Files
sics/site_ansto/safetyplc.c
Douglas Clowes d34b441f14 fix signed mismatch compiler diagnostic
r2427 | dcl | 2008-04-14 09:46:32 +1000 (Mon, 14 Apr 2008) | 2 lines
2012-11-15 13:35:00 +11:00

523 lines
15 KiB
C

/*
* S A F E T Y P L C
*
* Douglas Clowes, February 2007
*
*/
#include <netinet/tcp.h>
#include <sys/time.h>
#include <sics.h>
#include "network.h"
#include "asyncqueue.h"
#include "nwatch.h"
#include "safetyplc.h"
#include "sicsvar.h"
extern int DMC2280MotionControl;
#define KEY_ENABLED_BIT (1 << 0)
#define KEY_DISABLED_BIT (1 << 1)
#define SEC_OPENED_BIT (1 << 2)
#define SEC_CLOSED_BIT (1 << 3)
#define TER_OPENED_BIT (1 << 4)
#define TER_CLOSED_BIT (1 << 5)
#define MOTOR_ENABLED_BIT (1 << 6)
#define MOTOR_DISABLED_BIT (1 << 7)
#define ACCESS_LOCKED_BIT (1 << 8)
#define ACCESS_UNLOCKED_BIT (1 << 9)
#define DC_POWEROK_BIT (1 << 10)
#define EXIT_INPROGRESS_BIT (1 << 11)
#define SAFETY_TRIPPED_BIT (1 << 12)
#define SAFETY_MALFUNCTION_BIT (1 << 13)
#define TER_OPERATE_BIT (1 << 14)
#define RELAY_ENABLED_BIT (1 << 15)
#define INST_READY_BIT (1 << 16)
#define LAMP_TEST_BIT (1 << 17)
#define KEY_BOTH_BITS (KEY_ENABLED_BIT | KEY_DISABLED_BIT)
#define SEC_BOTH_BITS (SEC_OPENED_BIT | SEC_CLOSED_BIT)
#define TER_BOTH_BITS (TER_OPENED_BIT | TER_CLOSED_BIT)
#define MOTOR_BOTH_BITS (MOTOR_ENABLED_BIT | MOTOR_DISABLED_BIT)
#define ACCESS_BOTH_BITS (ACCESS_LOCKED_BIT | ACCESS_UNLOCKED_BIT)
static pAsyncProtocol PLC_Protocol = NULL;
int PLC_UserPriv = 0; /* Internal */
typedef enum {
Unknown_low, Invalid_high, Enabled, Disabled,
Opened, Closed, Locked, Unlocked, True, False,}PLC_STATUS;
char *plc_states[] = {
"Unknown_low", "Invalid_high", "Enabled",
"Disabled", "Opened", "Closed",
"Locked", "Unlocked", "True", "False"};
typedef enum {
Key,Secondary,Tertiary,MotionControl,Access,
DC,Exit,Trip,Fault,Operate,Relay,Ready,}PLC_PARAM;
char *plc_parname[] = {
"plc_key","plc_secondary","plc_tertiary","plc_motioncontrol",
"plc_access","plc_dc","plc_exit","plc_trip",
"plc_fault","plc_operate","plc_relay","plc_ready"};
typedef struct __SafetyPLCController SafetyPLCController, *pSafetyPLCController;
struct __SafetyPLCController {
pObjectDescriptor pDes;
pAsyncUnit unit; /* associated AsyncUnit object */
int iGetOut;
int iValue;
int oldValue;
pNWTimer nw_tmr; /* periodic timer handle */
pNWTimer oneshot; /* oneshot timer handle */
int timeout;
};
static int PLC_GetState(void *pData, char *param, PLC_STATUS *retState);
static int PLC_Tx(pAsyncProtocol p, pAsyncTxn myCmd)
{
int iRet = 1;
if (myCmd) {
myCmd->txn_status = ATX_ACTIVE;
iRet = AsyncUnitWrite(myCmd->unit, myCmd->out_buf, myCmd->out_len);
/* TODO handle errors */
if (iRet < 0) { /* TODO: EOF */
iRet = AsyncUnitReconnect(myCmd->unit);
if (iRet == 0)
return 0;
}
}
return 1;
}
static int PLC_Rx(pAsyncProtocol p, pAsyncTxn myCmd, int rxchar)
{
int iRet = 1;
switch (myCmd->txn_state) {
case 0: /* first character */
/* normal data */
myCmd->txn_state = 1;
/* note fallthrough */
case 1: /* receiving reply */
