Files
sicspsi/ptasdrive.c
koennecke 28bee49727 - Added a protocol to spuuoprt the FOCUS Pfeiffer vacuum protocol
- Changed floor() to round() in sanslirebin
- Some changes to accomodate the new run/drive behaviour
- Added the the sps bipa command
2009-04-17 12:54:16 +00:00

295 lines
8.5 KiB
C

/*--------------------------------------------------------------------------
This is one implementation file for the TASMAD simulation module for
SICS. The requirement is to make SICS look as much as TASMAD as
possible. This includes:
- TASMAD is variable driven
- Sometimes variables are accessed in storage order.
- A complicated calculation has to be done for getting the instruments
settings right. The appropriate F77 routine from TASMAD will be
reused.
- The scan logic is different.
- Output of ILL-formatted data files is required.
This file implements the MAD dr command for driving.
Mark Koennecke, November 2000
Polarisation support added.
Mark Koennecke, April 2002
---------------------------------------------------------------------------*/
#include <stdlib.h>
#include <assert.h>
#include <fortify.h>
#include <sics.h>
#include <sicsvar.h>
#include <counter.h>
#include <motor.h>
#include <scan.h>
#include <splitter.h>
#include "tas.h"
#include "tasu.h"
/* a token break function, implemented in stptok.c */
extern char *stptok(const char *s, char *tok, size_t toklen, char *brk);
#define VAR 1
#define VALUE 2
/*----------------------------------------------------------------------
TASDrive has to do an interesting parsing job: The normal syntax is
par=val. However, it is possible that the we get par = val, val, val
which means that the motors following par in storage order are
driven. Additionally we have to check for special energy or Q variables
which require a triple axis calculation.
M.Z. June 07: storage order mode only allowed for QH,QK,QL,EN.
It helps if one understands some fundamental things used in the code
below:
- motorMask holds a value for each motor in the motor list. The
value can be either 0 for not to drive or 1 for drive. After
successfull parsing these motors will be started. The mask will be built
during parsing.
- newPositions holds the new positions for the normal motors.
- tasMask is a mask which indicates which triple axis special variable
(Energy or Q) is driven.
- tasTargetMask will be set by the TAS calculation and will indicate
which motors of the range A1-A6, curvature and currents need to be
driven.
- tasTargets holds after the TAS calculation the target values for the
A1-A6, curvature and currents motors.
-------------------------------------------------------------------------*/
#define NUM 1
#define TXT 2
int TASDrive(SConnection * pCon, SicsInterp * pSics, void *pData,
int argc, char *argv[])
{
pTASdata self = NULL;
int iTAS = 0;
float tasTargets[20], oldPos, oldEnergy[MAXEVAR];
unsigned char tasTargetMask[20], tasMask[MAXEVAR];
char *pPtr, pToken[20], pLine[256];
int varPointer, i, motorPointer, status, rStatus, lastToken;
char pBueffel[256];
unsigned char motorMask[MAXMOT];
float newPositions[MAXMOT];
pMotor pMot;
int qhPars;
assert(pCon);
assert(pSics);
self = (pTASdata) pData;
assert(self);
/*
check authorization
*/
if (!SCMatchRights(pCon, usUser))
return 0;
/* Initialize */
Arg2Text(argc, argv, pLine, 255);
strtolower(pLine);
lastToken = NUM;
pPtr = pLine + strlen(argv[0]); /* step over command */
for (i = 0; i < 10; i++) {
tasMask[i] = 0;
motorMask[i] = 0;
motorMask[10 + i] = 0;
tasTargets[i] = .0;
tasTargets[i + 10] = .0;
oldEnergy[i] = .0;
}
tasMask[10] = 0;
tasMask[11] = 0;
for (i = 0; i < MAXMOT; i++) {
motorMask[i] = 0;
}
varPointer = -1;
motorPointer = -1;
rStatus = 1;
qhPars = 0;
/* parse loop */
while (pPtr != NULL) {
pPtr = stptok(pPtr, pToken, 20, " ,=");
