# coding: utf-8 """ Jungfraujoch API to control Jungfraujoch developed by the Paul Scherrer Institute (Switzerland). Jungfraujoch is a data acquisition and analysis system for pixel array detectors, primarly PSI JUNGFRAU. Jungfraujoch uses FPGA boards to acquire data at high data rates. The version of the OpenAPI document: 1.0.0-rc.19 Contact: filip.leonarski@psi.ch Generated by OpenAPI Generator (https://openapi-generator.tech) Do not edit the class manually. """ # noqa: E501 from __future__ import annotations import pprint import re # noqa: F401 import json from pydantic import BaseModel, ConfigDict, Field, StrictStr, field_validator from typing import Any, ClassVar, Dict, List from typing import Optional, Set from typing_extensions import Self class ErrorMessage(BaseModel): """ ErrorMessage """ # noqa: E501 msg: StrictStr = Field(description="Human readable message") reason: StrictStr = Field(description="Enumerate field for automated analysis") __properties: ClassVar[List[str]] = ["msg", "reason"] @field_validator('reason') def reason_validate_enum(cls, value): """Validates the enum""" if value not in set(['WrongDAQState', 'Other']): raise ValueError("must be one of enum values ('WrongDAQState', 'Other')") return value model_config = ConfigDict( populate_by_name=True, validate_assignment=True, protected_namespaces=(), ) def to_str(self) -> str: """Returns the string representation of the model using alias""" return pprint.pformat(self.model_dump(by_alias=True)) def to_json(self) -> str: """Returns the JSON representation of the model using alias""" # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead return json.dumps(self.to_dict()) @classmethod def from_json(cls, json_str: str) -> Optional[Self]: """Create an instance of ErrorMessage from a JSON string""" return cls.from_dict(json.loads(json_str)) def to_dict(self) -> Dict[str, Any]: """Return the dictionary representation of the model using alias. This has the following differences from calling pydantic's `self.model_dump(by_alias=True)`: * `None` is only added to the output dict for nullable fields that were set at model initialization. Other fields with value `None` are ignored. """ excluded_fields: Set[str] = set([ ]) _dict = self.model_dump( by_alias=True, exclude=excluded_fields, exclude_none=True, ) return _dict @classmethod def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]: """Create an instance of ErrorMessage from a dict""" if obj is None: return None if not isinstance(obj, dict): return cls.model_validate(obj) _obj = cls.model_validate({ "msg": obj.get("msg"), "reason": obj.get("reason") }) return _obj