Files
Jungfraujoch/image_analysis/bragg_prediction/BraggPredictionRot.cpp
Filip Leonarski 1ab257af6c
All checks were successful
Build Packages / build:rpm (ubuntu2404_nocuda) (push) Successful in 12m8s
Build Packages / build:rpm (rocky8_nocuda) (push) Successful in 12m57s
Build Packages / build:rpm (ubuntu2204_nocuda) (push) Successful in 12m55s
Build Packages / build:rpm (rocky8_sls9) (push) Successful in 12m0s
Build Packages / build:rpm (rocky9_nocuda) (push) Successful in 13m30s
Build Packages / Generate python client (push) Successful in 20s
Build Packages / Unit tests (push) Has been skipped
Build Packages / Create release (push) Has been skipped
Build Packages / Build documentation (push) Successful in 39s
Build Packages / build:rpm (rocky8) (push) Successful in 9m23s
Build Packages / build:rpm (rocky9_sls9) (push) Successful in 10m33s
Build Packages / build:rpm (ubuntu2404) (push) Successful in 8m2s
Build Packages / build:rpm (ubuntu2204) (push) Successful in 8m42s
Build Packages / build:rpm (rocky9) (push) Successful in 9m38s
v1.0.0-rc.125 (#32)
This is an UNSTABLE release. This version adds scalign and merging. These are experimental at the moment, and should not be used for production analysis.
If things go wrong with analysis, it is better to revert to 1.0.0-rc.124.

* jfjoch_broker: Improve logic on switching on/off spot finding
* jfjoch_broker: Increase maximum spot count for FFBIDX to 65536
* jfjoch_broker: Increase default maximum unit cell for FFT to 500 A (could have performance impact, TBD)
* jfjoch_process: Add scalign and merging functionality - program is experimental at the moment and should not be used for production analysis
* jfjoch_viewer: Display partiality and reciprocal Lorentz-polarization correction for each reflection
* jfjoch_writer: Save more information about each reflection

Reviewed-on: #32
Co-authored-by: Filip Leonarski <filip.leonarski@psi.ch>
Co-committed-by: Filip Leonarski <filip.leonarski@psi.ch>
2026-02-18 16:17:21 +01:00

