Files
Filip Leonarski 27496b8207
All checks were successful
Build Packages / build:rpm (rocky8_sls9) (push) Successful in 7m57s
Build Packages / Generate python client (push) Successful in 18s
Build Packages / Build documentation (push) Successful in 35s
Build Packages / Create release (push) Has been skipped
Build Packages / build:rpm (rocky9) (push) Successful in 8m28s
Build Packages / build:rpm (ubuntu2404) (push) Successful in 7m6s
Build Packages / build:rpm (rocky8_nocuda) (push) Successful in 8m9s
Build Packages / build:rpm (rocky9_nocuda) (push) Successful in 8m44s
Build Packages / build:rpm (ubuntu2204_nocuda) (push) Successful in 7m56s
Build Packages / build:rpm (ubuntu2404_nocuda) (push) Successful in 7m25s
Build Packages / Unit tests (push) Successful in 1h11m19s
Build Packages / build:rpm (rocky8) (push) Successful in 6m31s
Build Packages / build:rpm (ubuntu2204) (push) Successful in 6m40s
v1.0.0-rc.122 (#29)
This is an UNSTABLE release.

* jfjoch_broker: Add thresholding to prefer shorter vectors after FFT
* jfjoch_broker: Add experimental mosaicity estimation for rotation experiments (this is work in progress)
* jfjoch_viewer: Display file opening errors
* jfjoch_viewer: When loading files over DBus add retry/back-off till the file is available

Reviewed-on: #29
Co-authored-by: Filip Leonarski <filip.leonarski@psi.ch>
Co-committed-by: Filip Leonarski <filip.leonarski@psi.ch>
2025-12-16 15:27:40 +01:00

110 lines
4.1 KiB
C++

// SPDX-FileCopyrightText: 2025 Filip Leonarski, Paul Scherrer Institute <filip.leonarski@psi.ch>
// SPDX-License-Identifier: GPL-3.0-only
#include "BraggPrediction.h"
#include "SystematicAbsence.h"
BraggPrediction::BraggPrediction(int max_reflections)
: max_reflections(max_reflections), reflections(max_reflections) {}
const std::vector<Reflection> &BraggPrediction::GetReflections() const {
return reflections;
}
int BraggPrediction::Calc(const DiffractionExperiment &experiment, const CrystalLattice &lattice,
const BraggPredictionSettings &settings) {
auto geom = experiment.GetDiffractionGeometry();
auto det_width_pxl = static_cast<float>(experiment.GetXPixelsNum());
auto det_height_pxl = static_cast<float>(experiment.GetYPixelsNum());
float one_over_dmax = 1.0f / settings.high_res_A;
float one_over_dmax_sq = one_over_dmax * one_over_dmax;
float one_over_wavelength = 1.0f / geom.GetWavelength_A();
Coord Astar = lattice.Astar();
Coord Bstar = lattice.Bstar();
Coord Cstar = lattice.Cstar();
Coord S0 = geom.GetScatteringVector();
std::vector<float> rot = geom.GetPoniRotMatrix().transpose().arr();
// Precompute detector geometry constants
float beam_x = geom.GetBeamX_pxl();
float beam_y = geom.GetBeamY_pxl();
float det_distance = geom.GetDetectorDistance_mm();
float pixel_size = geom.GetPixelSize_mm();
float coeff_const = det_distance / pixel_size;
int i = 0;
for (int h = -settings.max_hkl; h < settings.max_hkl; h++) {
// Precompute A* h contribution
const float Ah_x = Astar.x * h;
const float Ah_y = Astar.y * h;
const float Ah_z = Astar.z * h;
for (int k = -settings.max_hkl; k < settings.max_hkl; k++) {
// Accumulate B* k contribution
const float AhBk_x = Ah_x + Bstar.x * k;
const float AhBk_y = Ah_y + Bstar.y * k;
const float AhBk_z = Ah_z + Bstar.z * k;
for (int l = -settings.max_hkl; l < settings.max_hkl; l++) {
if (systematic_absence(h, k, l, settings.centering))
continue;
if (i >= max_reflections)
continue;
float recip_x = AhBk_x + Cstar.x * l;
float recip_y = AhBk_y + Cstar.y * l;
float recip_z = AhBk_z + Cstar.z * l;
float dot = recip_x * recip_x + recip_y * recip_y + recip_z * recip_z;
if (dot > one_over_dmax_sq)
continue;
float S_x = recip_x + S0.x;
float S_y = recip_y + S0.y;
float S_z = recip_z + S0.z;
float S_len = sqrtf(S_x * S_x + S_y * S_y + S_z * S_z);
float dist_ewald_sphere = std::fabs(S_len - one_over_wavelength);
if (dist_ewald_sphere <= settings.ewald_dist_cutoff ) {
// Inlined RecipToDector with rot1 and rot2 (rot3 = 0)
// Apply rotation matrix transpose
float S_rot_x = rot[0] * S_x + rot[1] * S_y + rot[2] * S_z;
float S_rot_y = rot[3] * S_x + rot[4] * S_y + rot[5] * S_z;
float S_rot_z = rot[6] * S_x + rot[7] * S_y + rot[8] * S_z;
if (S_rot_z <= 0)
continue;
// Project to detector coordinates
float coeff = coeff_const / S_rot_z;
float x = beam_x + S_rot_x * coeff;
float y = beam_y + S_rot_y * coeff;
if ((x < 0) || (x >= det_width_pxl) || (y < 0) || (y >= det_height_pxl))
continue;
float d = 1.0f / sqrtf(dot);
reflections[i] = Reflection{
.h = h,
.k = k,
.l = l,
.predicted_x = x,
.predicted_y = y,
.d = d,
.dist_ewald = dist_ewald_sphere
};
++i;
}
}
}
}
return i;
}