Files
sics/site_ansto/safetyplc.c
Douglas Clowes eb41f23ee2 Reworked AsyncQueue sendCommand processing
Squashed commit of the following:

commit 42fb7d3cde591d40060cc740ccbc47f1ae7a5a50
Author: Douglas Clowes <dcl@ansto.gov.au>
Date:   Tue Aug 26 13:31:11 2014 +1000

    Get the MODBUS_AP working

commit da785c1434a04c4186d4174eb2dfbaefc850c8e7
Author: Douglas Clowes <dcl@ansto.gov.au>
Date:   Mon Aug 25 18:01:50 2014 +1000

    Bring Modbus protocol closer to Huber, Knauer and Omron

commit ef06ed7b6911cb49b35c19fe73e55f7c57cfd049
Author: Douglas Clowes <dcl@ansto.gov.au>
Date:   Mon Aug 25 18:01:18 2014 +1000

    Make Huber, Knauer and Omron protocols more aligned (diffable)

commit 3ef1bb06b3f865502ad7dffc4bf5dba4814d9334
Author: Douglas Clowes <dcl@ansto.gov.au>
Date:   Fri Aug 22 17:47:50 2014 +1000

    Get the Huber and Knauer protocols to be more alike

commit 2c9932e83f6735e894278648afdcadece654d43b
Author: Douglas Clowes <dcl@ansto.gov.au>
Date:   Fri Aug 22 17:12:31 2014 +1000

    Clean up the Knauer dual-mode protocol and refactor

commit 333300b19b0e61916e261300ac6ae2b6bab5df09
Author: Douglas Clowes <dcl@ansto.gov.au>
Date:   Thu Aug 21 15:38:39 2014 +1000

    Get the Knauer dual-mode protocol working(-ish)

commit b1f9d82f1b9eb8a1ff54694adc3482984b0d3d72
Author: Douglas Clowes <dcl@ansto.gov.au>
Date:   Thu Aug 21 15:37:44 2014 +1000

    Make private functions static (and not duplicated)

commit 0b077414eef9e4351956a2b971d7751cced0d3cd
Author: Douglas Clowes <dcl@ansto.gov.au>
Date:   Thu Aug 21 12:46:10 2014 +1000

    Knauer moving toward dual protocol

commit 13199bea38a1595ce06923e83474b738b10db94d
Author: Douglas Clowes <dcl@ansto.gov.au>
Date:   Thu Aug 21 12:42:48 2014 +1000

    Restructure default sendCommand processing in asyncqueue

commit 99a8ea3174ca0636503b0ce0cdb6016790315558
Author: Douglas Clowes <dcl@ansto.gov.au>
Date:   Thu Aug 21 09:48:50 2014 +1000

    Add a Modbus Protocol handler derived from sct_tcpmodbus

commit 3adf49fb7c8402c8260a0bb20729d551ac88537b
Author: Douglas Clowes <dcl@ansto.gov.au>
Date:   Thu Aug 21 09:43:54 2014 +1000

    Leave the free of private data to the asyncqueue mechanism
2014-08-26 14:30:19 +10:00