153 lines
5.9 KiB
C++

// SPDX-FileCopyrightText: 2025 Filip Leonarski, Paul Scherrer Institute <filip.leonarski@psi.ch>
// SPDX-License-Identifier: GPL-3.0-only
#include "BraggPredictionRot.h"
#include "../bragg_integration/SystematicAbsence.h"
int BraggPredictionRot::Calc(const DiffractionExperiment &experiment, const CrystalLattice &lattice,
const BraggPredictionSettings &settings) {
const auto geom = experiment.GetDiffractionGeometry();
const auto det_width_pxl = static_cast<float>(experiment.GetXPixelsNum());
const auto det_height_pxl = static_cast<float>(experiment.GetYPixelsNum());
const float one_over_dmax = 1.0f / settings.high_res_A;
const float one_over_dmax_sq = one_over_dmax * one_over_dmax;
float one_over_wavelength = 1.0f / geom.GetWavelength_A();
const Coord Astar = lattice.Astar();
const Coord Bstar = lattice.Bstar();
const Coord Cstar = lattice.Cstar();
const Coord S0 = geom.GetScatteringVector();
std::vector<float> rot = geom.GetPoniRotMatrix().transpose().arr();
// Precompute detector geometry constants
float beam_x = geom.GetBeamX_pxl();
float beam_y = geom.GetBeamY_pxl();
float det_distance = geom.GetDetectorDistance_mm();
float pixel_size = geom.GetPixelSize_mm();
float F = det_distance / pixel_size;
const auto gon_opt = experiment.GetGoniometer();
if (!gon_opt.has_value())
throw JFJochException(JFJochExceptionCategory::InputParameterInvalid,
"BraggPredictionRotationCPU requires a goniometer axis");
const GoniometerAxis& gon = *gon_opt;
const Coord m2 = gon.GetAxis().Normalize();
const Coord m1 = (m2 % S0).Normalize();
const Coord m3 = (m1 % m2).Normalize();
const float m2_S0 = m2 * S0;
const float m3_S0 = m3 * S0;
int i = 0;
const float mos_angle_rad = settings.mosaicity_deg * static_cast<float>(M_PI) / 180.f;
const float half_wedge_angle_rad = settings.wedge_deg * static_cast<float>(M_PI) / 180.f / 2.0f ;
for (int h = -settings.max_hkl; h <= settings.max_hkl; h++) {
// Precompute A* h contribution
for (int k = -settings.max_hkl; k <= settings.max_hkl; k++) {
// Accumulate B* k contribution
for (int l = -settings.max_hkl; l <= settings.max_hkl; l++) {
if (systematic_absence(h, k, l, settings.centering))
continue;
if (i >= max_reflections)
continue;
Coord p0 = Astar * h + Bstar * k + Cstar * l;
float p0_sq = p0 * p0;
if (p0_sq <= 0.0f || p0_sq > one_over_dmax_sq)
continue;
const float p0_m1 = p0 * m1;
const float p0_m2 = p0 * m2;
const float p0_m3 = p0 * m3;
const float rho_sq = p0_sq - (p0_m2 * p0_m2);
const float p_m3 = (- p0_sq / 2 - p0_m2 * m2_S0) / m3_S0;
const float p_m2 = p0_m2;
const float p_m1_opt[2] = {
std::sqrt(rho_sq - p_m3 * p_m3),
-std::sqrt(rho_sq - p_m3 * p_m3)
};
// No solution for Laue equations
if ((rho_sq < p_m3 * p_m3) || (p0_sq > 4 * S0 * S0))
continue;
for (const auto& p_m1 : p_m1_opt) {
if (i >= max_reflections)
continue;
const float cosphi = (p_m1 * p0_m1 + p_m3 * p0_m3) / rho_sq;
const float sinphi = (p_m1 * p0_m3 - p_m3 * p0_m1) / rho_sq;
Coord p = m1 * p_m1 + m2 * p_m2 + m3 * p_m3; // p0 vector "rotated" to diffracting condition
Coord S = S0 + p;
float phi = -1.0f * std::atan2(sinphi, cosphi);
const Coord e1 = (S % S0).Normalize();
const float zeta_abs = std::fabs(m2 * e1);
if (zeta_abs < settings.min_zeta)
continue;
float epsilon3 = std::fabs(phi * zeta_abs);
if (epsilon3 > settings.mosaicity_multiplier * mos_angle_rad)
continue;
const float lorentz_reciprocal = std::fabs(m2 * (S % S0))/(S*S0);
const float c1 = zeta_abs / (std::sqrt(2.0f) * mos_angle_rad);
const float partiality = (std::erf((phi + half_wedge_angle_rad) * c1)
- std::erf((phi - half_wedge_angle_rad) * c1)) / 2.0f;
// Inlined RecipToDector with rot1 and rot2 (rot3 = 0)
// Apply rotation matrix transpose
float S_rot_x = rot[0] * S.x + rot[1] * S.y + rot[2] * S.z;
float S_rot_y = rot[3] * S.x + rot[4] * S.y + rot[5] * S.z;
float S_rot_z = rot[6] * S.x + rot[7] * S.y + rot[8] * S.z;
if (S_rot_z <= 0)
continue;
float x = beam_x + F * S_rot_x / S_rot_z;
float y = beam_y + F * S_rot_y / S_rot_z;
if ((x < 0) || (x >= det_width_pxl) || (y < 0) || (y >= det_height_pxl))
continue;
float dist_ewald_sphere = std::fabs(S.Length() - one_over_wavelength);
float d = 1.0f / sqrtf(p0_sq);
reflections[i] = Reflection{
.h = h,
.k = k,
.l = l,
.delta_phi_deg = phi * 180.0f / static_cast<float>(M_PI),
.predicted_x = x,
.predicted_y = y,
.d = d,
.dist_ewald = dist_ewald_sphere,
.rlp = lorentz_reciprocal,
.partiality = partiality,
.zeta = zeta_abs
};
i++;
}
}
}
}
return i;
}