# coding: utf-8 """ Jungfraujoch API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates. The version of the OpenAPI document: 1.0.0-rc.23 Contact: filip.leonarski@psi.ch Generated by OpenAPI Generator (https://openapi-generator.tech) Do not edit the class manually. """ # noqa: E501 from __future__ import annotations import pprint import re # noqa: F401 import json from pydantic import BaseModel, ConfigDict, Field from typing import Any, ClassVar, Dict, List, Optional from typing_extensions import Annotated from typing import Optional, Set from typing_extensions import Self class StandardDetectorGeometry(BaseModel): """ Regular rectangular geometry, first module is in the bottom left corner of the detector """ # noqa: E501 nmodules: Annotated[int, Field(strict=True, ge=1)] = Field(description="Number of modules in the detector") gap_x: Optional[Annotated[int, Field(strict=True, ge=0)]] = Field(default=8, description="Gap size in X direction [pixels]") gap_y: Optional[Annotated[int, Field(strict=True, ge=0)]] = Field(default=36, description="Gap size in Y direction [pixels]") modules_in_row: Optional[Annotated[int, Field(strict=True, ge=1)]] = Field(default=1, description="Number of modules in one row") __properties: ClassVar[List[str]] = ["nmodules", "gap_x", "gap_y", "modules_in_row"] model_config = ConfigDict( populate_by_name=True, validate_assignment=True, protected_namespaces=(), ) def to_str(self) -> str: """Returns the string representation of the model using alias""" return pprint.pformat(self.model_dump(by_alias=True)) def to_json(self) -> str: """Returns the JSON representation of the model using alias""" # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead return json.dumps(self.to_dict()) @classmethod def from_json(cls, json_str: str) -> Optional[Self]: """Create an instance of StandardDetectorGeometry from a JSON string""" return cls.from_dict(json.loads(json_str)) def to_dict(self) -> Dict[str, Any]: """Return the dictionary representation of the model using alias. This has the following differences from calling pydantic's `self.model_dump(by_alias=True)`: * `None` is only added to the output dict for nullable fields that were set at model initialization. Other fields with value `None` are ignored. """ excluded_fields: Set[str] = set([ ]) _dict = self.model_dump( by_alias=True, exclude=excluded_fields, exclude_none=True, ) return _dict @classmethod def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]: """Create an instance of StandardDetectorGeometry from a dict""" if obj is None: return None if not isinstance(obj, dict): return cls.model_validate(obj) _obj = cls.model_validate({ "nmodules": obj.get("nmodules"), "gap_x": obj.get("gap_x") if obj.get("gap_x") is not None else 8, "gap_y": obj.get("gap_y") if obj.get("gap_y") is not None else 36, "modules_in_row": obj.get("modules_in_row") if obj.get("modules_in_row") is not None else 1 }) return _obj