526 lines
15 KiB
C

/*
* S A F E T Y P L C
*
* Douglas Clowes, February 2007
*
*/
#include <netinet/tcp.h>
#include <sys/time.h>
#include <sics.h>
#include "network.h"
#include "asyncqueue.h"
#include "nwatch.h"
#include "safetyplc.h"
#include "sicsvar.h"
extern int DMC2280MotionControl;
#define KEY_ENABLED_BIT (1 << 0)
#define KEY_DISABLED_BIT (1 << 1)
#define SEC_OPENED_BIT (1 << 2)
#define SEC_CLOSED_BIT (1 << 3)
#define TER_OPENED_BIT (1 << 4)
#define TER_CLOSED_BIT (1 << 5)
#define MOTOR_ENABLED_BIT (1 << 6)
#define MOTOR_DISABLED_BIT (1 << 7)
#define ACCESS_LOCKED_BIT (1 << 8)
#define ACCESS_UNLOCKED_BIT (1 << 9)
#define DC_POWEROK_BIT (1 << 10)
#define EXIT_INPROGRESS_BIT (1 << 11)
#define SAFETY_TRIPPED_BIT (1 << 12)
#define SAFETY_MALFUNCTION_BIT (1 << 13)
#define TER_OPERATE_BIT (1 << 14)
#define RELAY_ENABLED_BIT (1 << 15)
#define INST_READY_BIT (1 << 16)
#define LAMP_TEST_BIT (1 << 17)
#define KEY_BOTH_BITS (KEY_ENABLED_BIT | KEY_DISABLED_BIT)
#define SEC_BOTH_BITS (SEC_OPENED_BIT | SEC_CLOSED_BIT)
#define TER_BOTH_BITS (TER_OPENED_BIT | TER_CLOSED_BIT)
#define MOTOR_BOTH_BITS (MOTOR_ENABLED_BIT | MOTOR_DISABLED_BIT)
#define ACCESS_BOTH_BITS (ACCESS_LOCKED_BIT | ACCESS_UNLOCKED_BIT)
static pAsyncProtocol PLC_Protocol = NULL;
int PLC_UserPriv = 0; /* Internal */
typedef enum {
Unknown_low, Invalid_high, Enabled, Disabled,
Opened, Closed, Locked, Unlocked, True, False,}PLC_STATUS;
char *plc_states[] = {
"UNKNOWN_LOW", "INVALID_HIGH", "ENABLED",
"DISABLED", "OPEN", "CLOSED",
"LOCKED", "UNLOCKED", "TRUE", "FALSE"};
typedef enum {
Key,Secondary,Tertiary,MotionControl,Access,
DC,Exit,Trip,Fault,Operate,Relay,Ready,}PLC_PARAM;
char *plc_parname[] = {
"plc_key","plc_secondary","plc_tertiary","plc_motioncontrol",
"plc_access","plc_dc","plc_exit","plc_trip",
"plc_fault","plc_operate","plc_relay","plc_ready"};
typedef struct __SafetyPLCController SafetyPLCController, *pSafetyPLCController;
struct __SafetyPLCController {
pObjectDescriptor pDes;
pAsyncUnit unit; /* associated AsyncUnit object */
int iGetOut;
int iValue;
int oldValue;
pNWTimer nw_tmr; /* periodic timer handle */
pNWTimer oneshot; /* oneshot timer handle */
int timeout;
};
static int PLC_GetState(void *pData, char *param, PLC_STATUS *retState);
static int PLC_Rx(pAsyncProtocol p, pAsyncTxn myCmd, int rxchar)
{
int iRet = 1;
switch (myCmd->txn_state) {
case 0: /* first character */
/* normal data */
myCmd->txn_state = 1;
/* note fallthrough */
case 1: /* receiving reply */
if (myCmd->inp_idx < myCmd->inp_len)
myCmd->inp_buf[myCmd->inp_idx++] = rxchar;
if (rxchar == 0x0D)
myCmd->txn_state = 2;
break;
case 2: /* received CR and looking for LF */
if (myCmd->inp_idx < myCmd->inp_len)
myCmd->inp_buf[myCmd->inp_idx++] = rxchar;
if (rxchar == 0x0A) {
myCmd->txn_state = 99;
/* end of line */
}
else
myCmd->txn_state = 1;
break;
}
if (myCmd->txn_state == 99) {
myCmd->inp_buf[myCmd->inp_idx] = '\0';
iRet = 0;
myCmd->txn_state = 0;
myCmd->txn_status = ATX_COMPLETE;
}
if (iRet == 0) { /* end of command */
return AQU_POP_CMD;
}
return iRet;
}
static int PLC_Ev(pAsyncProtocol p, pAsyncTxn myCmd, int event)
{
if (event == AQU_TIMEOUT) {
/* TODO: handle command timeout */
myCmd->txn_status = ATX_TIMEOUT;
return AQU_POP_CMD;
}
return AQU_POP_CMD;
}
static void PLC_Notify(void* context, int event)
{
pSafetyPLCController self = (pSafetyPLCController) context;
switch (event) {
case AQU_RECONNECT:
do {