if (myCmd->inp_idx < myCmd->inp_len)
myCmd->inp_buf[myCmd->inp_idx++] = rxchar;
if (rxchar == 0x0D)
myCmd->txn_state = 2;
break;
case 2: /* received CR and looking for LF */
if (myCmd->inp_idx < myCmd->inp_len)
myCmd->inp_buf[myCmd->inp_idx++] = rxchar;
if (rxchar == 0x0A) {
myCmd->txn_state = 99;
/* end of line */
}
else
myCmd->txn_state = 1;
break;
}
if (myCmd->txn_state == 99) {
myCmd->inp_buf[myCmd->inp_idx] = '\0';
iRet = 0;
myCmd->txn_state = 0;
myCmd->txn_status = ATX_COMPLETE;
}
if (iRet == 0) { /* end of command */
return AQU_POP_CMD;
}
return iRet;
}
static int PLC_Ev(pAsyncProtocol p, pAsyncTxn myCmd, int event)
{
if (event == AQU_TIMEOUT) {
/* TODO: handle command timeout */
myCmd->txn_status = ATX_TIMEOUT;
return AQU_POP_CMD;
}
return AQU_POP_CMD;
}
static void PLC_Notify(void* context, int event)
{
pSafetyPLCController self = (pSafetyPLCController) context;
switch (event) {
case AQU_RECONNECT:
do {
mkChannel* sock = AsyncUnitGetSocket(self->unit);
int flag = 1;
setsockopt(sock->sockid, /* socket affected */
IPPROTO_TCP, /* set option at TCP level */
TCP_NODELAY, /* name of option */
(char *) &flag, /* the cast is historical cruft */
sizeof(int)); /* length of option value */
return;
} while (0);
}
return;
}
/*
* \brief GetCallback is the callback for the read command.
*/
static int GetCallback(pAsyncTxn txn)
{
int iRet;
unsigned int iRead;
char* resp = txn->inp_buf;
int resp_len = txn->inp_idx;
PLC_STATUS plcState;
pSicsVariable plcVar=NULL;
pSafetyPLCController self = (pSafetyPLCController) txn->cntx;
if (resp_len < 0) {
DMC2280MotionControl = -1;
}
else {
iRet = sscanf(resp,"READ %x", &iRead);
if(iRet != 1) { // Not a number, probably an error response
self->iValue = 0;
}
else {
if ((iRead & LAMP_TEST_BIT) == 0)
self->iValue = iRead;
}
if ((self->iValue & MOTOR_BOTH_BITS) == 0) /* neither */
DMC2280MotionControl = -1;
else if ((self->iValue & MOTOR_BOTH_BITS) == MOTOR_BOTH_BITS) /* both */
DMC2280MotionControl = -1;
else if ((self->iValue & MOTOR_ENABLED_BIT)) /* enabled */
DMC2280MotionControl = 1;
else /* disabled */
DMC2280MotionControl = 0;
}
if (self->oldValue != self->iValue) {
unsigned int i;
for (i=0; i < sizeof(plc_parname)/sizeof(plc_parname[0]); i++) {
plcVar = (pSicsVariable)FindCommandData(pServ->pSics,plc_parname[i],"SicsVariable");
PLC_GetState(self,plc_parname[i],&plcState);
VarSetText(plcVar,plc_states[plcState],PLC_UserPriv);
}
}
self->oldValue = self->iValue;
self->iGetOut = 0;
return 0;
}
static int MyTimerCallback(void* context, int mode)
{
pSafetyPLCController self = (pSafetyPLCController) context;
if (self->iGetOut) {
/* TODO error handling */
}
self->iGetOut = 1;
AsyncUnitSendTxn(self->unit, "READ", 4, GetCallback, self, 132);
return 1;
}
static int MyOneShotCallback(void* context, int mode)
{
pSafetyPLCController self = (pSafetyPLCController) context;
self->oneshot = 0;
AsyncUnitSendTxn(self->unit, "WRITE 0", 7, NULL, NULL, 132);
return 0;
}
/*
* \brief PutCallback is the callback for the write command.