if (strlen(pToken) < 1 || pPtr == NULL)
continue;
if (tasNumeric(pToken)) { /* numbers */
if (lastToken == NUM) {
/* handle storage order logic */
if (varPointer > -1 && qhPars > 1) {
varPointer++;
qhPars--;
} else {
sprintf(pBueffel, "ERROR: parse error at %s, %s",
pToken, "need parameter to drive");
SCWrite(pCon, pBueffel, eError);
return 0;
}
}
/* enter the parameter to drive into the appropriate mask */
if (motorPointer >= 0) {
motorMask[motorPointer] = 1;
newPositions[motorPointer] = atof(pToken);
} else if (varPointer >= 0) {
tasMask[varPointer] = 1;
oldEnergy[varPointer] = self->tasPar[EMIN + varPointer]->fVal;
self->tasPar[EMIN + varPointer]->fVal = atof(pToken);
self->tasPar[ETARGET + varPointer]->fVal = atof(pToken);
} else {
sprintf(pBueffel, "ERROR: parse error at %s, %s",
pToken, "need parameter to drive");
SCWrite(pCon, pBueffel, eError);
return 0;
}
lastToken = NUM;
} else { /* text tokens */
lastToken = TXT;
if ((status = isTASEnergy(pToken)) > -1) { /* Ei, KI, EF, KF, Q.... */
iTAS = 1;
motorPointer = -1;
varPointer = status;
if (EMIN + varPointer == QH) {
qhPars = 4;
}
} else if ((status = isTASMotor(pToken)) > -1) {
motorPointer = status;
varPointer = -1;
} else {
sprintf(pBueffel, "ERROR: cannot drive %s", pToken);
SCWrite(pCon, pBueffel, eError);
rStatus = 0;
break;
}
}
} /* end of parse loop */
if (rStatus != 1)
return rStatus;
/*
store SRO motor value
*/
getSRO(pCon, &self->oldSRO);
/* having done this, we can start the motors */
for (i = 0; i < MAXMOT; i++) {
if (motorMask[i] > 0) {
pMot = FindMotor(pSics, tasMotorOrder[i]);
if (pMot) {
MotorGetSoftPosition(pMot, pCon, &oldPos);
sprintf(pBueffel, "Driving %s from %f to %f",
tasMotorOrder[i], oldPos, newPositions[i]);
} else {
sprintf(pBueffel, "Driving %s to %f",
tasMotorOrder[i], newPositions[i]);
}
SCWrite(pCon, pBueffel, eWarning);
status = StartMotor(pServ->pExecutor, pSics, pCon,
tasMotorOrder[i], RUNDRIVE, newPositions[i]);
if (status == 0) {
/* error should already have been reported by StartMotor */
rStatus = 0;
}
}
}
/*
if in TAS mode do the TAS calculation and start the appropriate
motors.
*/
if (iTAS > 0) {
if (qhPars == 3) {
SCWrite(pCon, "ERROR: QH cannot have 2 values", eError);
return 0;
}
status = TASCalc(self, pCon, tasMask, tasTargets, tasTargetMask);
if (status) {
/*
do output, first Q-E variables
*/
for (i = 0; i < 12; i++) {
if (tasMask[i]) {
sprintf(pBueffel, "Driving %s from %f to %f",
tasVariableOrder[EI + i], oldEnergy[i],
self->tasPar[EI + i]->fVal);
SCWrite(pCon, pBueffel, eWarning);
}
}
/*
more output: the motor positions
*/
for (i = 0; i < 9; i++) {
if (tasTargetMask[i]) {
pMot = FindMotor(pSics, tasMotorOrder[i]);
if (pMot) {
MotorGetSoftPosition(pMot, pCon, &oldPos);
} else {
oldPos = -9999.;
}
sprintf(pBueffel, "Driving %s from %f to %f", tasMotorOrder[i],
oldPos, tasTargets[i]);
SCWrite(pCon, pBueffel, eWarning);
}
}
/*
output for magnet currents
*/
for (i = 0; i < 8; i++) {
if (tasTargetMask[9 + i]) {
oldPos = readDrivable(tasMotorOrder[CURMOT + i], pCon);
sprintf(pBueffel, "Driving %s from %f to %f",
tasMotorOrder[CURMOT + i], oldPos, tasTargets[9 + i]);
SCWrite(pCon, pBueffel, eWarning);
}
}
status = TASStart(self, pCon, pSics, tasTargets, tasTargetMask);
if (status == 0) {
rStatus = 0;
}
} else {
rStatus = 0;
}
}
/*
wait till we are finished
*/
status = Wait4Success(GetExecutor());
TASUpdate(self, pCon);
/*
handle interrupts
*/
if (status == DEVINT) {
if (SCGetInterrupt(pCon) == eAbortOperation) {
SCSetInterrupt(pCon, eContinue);
sprintf(pBueffel, "Driving aborted");
SCWrite(pCon, pBueffel, eError);
}
return 0;
} else if (status == DEVDONE) {
sprintf(pBueffel, "Driving done");
SCWrite(pCon, pBueffel, eValue);
} else {
sprintf(pBueffel, "Driving finished");
SCWrite(pCon, pBueffel, eValue);
}
return rStatus;
}