mkChannel* sock = AsyncUnitGetSocket(self->unit);
int flag = 1;
setsockopt(sock->sockid, /* socket affected */
IPPROTO_TCP, /* set option at TCP level */
TCP_NODELAY, /* name of option */
(char *) &flag, /* the cast is historical cruft */
sizeof(int)); /* length of option value */
return;
} while (0);
}
return;
}
/*
* \brief GetCallback is the callback for the read command.
*/
static int GetCallback(pAsyncTxn txn)
{
int iRet;
unsigned int iRead;
char* resp = txn->inp_buf;
int resp_len = txn->inp_idx;
PLC_STATUS plcState;
pSicsVariable plcVar=NULL;
pSafetyPLCController self = (pSafetyPLCController) txn->cntx;
if (resp_len < 0) {
DMC2280MotionControl = -1;
}
else {
iRet = sscanf(resp,"READ %x", &iRead);
if(iRet != 1) { // Not a number, probably an error response
self->iValue = 0;
}
else {
if ((iRead & LAMP_TEST_BIT) == 0)
self->iValue = iRead;
}
if ((self->iValue & MOTOR_BOTH_BITS) == 0) /* neither */
DMC2280MotionControl = -1;
else if ((self->iValue & MOTOR_BOTH_BITS) == MOTOR_BOTH_BITS) /* both */
DMC2280MotionControl = -1;
else if ((self->iValue & MOTOR_ENABLED_BIT)) /* enabled */
DMC2280MotionControl = 1;
else /* disabled */
DMC2280MotionControl = 0;
}
if (self->oldValue != self->iValue) {
unsigned int i;
for (i=0; i < sizeof(plc_parname)/sizeof(plc_parname[0]); i++) {
plcVar = (pSicsVariable)FindCommandData(pServ->pSics,plc_parname[i],"SicsVariable");
PLC_GetState(self,plc_parname[i],&plcState);
VarSetText(plcVar,plc_states[plcState],PLC_UserPriv);
}
}
self->oldValue = self->iValue;
self->iGetOut = 0;
return 0;
}
static int MyTimerCallback(void* context, int mode)
{
pSafetyPLCController self = (pSafetyPLCController) context;
if (self->iGetOut) {
/* TODO error handling */
}
self->iGetOut = 1;
AsyncUnitSendTxn(self->unit, "READ", 4, GetCallback, self, 132);
return 1;
}
static int MyOneShotCallback(void* context, int mode)
{
pSafetyPLCController self = (pSafetyPLCController) context;
self->oneshot = 0;
AsyncUnitSendTxn(self->unit, "WRITE 0", 7, NULL, NULL, 132);
return 0;
}
/*
* \brief PutCallback is the callback for the write command.
*/
static int PutCallback(pAsyncTxn txn)
{
pSafetyPLCController self = (pSafetyPLCController) txn->cntx;
if (self->oneshot)
NetWatchRemoveTimer(self->oneshot);
NetWatchRegisterTimer(&self->oneshot, 500, MyOneShotCallback, self);
return 0;
}
static int PLC_GetState(void *pData, char *param, PLC_STATUS *retState)
{
pSafetyPLCController self = (pSafetyPLCController) pData;
if (strcasecmp(param, plc_parname[Key]) == 0) {
*retState = Unknown_low;
if ((self->iValue & KEY_BOTH_BITS) == KEY_BOTH_BITS)
*retState = Invalid_high;
else if (self->iValue & KEY_ENABLED_BIT)
*retState = Enabled;
else if (self->iValue & KEY_DISABLED_BIT)
*retState = Disabled;
return OKOK;
}
if (strcasecmp(param, plc_parname[Secondary]) == 0) {
*retState = Unknown_low;
if ((self->iValue & SEC_BOTH_BITS) == SEC_BOTH_BITS)
*retState = Invalid_high;
if (self->iValue & SEC_OPENED_BIT)
*retState = Opened;
else if (self->iValue & SEC_CLOSED_BIT)
*retState = Closed;
return OKOK;
}
if (strcasecmp(param, plc_parname[Tertiary]) == 0) {
*retState = Unknown_low;
if ((self->iValue & TER_BOTH_BITS) == TER_BOTH_BITS)
*retState = Invalid_high;
if (self->iValue & TER_OPENED_BIT)
*retState = Opened;
else if (self->iValue & TER_CLOSED_BIT)
*retState = Closed;
return OKOK;
}
if (strcasecmp(param, plc_parname[MotionControl]) == 0) {
*retState = Unknown_low;
if ((self->iValue & MOTOR_BOTH_BITS) == MOTOR_BOTH_BITS)
