredictionSettings settings_prediction{
|
|
.high_res_A = experiment.GetBraggIntegrationSettings().GetDMinLimit_A(),
|
|
.ewald_dist_cutoff = ewald_dist_cutoff,
|
|
.max_hkl = 100,
|
|
.centering = outcome.symmetry.centering,
|
|
.wedge_deg = std::fabs(wedge_deg),
|
|
.mosaicity_deg = std::fabs(mos_deg)
|
|
};
|
|
|
|
auto nrefl = prediction.Calc(outcome.experiment, latt, settings_prediction);
|
|
auto refl_ret = BraggIntegrate2D(outcome.experiment, image, prediction.GetReflections(), nrefl, msg.number);
|
|
|
|
constexpr size_t kMaxReflections = 10000;
|
|
if (refl_ret.size() > kMaxReflections) {
|
|
// Keep only smallest d (highest resolution)
|
|
std::nth_element(refl_ret.begin(),
|
|
refl_ret.begin() + static_cast<long>(kMaxReflections),
|
|
refl_ret.end(),
|
|
[](const Reflection& a, const Reflection& b) {
|
|
return a.d < b.d;
|
|
});
|
|
refl_ret.resize(kMaxReflections);
|
|
|
|
// Optional: make output ordered by d (nice for downstream / debugging)
|
|
std::sort(refl_ret.begin(), refl_ret.end(),
|
|
[](const Reflection& a, const Reflection& b) { return a.d < b.d; });
|
|
}
|
|
|
|
msg.reflections = std::move(refl_ret);
|
|
|
|
CalcISigma(msg);
|
|
CalcWilsonBFactor(msg);
|
|
|
|
// Append reflections to the class-wide reflections buffer (thread-safe)
|
|
{
|
|
std::unique_lock ul(reflections_mutex);
|
|
reflections.insert(reflections.end(), msg.reflections.begin(), msg.reflections.end());
|
|
}
|
|
}
|
|
|
|
void IndexAndRefine::ProcessImage(DataMessage &msg,
|
|
const SpotFindingSettings &spot_finding_settings,
|
|
const CompressedImage &image,
|
|
BraggPrediction &prediction) {
|
|
if (!indexer_ || !spot_finding_settings.indexing)
|
|
return;
|
|
|
|
msg.indexing_result = false;
|
|
|
|
IndexingOutcome outcome = DetermineLatticeAndSymmetry(msg);
|
|
if (!outcome.lattice_candidate)
|
|
return;
|
|
|
|
RefineGeometryIfNeeded(msg, outcome);
|
|
if (!outcome.lattice_candidate)
|
|
return;
|
|
|
|
if (!AnalyzeIndexing(msg, outcome.experiment, *outcome.lattice_candidate))
|
|
return;
|
|
|
|
msg.lattice_type = outcome.symmetry;
|
|
|
|
QuickPredictAndIntegrate(msg, spot_finding_settings, image, prediction, outcome);
|
|
}
|
|
|
|
std::optional<RotationIndexerResult> IndexAndRefine::Finalize() {
|
|
if (rotation_indexer)
|
|
return rotation_indexer->GetLattice();
|
|
return {};
|
|
}
|
|
|
|
std::optional<ScaleMergeResult> IndexAndRefine::ScaleRotationData(const ScaleMergeOptions &opts) const {
|
|
std::vector<Reflection> snapshot;
|
|
{
|
|
std::unique_lock ul(reflections_mutex);
|
|
snapshot = reflections; // cheap copy under lock
|
|
}
|
|
|
|
// Need a reasonable number of reflections to make refinement meaningful
|
|
constexpr size_t kMinReflections = 20;
|
|
if (snapshot.size() < kMinReflections)
|
|
return std::nullopt;
|
|
|
|
// Build options focused on mosaicity refinement but allow caller override
|
|
ScaleMergeOptions options = opts;
|
|
|
|
// If the experiment provides a wedge, propagate it
|
|
if (experiment.GetGoniometer().has_value())
|
|
options.wedge_deg = experiment.GetGoniometer()->GetWedge_deg();
|
|
|
|
// If caller left space_group unset, try to pick it from the indexed lattice
|
|
if (!options.space_group.has_value()) {
|
|
auto sg = experiment.GetGemmiSpaceGroup();
|
|
if (sg)
|
|
options.space_group = *sg;
|
|
}
|
|
|
|
return ScaleAndMergeReflectionsCeres(snapshot, options);
|
|
} |