# coding: utf-8 """ Jungfraujoch API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates. The version of the OpenAPI document: 1.0.0-rc.23 Contact: filip.leonarski@psi.ch Generated by OpenAPI Generator (https://openapi-generator.tech) Do not edit the class manually. """ # noqa: E501 from __future__ import annotations import pprint import re # noqa: F401 import json from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictFloat, StrictInt, StrictStr, field_validator from typing import Any, ClassVar, Dict, List, Optional, Union from typing_extensions import Annotated from typing import Optional, Set from typing_extensions import Self class MeasurementStatistics(BaseModel): """ MeasurementStatistics """ # noqa: E501 file_prefix: Optional[StrictStr] = None run_number: Optional[StrictInt] = Field(default=None, description="Number of data collection run. This can be either automatically incremented or provided externally for each data collection. ") experiment_group: Optional[StrictStr] = Field(default=None, description="Name of group owning the data (e.g. p-group or proposal number). ") images_expected: Optional[StrictInt] = None images_collected: Optional[StrictInt] = Field(default=None, description="Images collected by the receiver. This number will be lower than images expected if there were issues with data collection performance. ") images_sent: Optional[StrictInt] = Field(default=None, description="Images sent to the writer. The value does not include images discarded by lossy compression filter and images not forwarded due to full ZeroMQ queue. ") images_discarded_lossy_compression: Optional[StrictInt] = Field(default=None, description="Images discarded by the lossy compression filter") max_image_number_sent: Optional[StrictInt] = None collection_efficiency: Optional[Union[Annotated[float, Field(le=1.0, strict=True, ge=0.0)], Annotated[int, Field(le=1, strict=True, ge=0)]]] = None compression_ratio: Optional[Union[Annotated[float, Field(strict=True, ge=0.0)], Annotated[int, Field(strict=True, ge=0)]]] = None cancelled: Optional[StrictBool] = None max_receiver_delay: Optional[StrictInt] = None indexing_rate: Optional[Union[StrictFloat, StrictInt]] = None detector_width: Optional[StrictInt] = None detector_height: Optional[StrictInt] = None detector_pixel_depth: Optional[StrictInt] = None bkg_estimate: Optional[Union[StrictFloat, StrictInt]] = None unit_cell: Optional[StrictStr] = None __properties: ClassVar[List[str]] = ["file_prefix", "run_number", "experiment_group", "images_expected", "images_collected", "images_sent", "images_discarded_lossy_compression", "max_image_number_sent", "collection_efficiency", "compression_ratio", "cancelled", "max_receiver_delay", "indexing_rate", "detector_width", "detector_height", "detector_pixel_depth", "bkg_estimate", "unit_cell"] @field_validator('detector_pixel_depth') def detector_pixel_depth_validate_enum(cls, value): """Validates the enum""" if value is None: return value if value not in set([2, 4]): raise ValueError("must be one of enum values (2, 4)") return value model_config = ConfigDict( populate_by_name=True, validate_assignment=True, protected_namespaces=(), ) def to_str(self) -> str: """Returns the string representation of the model using alias""" return pprint.pformat(self.model_dump(by_alias=True)) def to_json(self) -> str: """Returns the JSON representation of the model using alias""" # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead return json.dumps(self.to_dict()) @classmethod def from_json(cls, json_str: str) -> Optional[Self]: """Create an instance of MeasurementStatistics from a JSON string""" return cls.from_dict(json.loads(json_str)) def to_dict(self) -> Dict[str, Any]: """Return the dictionary representation of the model using alias. This has the following differences from calling pydantic's `self.model_dump(by_alias=True)`: * `None` is only added to the output dict for nullable fields that were set at model initialization. Other fields with value `None` are ignored. """ excluded_fields: Set[str] = set([ ]) _dict = self.model_dump( by_alias=True, exclude=excluded_fields, exclude_none=True, ) return _dict @classmethod def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]: """Create an instance of MeasurementStatistics from a dict""" if obj is None: return None if not isinstance(obj, dict): return cls.model_validate(obj) _obj = cls.model_validate({ "file_prefix": obj.get("file_prefix"), "run_number": obj.get("run_number"), "experiment_group": obj.get("experiment_group"), "images_expected": obj.get("images_expected"), "images_collected": obj.get("images_collected"), "images_sent": obj.get("images_sent"), "images_discarded_lossy_compression": obj.get("images_discarded_lossy_compression"), "max_image_number_sent": obj.get("max_image_number_sent"), "collection_efficiency": obj.get("collection_efficiency"), "compression_ratio": obj.get("compression_ratio"), "cancelled": obj.get("cancelled"), "max_receiver_delay": obj.get("max_receiver_delay"), "indexing_rate": obj.get("indexing_rate"), "detector_width": obj.get("detector_width"), "detector_height": obj.get("detector_height"), "detector_pixel_depth": obj.get("detector_pixel_depth"), "bkg_estimate": obj.get("bkg_estimate"), "unit_cell": obj.get("unit_cell") }) return _obj