*retState = Invalid_high;
else if (self->iValue & MOTOR_ENABLED_BIT)
*retState = Enabled;
else if (self->iValue & MOTOR_DISABLED_BIT)
*retState = Disabled;
return OKOK;
}
if (strcasecmp(param, plc_parname[Access]) == 0) {
*retState = Unknown_low;
if ((self->iValue & ACCESS_BOTH_BITS) == ACCESS_BOTH_BITS)
*retState = Invalid_high;
else if (self->iValue & ACCESS_LOCKED_BIT)
*retState = Locked;
else if (self->iValue & ACCESS_UNLOCKED_BIT)
*retState = Unlocked;
return OKOK;
}
if (strcasecmp(param, plc_parname[DC]) == 0) {
*retState = False;
if (self->iValue & DC_POWEROK_BIT)
*retState = True;
return OKOK;
}
if (strcasecmp(param, plc_parname[Exit]) == 0) {
*retState = False;
if (self->iValue & EXIT_INPROGRESS_BIT)
*retState = True;
return OKOK;
}
if (strcasecmp(param, plc_parname[Trip]) == 0) {
*retState = False;
if (self->iValue & SAFETY_TRIPPED_BIT)
*retState = True;
return OKOK;
}
if (strcasecmp(param, plc_parname[Fault]) == 0) {
*retState = False;
if (self->iValue & SAFETY_MALFUNCTION_BIT)
*retState = True;
return OKOK;
}
if (strcasecmp(param, plc_parname[Operate]) == 0) {
*retState = False;
if (self->iValue & TER_OPERATE_BIT)
*retState = True;
return OKOK;
}
if (strcasecmp(param, plc_parname[Relay]) == 0) {
*retState = False;
if (self->iValue & RELAY_ENABLED_BIT)
*retState = True;
return OKOK;
}
if (strcasecmp(param, plc_parname[Ready]) == 0) {
*retState = False;
if (self->iValue & INST_READY_BIT)
*retState = True;
return OKOK;
}
return 0;
}
static int PLC_Print(SConnection *pCon, SicsInterp *pSics,
void *pData, char *name, char *param)
{
char line[132];
PLC_STATUS state;
if (PLC_GetState(pData, param, &state) != OKOK) {
return 0;
} else {
snprintf(line, 132, "%s.%s = %s", name, param, plc_states[state]);
SCWrite(pCon, line, eValue);
return OKOK;
}
}
static int PLC_Action(SConnection *pCon, SicsInterp *pSics,
void *pData, int argc, char *argv[])
{
char line[132];
pSafetyPLCController self = (pSafetyPLCController) pData;
if (argc == 1) {
snprintf(line, 132, "%s.iValue = %06X", argv[0], self->iValue & 0xffffff);
SCWrite(pCon, line, eValue);
return OKOK;
}
else if (argc == 2) {
if (strcasecmp(argv[1], "list") == 0) {
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Key]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Secondary]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Tertiary]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[MotionControl]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Access]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[DC]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Exit]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Trip]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Fault]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Operate]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Relay]);
PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Ready]);
return OKOK;
}
if (PLC_Print(pCon, pSics, pData, argv[0], argv[1]))
return OKOK;
} else if (argc == 3) {
if (strcasecmp(argv[1], "hattach") == 0) {
}
else if (strcasecmp(argv[1], "shutter") == 0) {
//if (strcasecmp(argv[2], "open") == 0) {
if (strcasecmp(argv[2], "on") == 0) {
/* open shutter */
//AsyncUnitSendTxn(self->unit, "set shutter=on", 14, PutCallback, self, 132);
AsyncUnitSendTxn(self->unit, "READ", 4, PutCallback, self, 132);
return OKOK;
}
//else if (strcasecmp(argv[2], "close") == 0 ||
else if (strcasecmp(argv[2], "off") == 0) {