*/
static int PutCallback(pAsyncTxn txn)
{
pSafetyPLCController self = (pSafetyPLCController) txn->cntx;
if (self->oneshot)
NetWatchRemoveTimer(self->oneshot);
NetWatchRegisterTimer(&self->oneshot, 500, MyOneShotCallback, self);
return 0;
}
static int PLC_GetState(void *pData, char *param, PLC_STATUS *retState)
{
pSafetyPLCController self = (pSafetyPLCController) pData;
if (strcasecmp(param, plc_parname[Key]) == 0) {
*retState = Unknown_low;
if ((self->iValue & KEY_BOTH_BITS) == KEY_BOTH_BITS)
*retState = Invalid_high;
else if (self->iValue & KEY_ENABLED_BIT)
*retState = Enabled;
else if (self->iValue & KEY_DISABLED_BIT)
*retState = Disabled;
return OKOK;
}
if (strcasecmp(param, plc_parname[Secondary]) == 0) {
*retState = Unknown_low;
if ((self->iValue & SEC_BOTH_BITS) == SEC_BOTH_BITS)
*retState = Invalid_high;
if (self->iValue & SEC_OPENED_BIT)
*retState = Opened;
else if (self->iValue & SEC_CLOSED_BIT)
*retState = Closed;
return OKOK;
}
if (strcasecmp(param, plc_parname[Tertiary]) == 0) {
*retState = Unknown_low;
if ((self->iValue & TER_BOTH_BITS) == TER_BOTH_BITS)
*retState = Invalid_high;
if (self->iValue & TER_OPENED_BIT)
*retState = Opened;
else if (self->iValue & TER_CLOSED_BIT)
*retState = Closed;
return OKOK;
}
if (strcasecmp(param, plc_parname[MotionControl]) == 0) {
*retState = Unknown_low;
if ((self->iValue & MOTOR_BOTH_BITS) == MOTOR_BOTH_BITS)
*retState = Invalid_high;
else if (self->iValue & MOTOR_ENABLED_BIT)
*retState = Enabled;
else if (self->iValue & MOTOR_DISABLED_BIT)
*retState = Disabled;
return OKOK;
}
if (strcasecmp(param, plc_parname[Access]) == 0) {
*retState = Unknown_low;
if ((self->iValue & ACCESS_BOTH_BITS) == ACCESS_BOTH_BITS)
*retState = Invalid_high;
else if (self->iValue & ACCESS_LOCKED_BIT)
*retState = Locked;
else if (self->iValue & ACCESS_UNLOCKED_BIT)
*retState = Unlocked;
return OKOK;
}
if (strcasecmp(param, plc_parname[DC]) == 0) {
*retState = False;
if (self->iValue & DC_POWEROK_BIT)
*retState = True;
return OKOK;
}
if (strcasecmp(param, plc_parname[Exit]) == 0) {
*retState = False;
if (self->iValue & EXIT_INPROGRESS_BIT)
*retState = True;
return OKOK;
}
if (strcasecmp(param, plc_parname[Trip]) == 0) {
*retState = False;
if (self->iValue & SAFETY_TRIPPED_BIT)
*retState = True;
return OKOK;
}
if (strcasecmp(param, plc_parname[Fault]) == 0) {
*retState = False;
if (self->iValue & SAFETY_MALFUNCTION_BIT)
*retState = True;
return OKOK;
}
if (strcasecmp(param, plc_parname[Operate]) == 0) {
*retState = False;
if (self->iValue & TER_OPERATE_BIT)
*retState = True;
return OKOK;
}
if (strcasecmp(param, plc_parname[Relay]) == 0) {
*retState = False;
if (self->iValue & RELAY_ENABLED_BIT)
*retState = True;
return OKOK;
}
if (strcasecmp(param, plc_parname[Ready]) == 0) {
*retState = False;
if (self->iValue & INST_READY_BIT)
*retState = True;
return OKOK;
}
return 0;
}
static int PLC_Print(SConnection *pCon, SicsInterp *pSics,
void *pData, char *name, char *param)
{
char line[132];
PLC_STATUS state;
if (PLC_GetState(pData, param, &state) != OKOK) {
return 0;
} else {
snprintf(line, 132, "%s.%s = %s", name, param, plc_states[state]);
SCWrite(pCon, line, eStatus);
return OKOK;
}
}
static int PLC_Action(SConnection *pCon, SicsInterp *pSics,
void *pData, int argc, char *argv[])
{
char line[132];
pSafetyPLCController self = (pSafetyPLCController) pData;
if (argc == 1) {
snprintf(line, 132, "%s.iValue = %06X", argv[0], self->iValue & 0xffffff);
SCWrite(pCon, line, eStatus);
return OKOK;
}
else if (argc == 2) {
if (strcasecmp(argv[1], "list") == 0) {
