// Copyright (2019-2024) Paul Scherrer Institute #include "MXAnalyzer.h" #include "CPUSpotFinder.h" #include "../common/DiffractionGeometry.h" #include "Regression.h" #include "../common/CUDAWrapper.h" double stddev(const std::vector &v) { if (v.size() <= 1) return 0.0; double mean = 0.0f; for (const auto &i: v) mean += i; mean /= v.size(); double stddev = 0.0f; for (const auto &i: v) stddev += (i - mean) * (i - mean); return sqrt(stddev / (v.size() - 1)); } MXAnalyzer::MXAnalyzer(const DiffractionExperiment &in_experiment) : experiment(in_experiment) { auto uc = experiment.GetUnitCell(); if (uc && (get_gpu_count() > 0)) { try { indexer = std::make_unique(); indexer->Setup(uc.value()); } catch (const std::exception &e) { throw JFJochException(JFJochExceptionCategory::GPUCUDAError, e.what()); } } if (experiment.IsSpotFindingEnabled()) find_spots = true; } void MXAnalyzer::ReadFromFPGA(const DeviceOutput *output, const SpotFindingSettings &settings, size_t module_number) { if (!find_spots || !settings.enable) return; StrongPixelSet strong_pixel_set; strong_pixel_set.ReadFPGAOutput(experiment, *output); strong_pixel_set.FindSpots(experiment, settings, spots, module_number); } void MXAnalyzer::ReadFromCPU(const int16_t *image, const SpotFindingSettings &settings, size_t module_number) { if (!find_spots) return; if (experiment.GetPixelDepth() == 4) throw JFJochException(JFJochExceptionCategory::InputParameterInvalid, "CPU spot finder simulation doesn't support 32-bit images"); std::vector d_map(RAW_MODULE_SIZE); DeviceOutput output{}; memcpy(output.pixels, image, RAW_MODULE_SIZE * sizeof(int16_t)); CalcSpotFinderResolutionMap(d_map.data(), experiment, module_number); arr_mean.resize(experiment.GetModulesNum() * RAW_MODULE_SIZE); arr_sttdev.resize(experiment.GetModulesNum() * RAW_MODULE_SIZE); arr_valid_count.resize(experiment.GetModulesNum() * RAW_MODULE_SIZE); arr_strong_pixel.resize(experiment.GetModulesNum() * RAW_MODULE_SIZE); FindSpots(output, settings, d_map.data(), arr_mean.data() + module_number * RAW_MODULE_SIZE, arr_sttdev.data() + module_number * RAW_MODULE_SIZE, arr_valid_count.data() + module_number * RAW_MODULE_SIZE, arr_strong_pixel.data() + module_number * RAW_MODULE_SIZE); ReadFromFPGA(&output, settings, module_number); } uint32_t MXAnalyzer::FilterSpotsInPowderRings(const std::vector &spots_filter, std::vector &spots_out, int64_t min_spot_count_ring) { uint32_t ret = 0; double high_q = 5.0; double low_q = 0; double q_spacing = 0.01; size_t bin_count = (high_q - low_q) / q_spacing + 1; std::vector > bins(bin_count); for (int i = 0; i < spots_filter.size(); i++) { double q = 2 * M_PI / spots_filter[i].GetResolution(experiment); if ((q >= low_q) && (q < high_q)) { int32_t q_bin = std::floor((q - low_q) / q_spacing); bins[q_bin].push_back(i); } else // spots outside of azim. int. range are not filtered spots_out.push_back(spots_filter[i]); } for (auto & bin : bins) { if (bin.size() > min_spot_count_ring) ret += bin.size(); else { for (auto &iter: bin) spots_out.push_back(spots_filter[iter]); } } return ret; } void MXAnalyzer::Process(DataMessage &message, const SpotFindingSettings& settings) { message.indexing_result = false; if (!find_spots) return; std::vector spots_out; if (settings.filter_spots_powder_ring) { std::vector spots_no_rings; message.spot_count_in_rings = FilterSpotsInPowderRings(spots, spots_no_rings, settings.min_spot_count_powder_ring); FilterSpotsByCount(experiment, spots_no_rings, spots_out); } else FilterSpotsByCount(experiment, spots, spots_out); spots.clear(); for (const auto &spot: spots_out) message.spots.push_back(spot); if (indexer && settings.indexing) { std::vector recip; recip.reserve(spots_out.size()); for (const auto &i: spots_out) recip.push_back(i.ReciprocalCoord(experiment)); std::vector indexer_result; // If there is a really large number of spots detected, it is better to start with a smaller subset if (recip.size() > 80) indexer_result = indexer->Run(recip, settings.indexing_tolerance, 50); if (indexer_result.empty()) indexer_result = indexer->Run(recip, settings.indexing_tolerance); if (!indexer_result.empty()) { message.indexing_result = true; assert(indexer_result[0].indexed_spot.size() == recip.size()); // identify indexed spots for (int i = 0; i < recip.size(); i++) message.spots[i].indexed = indexer_result[0].indexed_spot[i]; indexer_result[0].l.Save(message.indexing_lattice); } } } const std::vector &MXAnalyzer::GetCPUMean() const { return arr_mean; } const std::vector &MXAnalyzer::GetCPUStdDev() const { return arr_sttdev; } const std::vector &MXAnalyzer::GetCPUValidCount() const { return arr_valid_count; } const std::vector &MXAnalyzer::GetCPUStrongPixel() const { return arr_strong_pixel; }