// strcasecmp(argv[2], "shut") == 0) {
/* close shutter */
AsyncUnitSendTxn(self->unit, "set shutter=off", 15, PutCallback, self, 132);
return OKOK;
}
else if (strcasecmp(argv[2], "auto") == 0) {
AsyncUnitSendTxn(self->unit, "set shutter=auto", 16, PutCallback, self, 132);
return OKOK;
}
else {
snprintf(line, 132, "%s %s does not understand %s", argv[0], argv[1], argv[2]);
SCWrite(pCon, line, eError);
return 0;
}
}
else if (strcasecmp(argv[1], "focuslight") == 0) {
if (strcasecmp(argv[2], "on") == 0) {
AsyncUnitSendTxn(self->unit, "set focuslight=on", 17, PutCallback, self, 132);
return OKOK;
} else if (strcasecmp(argv[2], "off") == 0) {
AsyncUnitSendTxn(self->unit, "set focuslight=off", 18, PutCallback, self, 132);
return OKOK;
} else {
snprintf(line, 132, "%s %s does not understand %s", argv[0], argv[1], argv[2]);
SCWrite(pCon, line, eError);
return 0;
}
}
} else {
snprintf(line, 132, "%s does not understand %s", argv[0], argv[1]);
SCWrite(pCon, line, eError);
return 0;
}
}
static pSafetyPLCController PLC_Create(const char* pName)
{
pSafetyPLCController self = NULL;
self = (pSafetyPLCController) malloc(sizeof(SafetyPLCController));
if (self == NULL)
return NULL;
memset(self, 0, sizeof(SafetyPLCController));
if (AsyncUnitCreate(pName, &self->unit) == 0) {
free(self);
return NULL;
}
AsyncUnitSetNotify(self->unit, self, PLC_Notify);
self->pDes = CreateDescriptor("SafetyPLC");
return self;
}
static int PLC_Init(pSafetyPLCController self)
{
/* TODO: Init the controller */
if (self->nw_tmr != NULL)
NetWatchRemoveTimer(self->nw_tmr);
NetWatchRegisterTimerPeriodic(&self->nw_tmr,
1000, 1000,
MyTimerCallback,
self);
self->timeout=120000; /* huge */
return 1;
}
static void PLC_Kill(void* pData)
{
pSafetyPLCController self = (pSafetyPLCController) pData;
if (self->nw_tmr)
NetWatchRemoveTimer(self->nw_tmr);
if (self->pDes) {
DeleteDescriptor(self->pDes);
self->pDes = NULL;
}
free(self);
return;
}
void SafetyPLCInitProtocol(SicsInterp *pSics) {
if (PLC_Protocol == NULL) {
PLC_Protocol = AsyncProtocolCreate(pSics, "SafetyPLC", NULL, NULL);
PLC_Protocol->sendCommand = NULL;
PLC_Protocol->handleInput = PLC_Rx;
PLC_Protocol->handleEvent = PLC_Ev;
PLC_Protocol->prepareTxn = NULL;
PLC_Protocol->killPrivate = NULL;
}
}
int SafetyPLCFactory(SConnection *pCon, SicsInterp *pSics,
void *pData, int argc, char *argv[])
{
pSafetyPLCController pNew = NULL;
int iRet, status;
unsigned int i;
char pError[256];
pSicsVariable plcVar=NULL;
PLC_STATUS plcState;
if(argc < 3)
{
SCWrite(pCon,"ERROR: insufficient no of arguments to SafetyPLCFactory",
eError);
return 0;
}
/*
create data structure and open port
*/
pNew = PLC_Create(argv[2]);
if(!pNew)
{
SCWrite(pCon,"ERROR: failed to create SafetyPLC in SafetyPLCFactory",eError);
return 0;
}
status = PLC_Init(pNew);
if(status != 1)
{
sprintf(pError,"ERROR: failed to connect to %s",argv[2]);
SCWrite(pCon,pError,eError);
}
for (i=0; i < sizeof(plc_parname)/sizeof(plc_parname[0]); i++) {
plcVar = VarCreate(PLC_UserPriv,veText,plc_parname[i]);
PLC_GetState(pNew,plc_parname[i],&plcState);
VarSetText(plcVar,plc_states[plcState],PLC_UserPriv);
AddCommand(pSics,plc_parname[i],VarWrapper,(KillFunc)VarKill,plcVar);
}
/*
create the command
*/
iRet = AddCommand(pSics, argv[1], PLC_Action, PLC_Kill, pNew);
if(!iRet)
{
sprintf(pError,"ERROR: duplicate command %s not created", argv[1]);
SCWrite(pCon,pError,eError);
PLC_Kill(pNew);
return 0;
}
SCSendOK(pCon);
return 1;
}