# coding: utf-8 """ Jungfraujoch API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates. The version of the OpenAPI document: 1.0.0-rc.23 Contact: filip.leonarski@psi.ch Generated by OpenAPI Generator (https://openapi-generator.tech) Do not edit the class manually. """ # noqa: E501 from __future__ import annotations import pprint import re # noqa: F401 import json from pydantic import BaseModel, ConfigDict, Field from typing import Any, ClassVar, Dict, List from typing_extensions import Annotated from typing import Optional, Set from typing_extensions import Self class RoiBox(BaseModel): """ Box ROI """ # noqa: E501 name: Annotated[str, Field(min_length=1, strict=True)] = Field(description="Name for the ROI; used in the plots") min_x_pxl: Annotated[int, Field(strict=True, ge=0)] = Field(description="Lower bound (inclusive) in X coordinate for the box") max_x_pxl: Annotated[int, Field(strict=True, ge=0)] = Field(description="Upper bound (inclusive) in X coordinate for the box") min_y_pxl: Annotated[int, Field(strict=True, ge=0)] = Field(description="Lower bound (inclusive) in Y coordinate for the box") max_y_pxl: Annotated[int, Field(strict=True, ge=0)] = Field(description="Upper bound (inclusive) in Y coordinate for the box") __properties: ClassVar[List[str]] = ["name", "min_x_pxl", "max_x_pxl", "min_y_pxl", "max_y_pxl"] model_config = ConfigDict( populate_by_name=True, validate_assignment=True, protected_namespaces=(), ) def to_str(self) -> str: """Returns the string representation of the model using alias""" return pprint.pformat(self.model_dump(by_alias=True)) def to_json(self) -> str: """Returns the JSON representation of the model using alias""" # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead return json.dumps(self.to_dict()) @classmethod def from_json(cls, json_str: str) -> Optional[Self]: """Create an instance of RoiBox from a JSON string""" return cls.from_dict(json.loads(json_str)) def to_dict(self) -> Dict[str, Any]: """Return the dictionary representation of the model using alias. This has the following differences from calling pydantic's `self.model_dump(by_alias=True)`: * `None` is only added to the output dict for nullable fields that were set at model initialization. Other fields with value `None` are ignored. """ excluded_fields: Set[str] = set([ ]) _dict = self.model_dump( by_alias=True, exclude=excluded_fields, exclude_none=True, ) return _dict @classmethod def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]: """Create an instance of RoiBox from a dict""" if obj is None: return None if not isinstance(obj, dict): return cls.model_validate(obj) _obj = cls.model_validate({ "name": obj.get("name"), "min_x_pxl": obj.get("min_x_pxl"), "max_x_pxl": obj.get("max_x_pxl"), "min_y_pxl": obj.get("min_y_pxl"), "max_y_pxl": obj.get("max_y_pxl") }) return _obj