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Key]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Secondary]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Tertiary]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[MotionControl]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Access]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[DC]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Exit]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Trip]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Fault]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Operate]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Relay]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Ready]);
return OKOK;
}
if (PLC_Print(pCon, pSics, pData, argv[0], argv[1]))
return OKOK;
} else if (argc == 3) {
if (strcasecmp(argv[1], "hattach") == 0) {
}
else if (strcasecmp(argv[1], "shutter") == 0) {
if (strcasecmp(argv[2], "open") == 0) {
/* open shutter */
AsyncUnitSendTxn(self->unit, "WRITE 1", 4, PutCallback, self, 132);
return OKOK;
}
else if (strcasecmp(argv[2], "close") == 0 ||
strcasecmp(argv[2], "shut") == 0) {
/* close shutter */
AsyncUnitSendTxn(self->unit, "WRITE 2", 4, PutCallback, self, 132);
return OKOK;
}
else {
snprintf(line, 132, "%s %s does not understand %s",
argv[0], argv[1], argv[2]);
SCWrite(pCon, line, eError);
return 0;
}
}
}
snprintf(line, 132, "%s does not understand %s", argv[0], argv[1]);
SCWrite(pCon, line, eError);
return 0;
}
static pSafetyPLCController PLC_Create(const char* pName)
{
pSafetyPLCController self = NULL;
self = (pSafetyPLCController) malloc(sizeof(SafetyPLCController));
if (self == NULL)
return NULL;
memset(self, 0, sizeof(SafetyPLCController));
if (AsyncUnitCreate(pName, &self->unit) == 0) {
free(self);
return NULL;
}
AsyncUnitSetNotify(self->unit, self, PLC_Notify);
self->pDes = CreateDescriptor("SafetyPLC");
return self;
}
static int PLC_Init(pSafetyPLCController self)
{
/* TODO: Init the controller */
if (self->nw_tmr != NULL)
NetWatchRemoveTimer(self->nw_tmr);
NetWatchRegisterTimerPeriodic(&self->nw_tmr,
1000, 1000,
MyTimerCallback,
self);
self->timeout=120000; /* huge */
return 1;
}
static void PLC_Kill(void* pData)
{
pSafetyPLCController self = (pSafetyPLCController) pData;
if (self->nw_tmr)
NetWatchRemoveTimer(self->nw_tmr);
if (self->pDes) {
DeleteDescriptor(self->pDes);
self->pDes = NULL;
}
free(self);
return;
}
void SafetyPLCInitProtocol(SicsInterp *pSics) {
if (PLC_Protocol == NULL) {
PLC_Protocol = AsyncProtocolCreate(pSics, "SafetyPLC", NULL, NULL);
PLC_Protocol->sendCommand = PLC_Tx;
PLC_Protocol->handleInput = PLC_Rx;
PLC_Protocol->handleEvent = PLC_Ev;
PLC_Protocol->prepareTxn = NULL;
PLC_Protocol->killPrivate = NULL;
}
}
int SafetyPLCFactory(SConnection *pCon, SicsInterp *pSics,
void *pData, int argc, char *argv[])
{
pSafetyPLCController pNew = NULL;
int iRet, status;
unsigned int i;
char pError[256];
pSicsVariable plcVar=NULL;
PLC_STATUS plcState;
if(argc < 3)
{
SCWrite(pCon,"ERROR: insufficient no of arguments to SafetyPLCFactory",
eError);
return 0;
}
/*
create data structure and open port
*/
pNew = PLC_Create(argv[2]);
if(!pNew)
{
SCWrite(pCon,"ERROR: failed to create SafetyPLC in SafetyPLCFactory",eError);
return 0;
}
status = PLC_Init(pNew);
if(status != 1)
{
sprintf(pError,"ERROR: failed to connect to %s",argv[2]);
SCWrite(pCon,pError,eError);
}
for (i=0; i < sizeof(plc_parname)/sizeof(plc_parname[0]); i++) {
plcVar = VarCreate(PLC_UserPriv,veText,plc_parname[i]);
PLC_GetState(pNew,plc_parname[i],&plcState);
VarSetText(plcVar,plc_states[plcState],PLC_UserPriv);
AddCommand(pSics,plc_parname[i],VarWrapper,(KillFunc)VarKill,plcVar);
}
/*
create the command
*/
iRet = AddCommand(pSics, argv[1], PLC_Action, PLC_Kill, pNew);
if(!iRet)
{
sprintf(pError,"ERROR: duplicate command %s not created", argv[1]);
SCWrite(pCon,pError,eError);
PLC_Kill(pNew);
return 0;
}
SCSendOK(pCon);
return 1;
}