Files
Filip Leonarski 1ab257af6c
All checks were successful
Build Packages / build:rpm (ubuntu2404_nocuda) (push) Successful in 12m8s
Build Packages / build:rpm (rocky8_nocuda) (push) Successful in 12m57s
Build Packages / build:rpm (ubuntu2204_nocuda) (push) Successful in 12m55s
Build Packages / build:rpm (rocky8_sls9) (push) Successful in 12m0s
Build Packages / build:rpm (rocky9_nocuda) (push) Successful in 13m30s
Build Packages / Generate python client (push) Successful in 20s
Build Packages / Unit tests (push) Has been skipped
Build Packages / Create release (push) Has been skipped
Build Packages / Build documentation (push) Successful in 39s
Build Packages / build:rpm (rocky8) (push) Successful in 9m23s
Build Packages / build:rpm (rocky9_sls9) (push) Successful in 10m33s
Build Packages / build:rpm (ubuntu2404) (push) Successful in 8m2s
Build Packages / build:rpm (ubuntu2204) (push) Successful in 8m42s
Build Packages / build:rpm (rocky9) (push) Successful in 9m38s
v1.0.0-rc.125 (#32)
This is an UNSTABLE release. This version adds scalign and merging. These are experimental at the moment, and should not be used for production analysis.
If things go wrong with analysis, it is better to revert to 1.0.0-rc.124.

* jfjoch_broker: Improve logic on switching on/off spot finding
* jfjoch_broker: Increase maximum spot count for FFBIDX to 65536
* jfjoch_broker: Increase default maximum unit cell for FFT to 500 A (could have performance impact, TBD)
* jfjoch_process: Add scalign and merging functionality - program is experimental at the moment and should not be used for production analysis
* jfjoch_viewer: Display partiality and reciprocal Lorentz-polarization correction for each reflection
* jfjoch_writer: Save more information about each reflection

Reviewed-on: #32
Co-authored-by: Filip Leonarski <filip.leonarski@psi.ch>
Co-committed-by: Filip Leonarski <filip.leonarski@psi.ch>
2026-02-18 16:17:21 +01:00

115 lines
4.4 KiB
C++

// SPDX-FileCopyrightText: 2025 Filip Leonarski, Paul Scherrer Institute <filip.leonarski@psi.ch>
// SPDX-License-Identifier: GPL-3.0-only
#include "BraggPrediction.h"
#include "../bragg_integration/SystematicAbsence.h"
BraggPrediction::BraggPrediction(int max_reflections)
: max_reflections(max_reflections), reflections(max_reflections) {}
const std::vector<Reflection> &BraggPrediction::GetReflections() const {
return reflections;
}
int BraggPrediction::Calc(const DiffractionExperiment &experiment, const CrystalLattice &lattice,
const BraggPredictionSettings &settings) {
const auto geom = experiment.GetDiffractionGeometry();
const auto det_width_pxl = static_cast<float>(experiment.GetXPixelsNum());
const auto det_height_pxl = static_cast<float>(experiment.GetYPixelsNum());
const float one_over_dmax = 1.0f / settings.high_res_A;
const float one_over_dmax_sq = one_over_dmax * one_over_dmax;
float one_over_wavelength = 1.0f / geom.GetWavelength_A();
const Coord Astar = lattice.Astar();
const Coord Bstar = lattice.Bstar();
const Coord Cstar = lattice.Cstar();
const Coord S0 = geom.GetScatteringVector();
std::vector<float> rot = geom.GetPoniRotMatrix().transpose().arr();
// Precompute detector geometry constants
float beam_x = geom.GetBeamX_pxl();
float beam_y = geom.GetBeamY_pxl();
float det_distance = geom.GetDetectorDistance_mm();
float pixel_size = geom.GetPixelSize_mm();
float F = det_distance / pixel_size;
int i = 0;
for (int h = -settings.max_hkl; h <= settings.max_hkl; h++) {
// Precompute A* h contribution
const float Ah_x = Astar.x * h;
const float Ah_y = Astar.y * h;
const float Ah_z = Astar.z * h;
for (int k = -settings.max_hkl; k <= settings.max_hkl; k++) {
// Accumulate B* k contribution
const float AhBk_x = Ah_x + Bstar.x * k;
const float AhBk_y = Ah_y + Bstar.y * k;
const float AhBk_z = Ah_z + Bstar.z * k;
for (int l = -settings.max_hkl; l <= settings.max_hkl; l++) {
if (systematic_absence(h, k, l, settings.centering))
continue;
if (i >= max_reflections)
continue;
float recip_x = AhBk_x + Cstar.x * l;
float recip_y = AhBk_y + Cstar.y * l;
float recip_z = AhBk_z + Cstar.z * l;
float recip_sq = recip_x * recip_x + recip_y * recip_y + recip_z * recip_z;
if (recip_sq > one_over_dmax_sq)
continue;
float S_x = recip_x + S0.x;
float S_y = recip_y + S0.y;
float S_z = recip_z + S0.z;
float S_len = sqrtf(S_x * S_x + S_y * S_y + S_z * S_z);
float dist_ewald_sphere = std::fabs(S_len - one_over_wavelength);
if (dist_ewald_sphere <= settings.ewald_dist_cutoff ) {
// Inlined RecipToDector with rot1 and rot2 (rot3 = 0)
// Apply rotation matrix transpose
float S_rot_x = rot[0] * S_x + rot[1] * S_y + rot[2] * S_z;
float S_rot_y = rot[3] * S_x + rot[4] * S_y + rot[5] * S_z;
float S_rot_z = rot[6] * S_x + rot[7] * S_y + rot[8] * S_z;
if (S_rot_z <= 0)
continue;
// Project to detector coordinates
// Assume detector is along x,y,z coordinates after rotation
float x = beam_x + F * S_rot_x / S_rot_z;
float y = beam_y + F * S_rot_y / S_rot_z;
if ((x < 0) || (x >= det_width_pxl) || (y < 0) || (y >= det_height_pxl))
continue;
float d = 1.0f / sqrtf(recip_sq);
reflections[i] = Reflection{
.h = h,
.k = k,
.l = l,
.delta_phi_deg = NAN,
.predicted_x = x,
.predicted_y = y,
.d = d,
.dist_ewald = dist_ewald_sphere,
.rlp = 1.0,
.partiality = 1.0,
.zeta = 1.0
};
++i;
}
}
}
}
return i;
}